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Intrinsic Image Transfer for Illumination Manipulation
Junqing Huang, Michael Ruzhansky, Qianying Zhang, Haihui Wang, Member, IEEE

Abstract—This paper presents a novel intrinsic image transfer (IIT) algorithm for image illumination manipulation, which creates a local
image translation between two illumination surfaces. This model is built on an optimization-based framework composed of illumination,
reflectance and content photo-realistic losses, respectively. Each loss is firstly defined on the corresponding sub-layers factorized by an
intrinsic image decomposition and then reduced under the well-known spatial-varying illumination illumination-invariant reflectance prior
knowledge. We illustrate that all losses, with the aid of an “exemplar” image, can be directly defined on images without the necessity of
taking an intrinsic image decomposition, thereby giving a closed-form solution to image illumination manipulation. We also demonstrate
its versatility and benefits to several illumination-related tasks: illumination compensation, image enhancement and tone mapping, and
high dynamic range (HDR) image compression, and show their high-quality results on natural image datasets.

Index Terms—Image illumination and reflectance, intrinsic image decomposation, intrinsic images transfer, illumination manipulation.
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1 INTRODUCTION

IMAGE illumination is one of the basic and important cues
for both human and computer vision. Shadows reveal black

while highlights make white — visual objects look quite differ-
ent under varying illumination conditions. The study of image
illumination jointing with perception problems can be dated
back to Helmholtz who had interpreted that human perception
of the “intrinsic” property of scene is regardless of the light
shed on it, which is also known as “lightness constancy” [1].
Although theories have been extensively studied over the past
decades, as Gilchrist [2] pointed out, how human determines
lightness, whiteness of a scene, like vision in general, remains a
mystery. Recent analysis has shown that human’s perception of
lighting is deeply influenced by human vision system (HVS),
involving some, yet, not fully-understood mechanisms, com-
plex interactions and feedback [1], [2], [3].

The controlling of image illumination — which is roughly
referred to as image illumination manipulation in this paper,
has received great attention in a variety of image processing
and computer vision tasks. The representative instances include
image tone mapping, image enhancement, high dynamic range
(HDR) image compression, illumination compensation, and so
on. Despite the different backgrounds, they in nature aim to
solve a similar illumination problem — that is, how to correct
illumination conditions to bring out more visual information.
It has also witnessed many efforts of different computational
models to optimize illumination conditions for fine-balanced
distributions to reduce the degeneration of brightness, contrast,
color and saturation of images or videos. In general, they can
be divided into two mainstream techniques: tone mapping
operators (TMO) [4], [5] and Retinex-based methods [1], [3].
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TMO methods such as gamut mappings [4], [5] treat color
intensities as image illumination and correct it by mapping
the intensities (or hue, saturation, and so on) with specified
tone-mapping operators or curves. This strategy is simple and
easy to implement but may lead to visual artifacts such as noise
exaggeration. In contrast, Retinex-based methods [6], [7] tend to
make an explicit intrinsic image decomposition and deal with
the illumination layer individually. It is possible for them to
produce plausible results with appropriate configurations, but
the underlying intrinsic image decomposition is a challenging
under-constrained problem, especially in the cases of lacking
of sufficient prior knowledge. Notice also that both categorized
methods can be interpreted in the context of Retinex theory,
the core of them is how to make a faithful intrinsic image
decomposition, no matter an explicit or implicit one, and then
adjust the corresponding sub-layers appropriately. Despite the
great progress in the past decades, there still has considerable
interest to exploit new methods to control image illumination
for target purposes.

In this paper, we investigate a general image illumination
manipulation problem under the interpretation of an intrinsic
image model. The main idea arises from the observation that
a wide range of illumination-related tasks inherently shares a
common illumination problem that can be characterized under
the assumption of Retinex theory [1], [3]. Differing from many
traditional Retinex-based methods [6], [7], we provide a new
paradigm to deal with per-pixel image illumination without the
necessity of taking an explicit intrinsic image decomposition.
Specifically, we propose a novel intrinsic image transfer (IIT)
algorithm to implicitly create a local image translation between
two illumination surfaces. Our IIT algorithm is built on a
generalized optimization-based framework consisting of three
photorealistic losses that are derived from image illumination,
reflectance and content, respectively. By definition, each loss is
first defined on the intrinsic layers factorized by an intrinsic
image decomposition and further simplified under the well-
known spatial-varying illumination and illumination-invariant
reflectance prior knowledge. With a series of relaxations, all
losses are directly defined on images instead of the underlying
sub-layers, thereby avoiding the challenging intrinsic image
decomposition. As explained in Section 3 and 4, the proposed
IIT method has a powerful ability in preserving local consistent
structures while suppressing the potential artifacts such as
halos around the salient edges and textural distortions, which
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provides an easy-configurated illumination manipulation tool
for many practical applications. The major contributions of this
paper are summarized as follows:

• A new generalized minimization framework— intrinsic
image transfer (IIT), is concisely designed for image
illumination manipulation, in which three photorealistic
losses (illumination, reflectance and content) are defined
to characterize the underlying “intrinsic” layers.

• A simple filtering operator is introduced to mimic
the spatial-smoothing property of image illumination,
and a locally linear embedding (LLE) algorithm [8] is
also formulated to identify the illumination-invariant
reflectance. The refinements provide an alternative way
to optimize image illumination without the necessity of
taking an explicit intrinsic image decomposition.

• A closed-form solution to controlling image illumination
is implemented with the aid of a so-called exemplar
image. The performance is verified both qualitatively
and quantitatively on several illumination-related tasks,
where our IIT algorithm performs favorable results on
natural images against state-of-the-art methods.

We further remark that our IIT method takes a small step
toward clarifying the internal relationship between “intrinsic”
layers and a wide range of image illumination-related tasks. It
is in nature built on intrinsic images, but it does not strive to
explore an explicit intrinsic image decomposition. Instead, we
implicitly characterize and regularize the underlying “intrinsic”
image layers based on the well-known spatially-smoothing
illumination and illumination-invariant reflectance assumption.
The experimental results also demonstrate its versatility and
many potential benefits to illumination compensation, image
enhancement, HDR image compression, and so on.

The rest paper is organized as follows. The related work is
presented in Section 2. The proposed method is presented in
Section 3, in which a generalized intrinsic image model and its
connections to image illumination manipulation are discussed
in Section 3.1 and 3.2, respectively; and the model together with
three photorealistic losses is systemically explored in Section
3.3. In Section 4, a series of experimental results are presented
with the quantitative evaluation on different image datasets.
In Section 5, we draw our concluding remarks and future
directions.

2 RELATED WORK

Previous work aiming to find a fine-balanced illumination
distribution covers a wide range of techniques. We here mainly
review the related methods based on the underlying “intrinsic”
images and illustrate the connections and potential benefits to
image illumination manipulation.

Retinex theory is a famous computational model proposed
by Land and McCann [1] to interpret the “lightness constancy”
phenomenon, which is also an important theoretical guide for
image illumination manipulation. In Retinex theory, it is usually
assumed a Mondrian-like image that can be formulated by the
point-wise multiplication of two components (illumination and
reflection layers). The illumination layer measures the amount
of incident light illuminated on an object or scene; while the
reflectance layer depicts the reliable visual information inde-
pendent with the varying illumination. Land [9] also derived
a simple algorithm that classifies the strong gradients of an
image into reflectance layer and all the other variations into
illumination layer. In [10], Horn interpreted that a complete
image decomposition of them can be achieved by solving

a Poisson equation mathematically. Due to its effectiveness,
Retinex-based models have been widely used as basic tools
for a variety of illumination-related tasks such as image tone
mapping and enhancement, image illumination compensation,
HDR image compression, and so on. For instance, Jobson [11]
explored the properties of the center/surround function and
proposed a so-called center/surround Retinex for HDR image
compression. The work was subsequently extended to the
classic multiscale Retinex [12] for color, contrast and brightness
correction. Fattal et al. [6] proposed an HDR image compression
method based on Retinex theory in the gradient domain of
images. Besides, Retinex theory has also stimulated many other
computational models, including the variational-based image
decomposition [13], PDE-based image smoothing [14], to clarify
the relationship of two components, as well as the benefits to
these aforementioned illumination-related tasks. Besides, Elad
[15] justified the relationship between a regularized Retinex
model and bilateral filter [16] theoretically by characterizing the
smoothing illumination, which also stimulates the use of edge-
ware image filters for image decomposition and illumination
manipulation. The interested reader is referred to the surveys
[16], [17], [18] for more details.

Simultaneously, intrinsic image decomposition has also
drawn great attention since the terminology “intrinsic images”
was introduced by Barrow and Tenenbaum [3]. The methods
essentially share very similar assumptions as Retinex-based
methods, while they strive to decompose an image into differ-
ent “intrinsic” components explicitly. In general, it is a highly
under-constrained problem to recover the multiple intrinsic
layers from single or multiple images without any further
assumptions. In order to obtain a faithful image decomposition,
Rother, et al. [19], for example, gave an image decomposition
method by encoding the sparsity of the reflectance with a
Gaussian mixture model. Bell et al. [20] presented a dense
conditional random field algorithm for intrinsic image decom-
position on a large-scale indoor dataset. Recently, more complex
computational models were proposed for real-world image
decomposition. In [21], depth cues with RGB-D cameras were
used to infer the intrinsic images. Jeon et al. [22] introduced an
image decomposition model based on locally linear embedding
algorithm [8], which is related to our model but mainly strives
to explicitly decompose an image into shading, reflectance
and texture layers. Barron and Mailk [23] also formulated
a similar one called “shape, albedo, and illumination from
shading (SAIFS)” to recover each intrinsic layer from an image.
Instead, Guo et al. [24] proposed a model for low-light image
enhancement that takes only the illumination layer into account
under dark-channel prior. When it comes to image illumination
manipulation, intrinsic image decomposition is always used as
a building block integrated with a layer-remapping operator
and image construction for post-processing. Nevertheless, the
post-processing steps are out of the constraints of intrinsic
image decomposition, which may introduce strong artifacts
even with a high-quality image decomposition.

Besides, recent advances in learning-based methods achieve
a milestone for the overwhelming results in many challenging
benchmarks [20], [25], [26], [27], [28]. Strongly benefiting from
the deep convolutional neural networks (CNN) [28], [29], more
delicate network architectures are springing out. It has also wit-
nessed the use of deep learning approaches [30], [31], [32], [33],
[34], [35] to explore and infer the intrinsic layers from single or
multiple images or directly recover image illumination for bet-
ter visual perception or interpretation. For example, Narihira et
al. [36] first introduced deep learning to learn albedo from MPI
Sintel dataset [37]. Chen et al. [38] recently released an end-
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(a) Input (b) Illumination and reflectance mapping (c) Input (d) Illumination and reflectance mapping

Fig. 1. Illumination and reflectance mapping in the logarithm domain. Top: local illumination mapping (a = [0.3, 0.1,−0.1,−0.3]), middle: global
illumination mapping (b = [0.6, 0.9, 1.1, 1.4]), bottom: global reflectance mapping (c = [0.5, 0.8, 1.2, 1.5]).

to-end training model with a fully convolutional network for
the low-light images by using raw images for training. Andrey
et al. [39] presented an end-to-end weakly supervised photo
enhancer (WESPE) to enhance an image automatically. Yet, one
of the bottlenecks of these deep learning-based methods is
the necessity of a large scale of high-quality matched training
pairs for supervision. More recently, unsupervised image-to-
image translation [40] bring new hope and replace parts of the
traditional pipelines for easy and flexible real-world image tone
mapping and enhancement [41], [42], [43], [44], [45]. The reader
is referred to these existing deep learning-based algorithms for
more details.

3 METHODOLOGY

In this section, we briefly introduce a well-known intrinsic
image model and show how to derive the proposed IIT model
and reduce the photorealistic losses under the intrinsic images
mathematically.

3.1 Intrinsic Images Model

In many existing Retinex-based model [3], [19], an image I is
assumed to be factorized into illumination L and reflectanceR,

I = L �R, (1)

where � is a point-wise multiplication operator, L represents
the light-dependent properties such as shading, shadows or
specular highlights of images, and R represents the material-
dependent properties, known as the reflectance of a scene. L
and R take rather different roles in controlling the image color,
contrast, brightness and so on. Such an image decomposition
has formed a basis for many intrinsic image decomposition
methods [9], [10], [19], [20].

It is clear that Eq. 1 is a highly under-constraint prob-
lem if no further assumption is imposed on illumination L
or reflectance R. Previous work mainly focuses on exploring
sensible priors — for example, the well-known spatial-varying
illumination and illumination-invariant reflectance — that is,
illumination L is assumed to be spatial-smoothing and deter-
mines the brightness of a scene, while reflectance R possesses
illumination-invariant property and is expected to be piece-
wise constant under varying lighting conditions. Such a prior
may be further interpreted as sparse priors [24], [46], low-rank
[47], [48], non-local cues [49], [50] and so on. Despite many
efforts, it is still challenging to make an explicit intrinsic image
decomposition, especially for natural images under complex
light, material, color and geometry conditions.

3.2 Multiple Observations

We claim that a wide range of image illumination-related tasks,
for example, image illumination compensation, tone mapping,
enhancement and HDR image compression, can be understood
in the context of Eq. 1. For example, it is always preferable in
many tone mapping methods [4], [5] to treat color intensities
as illumination L and correct illumination by applying tonal
adjustments such as linear contrast stretching and gamma
correction on image intensities. In Retinex-based methods [1],
[3], a more complex procedure: intrinsic image decomposition,
layer-remapping and image reconstruction may be applied
for more plausible results. Despite the different backgrounds
and generalizations, we can see that they essentially share a
common illumination problem — that is, how to decouple
image illumination from images or make an explicit intrinsic
image decomposition, and then adjust each layer appropriately
to achieve the target purpose.

Suppose a high-quality intrinsic image decomposition is
available, we depict the role of layer-remapping operators
in aforementioned illumination-related tasks. As suggested in
[19], we consider a simple linear mapping model Î=a+bL+cR
in the logarithmic domain, where I, L and R are the logarithmic
counterparts: I, L and R, respectively. It is clear in Fig. 1 that a
mainly controls the local brightness and contrast of illumination
L and b plays a similar role but acts globally, while c affects the
global brightness and contrast of the reflectance R1. Obviously,
the visual results can be greatly affected by the parameters
a, b and c. In practice, such layer-remapping operators may be
implemented in a more complex form, for example, using a
spatial-varying or adaptive mapping function for high-quality
image illumination manipulation results. No matter in what
form, such a strategy has limitations due to the facts: (a)
intrinsic image decomposition is a highly under-constrained
problem, and the estimation of each sub-layer highly relies on
the prior knowledge; (b) it is not very easy to determine an
appropriate layer-remapped operator for the sub-layers even
with a high-quality image decomposition, and (c) the artifacts
introduced by layer-remapping and image construction are not
easy to control for out of the image decomposition.

As illustrated hereafter, the drawbacks can be significantly
alleviated by integrating the intrinsic image decomposition,
layer-remapping and image reconstruction into a generalized
optimization-based framework. Such a strategy enables us to
control image illumination in an implicit way — that is, to

1. It is usually to keep c = 1 invariant unless the reflectance layer
R needs to be adjusted in some situations because of the illumination-
independent nature.
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regularize each sub-layer without the necessity of taking an
explicit intrinsic image decomposition. The advantages mainly
arise from the well-known spatial-varying illumination and
illumination-invariant reflectance prior knowledge. We briefly
list them as follows:

• Spatial-smoothing illumination — that is, illumination L
has the spatial-smoothing property, while the majority
of dramatic variations such as strong or salient edges,
textures and structures are attributed to reflectance R.

• Illumination-invariant reflectance — that is, reflectance
R tends to be invariant under varying illumination
conditions. It is straightforward to claim that the local
geometric structures formed by the dramatic variations
in R have the same illumination-invariant property.

• The visibility of an image is primarily determined by
illumination L, the intensities of which may be, locally
or globally, compensated or corrected for its discrepancy
to the target one, especially under varying illumination
conditions. Human vision system is not so sensitive to
the absolute change of illumination as that of reflectance
due to the “color-consistency” phenomenon.

We hereafter illustrate the benefits of three assumptions for
simplifying the process of image illumination manipulation.
As interpreted in Section 3.3, the first assumption motivates
us to use smoothing filters to approximate image illumination,
because the abundant dramatic varying features are divided
into reflectance. The second one implies that the illumination-
invariant property of image reflectance can be constrained by
regularizing the varying features equivalently. The last one
indicates that image illumination should be approximated to
a balanced one under the degradation illumination situations.
More details are discussed later in this paper.

3.3 Illumination Manipulation Model
We now elaborate how to regularize the intrinsic images given
by Eq. (1). The motivation here is to design a simple, yet,
powerful model for image illumination manipulation without
the necessary of taking an explicit image decomposition.

Let s = {si}Ni=1 and o = {oi}Ni=1 be the input and output
images with si and oi denoted as pixel intensities, respectively,
the output image o can be expressed as an optimal solution of
the following minimization problem,

min
o
E(o) = αEl(o) + βEr(o) + γEc(o), (2)

where photorealistic loss E includes three terms El, Er and
Ec which are defined on illumination, reflectance and content
respectively. α, β, γ control the balance of three terms.

Illumination loss: In many practical illumination-related
tasks, it may suffer from great image illumination degradation
due to the varying illumination condition. In this case, it is
always desirable to restore the degraded illumination into a
fine-balanced one. Suppose that an extra image c = {ci}Ni=1 has
the ideal latent illumination cl, it is appropriate to impose the
output illumination ol to be close to the latent illumination cl,
leading to the illumination loss El(o),

El(o) =
∑
i

(oli − cli)
2
, (3)

where oli and cli are the i-th pixel illumination of output and
latent images, respectively; and the up-index l represents that
Eq. 3 is defined on the illumination layers. An ideal image
c is obviously not available in advance, but, as we illustrate
hereafter, it is possible to be approximated with the aid of a

so-called “exemplar” image in terms of its role in guiding the
image illumination.

Notice that the definition of Eq. 3 needs a complex intrinsic
image decomposition. Recalling the spatial-smoothing property
of illumination L, it is possible to apply a filter on images
and treat the smoothing results as the illumination layers.
Considering a simple Gaussian-like smoothing kernel K, the
illumination oli can be represented as,

oli =
∑
j∈Ni

Ki,joj ,
∑
j∈Ni

Ki,j = 1,

Ki,j ∝ exp

(
− 1

δ2
f

∥∥f i − f j

∥∥2

2

)
,

(4)

where Ni denotes a neighbor set of pixel i, Ki,j is the Gaussian
kernel weight between the pixel i and j; and f is a feature
vector with standard deviation δf . f can be the pixel’s position,
intensity, chromaticity or abstract features. We suggest that
El(o) can be defined as,

El(o) =
∑
i

∑
j∈Ni

(Ko
i,joj −Kc

i,jcj)
2, (5)

where Ko
i,j and Kc

i,j are corresponding filter kernels. In this
case, Eq. 5 plays an identical role as Eq. 3 in measuring the illu-
mination loss under the spatial-smoothing property. The benefit
of introducing the filter kernel K is to simplify the illumination
loss without taking an explicit image decomposition.

Reflectance loss: Recall the illumination-invariant prop-
erty of reflectance layers, it is highly reasonable to expect the
output reflectance or to be identical to sr , that of original image.
In such a sense, we define Er(o) as,

Er(o) =
∑
i

(ori − sri )2, (6)

where sri and ori are the i-th pixels values of the corresponding
reflectance layers. Again, Eq. 6 requires an ill-posed intrinsic
image decomposition. Notice that the reflectance layer R is
assumed to have abundant features such as salient edges,
lines and textures and have the same illumination-invariant
property, which motivates us to control R by regularizing these
features. Mathematically, we use a local linear model to encode
these features, that is, each point of the reflectance layer can be
expressed as a weighted sum of its neighbors,

sri =
∑
j∈Ωi

ωsr

i,js
r
j , (7)

where Ωi is a neighbor of pixel i and the weight ωsr

i,j satisfies∑
j∈Ωi

ωsr

i,j = 1. It is plausible that if the reflectance sr keeps
invariant, the weight ωsr

i,j is invariant as well. By analogy
with the output or , the photorealistic reflectance loss can be
reformulated into the following constraints equivalently,

ori =
∑

j∈Ωi
ωor

i,jo
r
j ,

∑
j∈Ωi

ωor

i,j = 1,

sri =
∑

j∈Ωi
ωsr

i,js
r
j ,

∑
j∈Ωi

ωsr

i,j = 1,

ωor

i,j = ωsr

i,j .

(8)

where ωor

i,j and ωsr

i,j represent the weights, and the up-index sr

and or denote that the local linear “encoding” operators are
acted on the reflectance layers. In the Eq. 8, we force ωor

i,j = ωsr

i,j

to give a structural-consistency constraint for the reflectance
layers. Recall the spatial-varying illumination, we have slk ≈ s̄lk
with mean value s̄lk in local patch k. Besides, if two patches i
and j are close to each other, we also have s̄li ≈ s̄lj . As shown
in Fig. 2, the two claims are valid in both flat regions (Top) and
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(a) Input I (b) Layer L (c) Layer R

Fig. 2. The 1-D signal I is decomposed into three basic components: a
spatial-varying L, a detail texture layer and a salient edge. We attribute
the texture and edge into the reflectance R in our intrinsic image model.

strong edges (Bottom). Substituting them into Eq. 7, we can
further simplify the “encoding” model into,

si = (sri + sli) ≈ (sri + s̄li) = (
∑

j∈Ωi

ωsr

i,js
r
j + s̄li)

=
∑

j∈Ωi

ωsr

i,j(s
r
j + s̄li) ≈

∑
j∈Ωi

ωsr

i,j(s
r
j + s̄lj)

≈
∑

j∈Ωi

ωsr

i,j(s
r
j + slj) =

∑
j∈Ωi

ωsr

i,jsj .

(9)

As we can see, Eq. (9) and (7) have the same form and ωsr

i,j

keeps invariant when adding a constant illumination s̄li back.
Due to the translation-invariant property of local linear model,
the reflectance layer can be directly regularized without the
necessity of decoupling the reflectance from an image. Putting
Eq. (7) and (9) into Eq. (8), we have reflectance loss Er(o),

Er(o) =
∑
i

(oi −
∑
j∈Ωi

ωo
i,joj)

2

s.t. ωo
i,j = ωs

i,j , si =
∑
j∈Ωi

ωs
i,jsj ,

(10)

where ωs
i,j = ωsr

i,j and ωo
i,j = ωor

i,j for local “encoding” weights.
The relationship between Eq. 8 and Eq. 10 is clear, as the first
constraint in Eq. 8 is chosen as the objective function and the
others act as constraints. As we can see, Eq. 10 contributes an
identical regularizing role as Eq. 6. The simplification roots in
the translation-invariant property of locally linear embedding
(LLE) [8], which helps to faithfully penalty non-consistent
structures despite the local illumination deviation between the
input and exemplar images. Moreover, this reduction enables
us to translate the reflectance layer from the source illumination
surface to that of the exemplar, while keeping the reflectance
layer from changing.

Content loss: We additionally introduce a so-called con-
tent loss to avoid the illumination over-fitting problem, which
may occur when the pre-computed examplar has a strong over-
stretched illumination. The content loss, in such cases, helps to
give a remedy for the output global illumination. Specifically,
we define the content loss Ec(o) as,

Ec(o) =
∑
i

(oi − si)2. (11)

We can verify that Eq. (11) is essentially defined on the
illumination layers2. It is valuable to note that Ec(o) is not
always necessary but plays an auxiliary role to prevent output
illumination from being over-dependent on exemplars.

2. We also have Ec(o)=
∑

i (oli−ori + sli−sri )
2

=
∑

i (oli − sli)
2

with ori = sri under the illumination-invariant property of the re-
flectance layer.

Until now, we have defined three photo-realistic losses to
regularize the intrinsic images under the interpretation Eq. 1.
All of them are firstly derived from the intrinsic layers and
then reduced on images under the well-known spatial-varying
illumination and illumination-invariant reflectance assumption.
This simplification helps to avoid the notorious intrinsic im-
age decomposition and can be beneficial for many image
illumination-related tasks, as they can be viewed as a local im-
age translation between two illumination surfaces. Under this
mild assumption, we declare that our IIT model can be directly
used for these problems and significantly simplifies the scheme
due to the unnecessary of intrinsic image decomposition.

However, the illumination loss in Eq. 5 requires an extra
exemplar c for illumination guidance. In many illumination-
related tasks, the ease of producing a suitable “exemplar”
mainly comes from two aspects: (1) the exemplar c is not neces-
sary to have high-quality details, because the majority of high-
frequency details in c would be filtered out by the smoothing
kernel K; and (2) a further correction in the reflectance loss will
be carried out to remedy the remaining non-consistent struc-
tures, even a slight illumination dependency still exist after the
smoothing process. It is worth noting that either illumination
loss or reflectance loss can not independently provide a high-
quality result and they play a complementary role together in
regularizing the corresponding intrinsic layers. As a result, it is
possible to produce an image with fine-balanced illumination
and use it as an exemplar without paying too much attention to
the accuracy of local details. We show that it is easy for many
existing methods to generate a suitable examplar, which will be
verified by a series of results in experiments.

3.4 Optimization
Now, we combine three loss functions and rewrite Eq. (2) in a
matrix form:

E(o) =α‖Koo−Kcc‖22 + β‖Mo‖22 + γ‖o − s‖22,

s.t. ωo
i,j = ωs

i,j , si =
∑
j∈Ωi

ωs
i,jsj ,

(12)

where Ko(Kc) is a kernel affinity matrix, whose (i, j)th en-
try is Ko(c)

i,j ; and M = [I −W ] is a sparse coefficient matrix
with identity I and weight W containing entries ωo

i,j . Once
Ko, Kc and W are pre-computed, the output image can be
reconstructed by solving the Eq. 12 directly.

We first compute the filter kernel K. The simplest case
can be the 2-D Gaussian filter (GF), where f relies on pixel’s
position: p = [px, py] with the x and y directional coordinates
px and py respectively. One can use bilateral filter (BF) [16] for
more robust results, which considers both the pixel’s position
p = [px, py] and color intensities (Ri, Gi, Bi). We set δfi

= δs
for the Gaussian filter and δfi

= (δs, δr) for the bilateral filter.
For simplicity, we set K = Ko = Kc in our experiments due to
the unavailable of the image o in advance.

For the LLE weights, it may be unstable to take a direct
solver [8], when the number of neighbors of each point is
larger than the space dimension. As described in [52], a remedy
W can be computed by solving the point-wise regularized
problem,

min
∑
i

(si −
∑
j∈Ωi

ωs
i,jsj)

2 + ε‖ωs‖22, s.t.
∑
j∈Ωi

ωs
i,j = 1. (13)

We refer the reader to some more complex regularizers
such as the modified LLE algorithm [53], in which more robust
solutions are given to distribute the contribution of neighbours
to each point more uniformly.
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(a) Input (b) Exemplar (CLAHE) (c) IIT+ GF (Ours) (d) IIT+ BF (Ours)

Fig. 3. Visual results of our IIT algorithm with the Gaussian and bilateral filters, respectively. (a) Source, (b) CLAHE exemplar [51], (c) and (d) Our
results. The noise and distortions are suppressed significantly in comparison to the CLAHE exemplar. TMQI (b)∼(d): 0.845, 0.891, 0.898.

Algorithm 1 intrinsic image transfer (IIT)
Input: Images {si}i=1,··· ,N , {ci}i=1,··· ,N and α, β, γ;
Output: Image {oi}i=1,··· ,N ;

1: Identifying filters:

1) Set parameters: Ni, δs, δr or (Ni, δs);
2) Compute Ki,j in Eq. (4) and Ko, Kc in Eq. 12;

2: Computing LLE weights: W

1) Set parameters: Ωi, ε;
2) Find neighbors Ωi for each pixel i;
3) Compute ωs

i,j in Eq. 13;
4) Set ωi,j = ωs

i,j , and M = I − W ;

3: Reconstruction

1) Compute the Laplacian matrix L in Eq. 14;
2) Solve Eq. 14 with the PCG algorithm;

After obtaining the K and W , Eq. 12 can be solved by
setting dE/do = 0, giving the following linear system:

(αKTK + βMTM + γI)o = αKTKc + γs, (14)

where L=αKTK+βMTM+γI is a large-scale and sparse
Laplacian matrix. Since L is symmetric and semi-positive, Eq.
(14) can be solved with the solvers such as Gauss-Seidel method
and preconditioned conjugate gradients (PCG) method [54].

In summary, our IIT algorithm includes: identifying the
filter kernel for illumination fitting, computing LLE weights to
encode image reflectance, and embedding the reflectance layer
for image reconstruction. The whole minimization scheme is
presented in Algorithm 1.

4 EXPERIMENTAL RESULTS

In this section, we extensively illustrate the proposed IIT al-
gorithm and show its many benefits to several illumination-
related tasks, for example, illumination compensation, image
enhancement, tone mapping, HDR image compression, and so
on. For this purpose, we first explain how to generate a suit-
able “exemplar” and show its robustness under the proposed
IIT framework. The performance is then presented under a
series of numerical experiments and quantitative evaluations
on natural image datasets. Our Matlab implementation runs
on a desktop PC with an Intel i7 3.40 GHz, 32GB RAM,
Win64, and it takes roughly 3 seconds to process a color
image with 600 × 400 resolution. The code is also available:
https://github.com/QingXin96/Intrinsic image transfer.

4.1 Verification and Robustness

We now verify the proposed IIT model with the aid of an extra
“exemplar” image. As explained in Section 3.2, our model may
require a latent illumination layer in the sense that the underly-
ing target illumination in many illumination-related tasks could
deviate greatly from that of the original image. Nevertheless,
it is not easy to provide such an illumination layer because
of the inherent intractability of intrinsic image decomposition.
Alternatively, we introduce a pre-computed “exemplar” and
use it to provide the underlying illumination approximately.
We have also interpreted that it is always tractable in practice
to find a suitable exemplar under the well-known spatial-
smoothing illumination and illumination-invariant reflectance
prior knowledge.

We take two representative exemplars into account to verify
the easy-fulfilled requirements of the exemplar and its benefits
to image illumination manipulation. The first class of exemplars
is generated by the simple TMO methods — for example, con-
trast limited adaptive histogram equalization (CLAHE) method
[51] which provides an exemplar with fine-balanced illumina-
tion distribution but distorted local details. The second class
of exemplars is given by the existing cutting-edge methods,
which usually provide an exemplar exhibiting better quality
with not so strong local artifacts as the CLAHE ones. They are
selected in consideration of the different properties in color,
saturation, textures, noises, and illumination conditions. Notice
that, we specify the fine-balanced illumination distribution of
the exemplar, but the proposed IIT framework does not rely on
any specified exemplars.

Firstly, we show the results with a CLAHE exemplar. We
set {Ni, δs} = {5× 5, 2.0} and {Ni, δs, δr} = {5× 5, 2.0, 0.2}
for the Gaussian and bilateral filters, respectively. In regard to
the LLE weights, we choose Ωi = {5× 5} and ε = 1e− 5. The
global parameters α, β, γ are set to 0.8, 100 and 0.2 respectively.
We impose α+ γ = 1 to limit the output result between the
source and exemplar; and a large β is utilized to force the
output local textures to be more consistent with the source
image. A larger γ gives the result more identical to the source
image. We adopt the default parameter-settings for the CLAHE
algorithm [51] without the specifications. As shown in Fig. 3,
the exemplar in Fig. 3b is generated by the CLAHE algorithm
with the fine-balanced illumination but distorted local details,
while our IIT algorithm exhibits significant improvements in
suppressing the local noises and distortions, especially around
the swan’s “neck” and “wing” regions in Fig. 3c and Fig.
3d. Moreover, tiny visual differences occur between using the
Gaussian and bilateral filters.

https://github.com/QingXin96/Intrinsic_image_transfer
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(a) Source (b) Exemplar 1 (c) IIT + GF (Ours) (d) Exemplar 2 (e) IIT + GF (Ours)

Fig. 4. Visual comparison of our IIT algorithm by using exemplars with different levels of brightness. (a) Input image; (b) and (d) CLAHE exemplars
[51]; (c) and (e) our IIT results.

We further explain the ability of our IIT method in fitting
the latent image illumination determined by the exemplars.
As shown in Fig. 4, we present two typical exemplars given
by the CLAHE algorithm [51]. The exemplars in Fig. 4b and
Fig. 4d should have different underlying illumination, as they
exhibit different levels of brightness regardless of the slight
texture distortions. In this case, we set α = 1.0 and γ = 0 to
enforce the output be close to the exemplar. It is noticeable that
the outputs in Fig. 4c and Fig. 4e reveal identical illumination
distribution as that of the exemplars, and the non-consistent
details in the exemplars are significantly suppressed in both
cases. The results prove that a balanced image illumination
instead of high-quality local details is the key ingredient to our
IIT method. This observation is consistent with the assumption
that the exemplar plays a determining role in improving the
balance of image illumination, while local textures have little
contribution to the output illumination.

(a) (b) (c) (d) (e)

Fig. 5. Illumination compensation on Yale Face dataset [55]. (a) Source,
(b) and (d) CLAHE exemplars [51], (c) and (e) results (IIT+ BF). TMQI,
top: 0.935, 0.985, 0.833, 0.981; bottom: 0.922, 0.967, 0.897, 0.965.

We additionally illustrate the robustness of our IIT method
to the exemplar with strong local degraded details. As shown
in Fig. 5, we interpret the illumination compensation results on
Yale Face dataset [55]. In this case, two typical exemplars (b)
and (d) are introduced to show the robustness of our method to
noise (Top) and textural distortions (Bottom). In the top row, the
exemplars are cropped with different levels of Gaussian noise;
while, in the bottom row, the exemplars suffer from serious
textural distortions given by the CLAHE algorithm3. Again, our
IIT method produces the satisfying results Fig. 5c and Fig. 5e
that have identical illumination distribution as the exemplars,
but the non-consistent textures are significantly suppressed,
especially in “face” regions. Moreover, the quality of outputs
only drops slightly if we only increase the level of textural
distortions but keep the illumination distribution invariant.

The above experimental results imply that image illumina-
tion can be faithfully controlled with the aid of an “exemplar”,
because there is no need to pay much attention to local distor-
tions and artifacts. As a result, it is easy to obtain a suitable
exemplar by using many existing methods. This advantage is
mainly beneficial from the use of the smoothing operator in
illumination loss and the translation-invariant property of the
LLE “encoding” model. On the one hand, the local details are
mostly filtered out by the smoothing filter in the illumination
loss, which remarkably weakens the impact of textural dis-
tortions; on the other hand, the inaccuracy of the smoothed
illumination would be further corrected by the LLE “encoding”
model. The two aspects help to penalize the non-consistent
structures existing in the exemplar significantly, thereby giving
a practical way to reconstruct natural-looking results with high-
quality consistent local details.

3. As interpreted in CLAHE [51], we set the “NumTiles = 16× 16”
and “NumTiles = 32× 32” for the exemplars in Fig. 5b and Fig. 5d,
respectively. A larger “NumTiles” leads to stronger textural distortions.
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(a) Input (b) Photoshop CC [56] (c) NASA Retinex [57] (d) IIT+ BF (Ours)

Fig. 6. Visual comparison of image enhancement. The exemplars in (c) are produced by the state-of-art NASA Retinex [57]. TMQI, top (b)∼(d):
919, 0.943, 0.946; and bottom (b)∼(d): 0.922, 0.916, 0.944.

TABLE 1
Quantitative evaluation on Cityscapes [25], NASA Retinex [57] and DPED [27] datasets. The exemplars in the datasets are given by the WESPE,

Retinex and CLAHE methods, respectively.

Cityscapes (WESPE) NASA (Retinex) DPED (CLAHE)
Method (SF / SN) TMQI IL-NIQE NIMA (SF / SN) TMQI IL-NIQE NAMA (SF / SN) TMQI IL-NIQE NIMA

NASA Retinex (- / -) - - - (0.916 / 0.731) 0.937 20.71 4.562 (- / -) - - -
Photoshop CC (0.988 / 0.323) 0.887 17.37 3.859 (0.948 / 0.428) 0.892 21.65 4.003 (0.982 / 0.507) 0.916 22.38 4.479

APE (0.946 / 0.272) 0.840 24.25 4.002 (0.981 / 0.618) 0.937 20.91 3.922 (0.980 / 0.566) 0.927 21.62 4.613
Google Nik (0.927 / 0.527) 0.906 21.32 4.131 (0.968 / 0.812) 0.965 23.15 3.822 (0.963 / 0.567) 0.925 21.53 4.523

WESPE (0.915 / 0.839) 0.956 20.25 4.338 (- / -) - - - (0.931 / 0.626) 0.928 22.25 4.534
IIT+GF (Ours) (0.979 / 0.835) 0.971 4.252 4.313 (0.957 / 0.650) 0.936 20.62 4.475 (0.969 / 0.587) 0.929 21.95 4.555
IIT+BF (Ours) (0.981 / 0.826) 0.970 16.48 4.293 (0.960 / 0.678) 0.942 20.57 4.470 (0.973 / 0.589) 0.931 21.31 4.540

Secondly, we validate our IIT algorithm with an exemplar
given by the state-of-the-art. In general, they produce an exem-
plar with much better quality than that of the CLAHE method.
We adopt the default configurations or preferable parameter-
settings as suggested in these methods. We set α, β and γ to
0.95, [10, 100] and 0.05, respectively, and the parameter β may
vary according to the level of artifacts existing in exemplars.
We let α� γ in view of the balanced illumination distribution
of the exemplars. As shown in Fig. 6, we compare the results
with the Photoshop CC [56] and NASA Retinex [57] methods,
where the exemplars are provided by the cutting-edge NASA
Retinex [57]. It is notable that Photoshop CC [56] gives the
results with limited improvement in dark regions based on the
built-in “HDR tone mapping” tool, while the NASA Retinex
method produces high-quality results with vivid color and
contrast but also suffers from strong noise. In contrast, our IIT
method attains similar enhanced results as the NASA Retinex
with more consistent local textures compared with Photoshop
CC [56] and NASA Retinex [57] results.

The result is further demonstrated on the Cityscapes dataset
[25], in which the images suffer from visible degradation in
color, saturation, and textures due to the low resolution and
inappropriate illumination conditions. In this situation, it is
often difficult for many existing methods to recover high-
quality results. As shown in Fig. 7, the prevailing commer-
cial software, including Google Nik (GN) [58], Apple Photo
Enhancer (APE) and Adobe Photoshop CC 2018 [56] also re-
veal drawbacks in producing natural-looking results, where
the automatic parameter-settings are adopted for comparison.
Recent deep-learning approaches such as WESPE [39] provide
a solution to visual-pleasant results, but there still exists some
unpleasant artifacts such as over-exaggerated details around
the salient edges. In contrast, our IIT method can be applied to
correct these artifacts for high-quality consistent local details.
As we can see in Fig. 7g and Fig. 7h, we take the WESPE
result as the exemplar and the local structures of “street lamp”
are precisely preserved and the “road” reveals little texture
distortions compared with the other methods.
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(a) Input (b) CLAHE [51] (c) Photoshop CC [56] (d) APE

(e) Google Nik [58] (f) WESPE [39] (g) IIT+GF (Ours) (h) IIT+BF (Ours)

Fig. 7. Visual comparison on Cityscapes dataset [25]. The exemplars used in (g) and (h) are given by the state-of-art (f) WESPE [39]. TMQI, (b)∼(h):
0.891, 0.913, 0.973, 0.893, 0.801, 0.921, 0.942.

We now have investigated the role of exemplars in our IIT
method and demonstrated the robustness to produce high-
quality results under different types of exemplars. We also
conclude that many existing methods can be used to provide
such an exemplar. As interpreted before, the whole procedure,
with the aid of an exemplar, is eventually formulated into a gen-
eralized optimization framework, giving a closed-form solution
to a wide range of illumination-related tasks. The favorable
results definitively benefit from both the smoothing operators
in illumination loss — which helps to reduce the impact of
local details in the exemplar, and the LLE encode in reflectance
loss — which adaptively extracts local details from the original
image and then embeds them onto a new smoothing surface
given by the exemplar. The merit is the use of an exemplar,
which significantly simplifies image illumination manipulation
because of avoiding an explicit intrinsic image decomposition.

4.2 Quantitative Evaluation
In this section, we further take a quantitative evaluation based
on the following datasets: Cityscapes [25], NASA Retinex
[57] and DPED [27]. The Cityscapes [25] dataset has 20 low-
resolution images with slightly unbalanced illumination dis-
tribution, which are challenging for many existing methods;
while NASA Retinex [57] and DPED [27] datasets have 26 and
16 images respectively, which have higher resolution but also
reveals strong imbalance illumination distribution. The pro-
posed IIT method is compared with the cutting-edge methods,
including NASA Retinex [57], Google Nik (GN) [58], Apple
Photo Enhancer (APE), Adobe Photoshop CC 2018 [56], WESPE
method [39], and the exemplars in the datasets are provided by
the Retinex [57], WESPE and CLAHE methods, respectively.

In general, image quality assessment can be categorized into
full-reference and no-reference approaches. The full-reference
methods always require the corresponding ground-truth im-
ages for high-accuracy assessment, which, however, are always
not available in the case of illumination-related tasks. As a
result, it is difficult to take an objective full-reference evalu-
ation. In contrast, no-reference methods require no ground-
truth images but rely on statistical models to measure the
degradation of an image. Recent no-reference approaches, in
particular these deep-learning ones, have also shown promising
success in predicting the quality of images. Specifically, we

employ a quantitative evaluation based on the Tone Mapped
Image Quality Index (TMQI) [64], Integrated Local Natural
Image Quality Evaluator (IL-NIQE) [65] and Neural Image As-
sessment (NIMA) [66]. The TMQI [64] index is a full-reference
image assessment method built on the source and output im-
ages, which is originally proposed to provide an objective im-
age quality assessment for HDR image compression. In TMQI
index, Structural Fidelity (SF) and Statistical Naturalness (SN)
are considered to provide an objective quality assessment. The
SF index is based on the multi-scale structural similarity (SSIM)
approach [67] to extract structural information from the visual

(a) Ward’s [59] (b) GD [6] (c) IIT+BF (Ours)

(d) Ward’s [59] (e) WLS [17] (f) IIT+BF (Ours)

Fig. 8. Visual comparison of the HDR image compression using the
CLAHE exemplars [51]. TMQI, top (a)∼(c): 0.923, 0.948, 0.944; bottom
(d)∼(f): 0.912, 0.940, 0.953.
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(a) Input (b) IIT+ BF (Ours) (c) Stylizied exemplar (d) Reference style

Fig. 9. Photorealistic style transfer. Given an image (a) and a reference style (d), a stylized exemplar (c) may be provided by these deep-learning
methods [60], [61], [62], [63], which is further refined by our IIT model as shown in (b) with more consistent textures and structures.

scene and provides a perceptual predictor of structural fidelity.
The SN index provides a statistic metric for the output image,
which takes the natural image statistics of brightness, contrast,
visibility and details into account. IL-NIQE [65] and NIMA [66]
are two no-reference image assessments. The former is a learn-
ing method based on natural image statistics features derived
from color, luminance, gradient and structure information; and
the latter attempts to predict consistent aesthetic scores with
human opinions using convolutional neural networks. The
NIMA [66] method is trained on a large-scale natural image
dataset for perceptually-aware no-reference quality assessment.
The statistical results are shown in Table 1, where the best two
results are highlighted with bold and underline, respectively.
The advantage of our IIT method is noticeable with 19 top-two
places in total 30 indices compared with the state-of-art on real-
world image datasets.

4.3 More Extensions
It is easy to see the proposed IIT method can be extended
to high dynamic range (HDR) image compression to improve
the visibility of dark regions. Similarly, it helps to suppress
the distorted details or artifacts, providing the comparable or
superior results than the prevailing cutting-edge methods. In
this case, we apply the proposed IIT model on image luminance
with the same aforementioned configurations. The saturation is
restored with a heuristic de-saturation setup as described in [6].

Cout =

(
Cin

Lin

)s

Lout, (15)

where C = {R,G,B} are red, green and blue channels of color
images, Lin and Lout denote the source and mapped lumi-
nance, and s controls the saturation with an empirical value
between 0.4 and 0.6 to produce satisfying results.

We show two examples of HDR image compression with
visual comparisons in Fig. 8, where the exemplars are generated
by the CLAHE algorithm [51]. We set the parameter s = 0.5
and s = 0.6 for the two cases, respectively. As we can see,
the proposed IIT method is capable of producing high-quality
results as that of the gradient-domain (GD) compression [6] and
weighted least square (WLS) filtering method [17].

We additionally illustrate that the structure-consistent prop-
erty of the proposed IIT method makes it applicable to much
more complex situations beyond the above illumination-related
tasks. Specifically, it is possible to be used as a building block
for color transform [68] and style transfer [60], [62], [63], where
a high-level vision image-to-image translation is always de-
duced to produce stylized results for artistic purpose. In the
literature, many approaches, especially the deep-learning ones
[62], [63], have been explored to obtain artistic-like stylized
results. Despite their great success, they occasionally produce
unexpected distortions or unrealistic artifacts that not occur in
real photographs. We illustrate that the proposed IIT model is
possible to suppress these non-consistent textures, enjoying a
photo-realistic style transfer as proposed in the recent work
[69], [70]. The understanding for style transfer, somewhat,
remains elusive [62] and the discussion for more details is
out of scope here, we conjecture here that the image-to-image
translation procedure can be also interpreted under the intrinsic
images of Eq. (1). The difference from the illumination-related
works is that both illumination and reflectance layers in style
transfer vary significantly, leading to a strong discrepancy in
image color, saturation, texture, style, and so on.

We briefly illustrate the procedure by giving an input image
and a reference style, where a stylized exemplar is firstly
generated by the existing style transfer methods such as the
deep learning ones [60], [61], [62], [63]. Our IIT algorithm is
then used to refine the local distortions of the stylized exemplar.
As shown in Fig. 9, an image Fig. 9a is first transformed into
the stylized exemplar Fig. 9c using two deep learning-based
methods [60], [62] under the guidance of reference style Fig.
9d; and a photo-realistic result Fig. 9b is obtained under the IIT
model with the stylized image as the corresponding exemplar.
As we can see, our IIT algorithm produces satisfying results
that have identical saturation as the exemplar and high-quality
consistent structures as the input image. The local textures in
the “sky” region are remarkably removed, leading to the photo-
realistic stylized results. The startling results demonstrate the
powerful ability of the proposed IIT method in suppressing the
local distortions, and it further turns out the robustness of our
method to the exemplar image.
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5 CONCLUSION

This paper has described an intrinsic image transfer algorithm,
which is rather different from recent trends towards making an
intrinsic image decomposition. This model creates a local image
translation between two image surfaces and produces high-
quality results in a wide range of illumination manipulation
tasks. One drawback is that the algorithm is time-consuming
for the need of computing the large-scale LLE weights and
PCG solver. It is possible to be addressed with a sub-sampling
strategy for efficiency, which is left for future work.
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