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Intrinsic lattice thermal conductivity of semiconductors

from first principles
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We present an ab initio theoretical approach to accurately describe phonon thermal transport in
semiconductors and insulators free of adjustable parameters. This technique combines a Boltzmann
formalism with density functional calculations of harmonic and anharmonic interatomic force
constants. Without any fitting parameters, we obtain excellent agreement (<5% difference at room
temperature) between the calculated and measured intrinsic lattice thermal conductivities of silicon
and germanium. As such, this method may provide predictive theoretical guidance to experimental
thermal transport studies of bulk and nanomaterials as well as facilitating the design of new
materials. © 2007 American Institute of Physics. [DOI: 10.1063/1.2822891]

Thermal conductivity is a fundamental transport param-
eter that is commonly used to characterize a broad range of
materials and systems. In semiconductors and insulators,
heat is carried by the vibrating lattice. A predictive theoreti-
cal approach to calculate the lattice thermal conductivity in
these materials is of tremendous importance for modern sci-
ence and technology. It would facilitate understanding of
heat dissipation in microelectronics and nanoelectronics' as
well as assist in material design for efficient thermoelectric
refrigeration and power gene:ration.2

Above a few tens of Kelvin the behavior of the lattice
thermal conductivity of semiconductors is usually dominated
by phonon-phonon scattering, which arises because of the
anharmonicity of the interatomic potential. Unlike phonon
scattering by defects, impurities or boundaries, phonon-
phonon scattering is an intrinsic resistive process. A micro-
scopic description of the intrinsic lattice thermal conductivity
«Y of semiconductors and insulators was first formulated
theoretically by Peierls® in 1929 through what has become
known as the phonon Boltzmann equation (PBE).

While the general framework to describe thermal con-
ductivity is well known, the development of a predictive the-
oretical approach to calculate k) has been hindered by the
significant complexity inherent in describing (i) interatomic
forces between atoms, and (ii) the inelastic phonon-phonon
scattering processes. This is true even for common materials
such as silicon and germanium.1 A tremendous simplification
is achieved in the calculation of «@ in bulk
semiconductors®” and nanomaterials® by using the relaxation
time approximation to solve the PBE. However, the relax-
ation time approximation is derived under the assumption of
elastic scattering, but the anharmonic phonon-phonon scat-
tering is an inelastic scattering process.” Furthermore, be-
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cause the relaxation time approximation introduces adjust-
able parameters that are fit to existing experimental data, it
has limited predictive power. In recent years, molecular dy-
namics approaches to calculate the lattice thermal conductiv-
ity of materials’® have been introduced. These approaches
have the advantage that they treat anharmonicity to all or-
ders. However, they typically rely on empirical interatomic
potentials (EIPs) that are fit to experimental properties of
materials (i.e., crystal structure, elastic constants, point de-
fects, etc.). Also, the atomic motion is treated classically so
molecular dynamics approaches are most appropriate for
temperatures typically much higher than 300 K.

In this letter, we present a predictive theoretical ap-
proach to calculate « that invokes no adjustable param-
eters and is valid over a wide temperature range around room
temperature. This approach implements an exact iterative so-
Iution of the PBE for phonon tI‘al’lSpOI‘t,9’10 which explicitly
incorporates the quantum mechanical phonon-phonon scat-
tering processes and solves self-consistently for the phonon
distribution function. The only inputs required for the exact
solution of the PBE are the harmonic and anharmonic inter-
atomic force constants (IFCs), and these are determined from
first principles using density functional perturbation
theory.n’12 A key initial test of the predictive capability of
this approach is how the calculated «')’s compare to the
corresponding measured lattice thermal conductivity in com-
monly studied materials such as silicon and germanium. We
find that our calculated x'’s show excellent agreement with
the experimentally determined < for isotopically enriched
Si'* and Ge."

We begin by considering a perfect bulk crystal free of
defects or impurities and take silicon or germanium atoms to
reside on a diamond lattice. The lowest order scattering pro-
cesses are between three phonons.4’15 These processes
are constrained to satisfy conservation of energy,
Q) xw:(q")=w(q"), and quasimomentum,
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q+q'=q"+K, where q, j, and w;(q) are the phonon momen-
tum, branch index, and frequency, and K is a reciprocal lat-
tice vector that is zero for normal processes and nonzero for
umklapp processes. A small temperature gradient VT is taken
to perturb the phonon distribution function ny=ngy+n;,
where \ is a short hand for (q,j/), ng, =ny(w,) is the equi-
librium (Bose) phonon distribution function, and the non-
e%uilibrium part n;, produces the thermal current. The PBE

on
VT—2 = 3 | W (P =Wy —Wy)
)\ )\‘/I
1
+ EW)‘)\’)‘”(\P)\” + \P)\’ - \I’)\) , (1)

where the left hand side of Eq. (1) represents phonon diffu-
sion induced by the thermal gradient and the right hand side
represents the collision term for three phonon interactions. In
Eq. (1), v, is the phonon velocity in mode, N, Wy, ,,, are the
three-phonon scattering rates, W, =n,,/[ng,(ngy+1)], and the
sums on the right-hand side of Eq. (1) are over the phase
space of energy and momentum conserving normal and um-
klapp three-phonon processes. The presence of ¥,, and W~
conveys the inelastic nature of the phonon-phonon scatter-
ing. Replacement of collision integral by —n,,/ 7, gives the
commonly used relaxation time approximation.” For
phonon- phonon umklapp scattering, the relaxation time is
typically taken*® to depend on frequency and temperature as
7~ w 2T although this form Jvas derived assuming low
frequency and low temperature ® where umklapp scattering
is typically weak.

The three-phonon scattering rates Wm\ nw determined
from Fermi’s golden rule are”'”
. ﬁﬂ'(ﬂo)\ + 1)(}’10)\/ + 1/2 + 1/2)710)\// "
W=7y VLN AP
4N W) W) 1 Wy
X &(I))\ T wy — (1))\//). (2)

Here, N is the number of unit cells and the delta function
ensures energy conservation. The phonon frequencies {w,}
and eigenmodes are determined by diagonalizing the dy-
namical matrix, which depends on the harmonic IFCs,
®,5(0k;€" k"), that connect pairs of atoms O« and €' «’. The
notation €« specifies the «th atom in the €th unit cell, and «
and B are Cartesian components. The three-phonon scatter-
ing matrix elements, V.(\,\",\")=V(j,—q.;"; ¥q';j".q")
measure the strength of the scattering events and are given
by

V(j.q.j:q":7".q")
=2 2 2 D Do 0k, 0K LK) el Rer

K 0! 0" aﬁ'y
el @) (q)e . (q")

— 3)
\rMKMKrMKn

where Ry is a lattice vector and M is the mass of the «th
atom. The (baﬁy(OK,flK, ,€"K") are third order anharmonic
IFCs for the indicated triplets of atoms, and the e’s are pho-
non eigenvectors.
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Equation (1) is solved using an iterative approach®'” to
obtain the nonequilibrium distribution functions, W,. These
are used to calculate the phonon thermal conductivity tensor
K(;), which relates an applied temperature gradient in the 8
direction to the resulting heat current per unit area in the «
direction through Fourler s law, J,==XpK,pdT/ dxg. Here,

()B can be expressed as’

(l) 2 C\UNGUNBTABS (4)

where Cy=kg(fiwy/kyT)’ng,(ngy+1) is the contribution per
mode (j, q) to the specific heat, and the scattering times 7y,
are directly proportional to the \If)\

The only inputs required to solve the PBE are the har-
monic and the anharmonic IFCs, aB(OK €'k’') and

D ,5,(0k, €'k’ ,€"K"). In a previous study,® we calculated
the lattice thermal conductivity of bulk silicon combining a
full iterative solution of the PBE with harmonic and anhar—
monic [FCs obtained from three commonly used EIPs."”
However, the resulting values of k' were several times
higher than the measured values.'" This large disagreement
can be traced to inaccurate representation of both harmonic
and anharmonic IFCs obtained from the EIPs.

Since accurate harmonic and anharmonic IFCs are cru-
cial elements required to calculate x”, in this work we em-
ploy a first principles approach using density functional per-
turbation theory. Density functional perturbation theory
approaches have demonstrated good predictive ability for
phonon dispersions“ and phonon lifetimes,'® and we use
them here to calculate the harmonic IFCs, [®,4(0x;€"k")].
The third order anharmonic IFCs, [® 4,0k, €' k", €"k")],
are determined using the 2n+1 theorem.'® This theorem
states that if the derivatives of the wave function up to order
n are known, then it is possible to calculate the energy de-
rivatives for the system up to order 2n+1. We first use the
Fourier transform expression

KKK

Dopy (a.9.9")

= Ogeq’ q”+K2 CDQB,/(OK,(?'K’,€"K")eiiq"Rf’e"q"'Rf” (5)
o

and the (DZE;"”(q,q’ ,q") are calculated as described in Ref.
12. Previous calculations of the anharmonic IFCs focused on
decay of longitudinal optic and transverse optic phonons at
the I" point where q=0 and q'=—q". 8 For calculation of the
thermal conductivity, this is insufficient. In our solution of
the PBE, hundreds of thousands of energy and momentum
conserving three-phonon scattering events throughout the
Brillouin zone are required To our knowledge, Ref. 12 is the

first to calculate the CIDZZYK (q,q’ ,q") for general (q,q’.q"),

and we apply this approach here for Si and Ge. The

q)ggy" (q,q' ,q") are evaluated directly on a 4 X4 X4 mesh
for pairs of vectors {q,q’} with q” fixed by the translational
symmetry condition q"=q+q’-K. Crystal symmetry re-
duces the total number of pairs that need to be evaluated to
42. The linear equations, Eq. (5), are then solved for the

D ,5,(0k, €' k", €"K"), with triplet interactions computed out
to seventh nearest neighbors. For all density functional cal-
culations, an 8 X 8 X 8 Monkhorst-Pack mesh was used in the
Brillouin Zone.”” An energy cutoff of 24 Ry was used for the
plane wave expansion. The pseudopotentials Were generated
based on the approach of von Barth and Car.”!
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FIG. 1. (Color online) Lattice thermal conductivity «? as a function of
temperature. The red line and solid squares are the calculated and measured
thermal conductivities of silicon, respectively, while the blue line and the
solid circles are the corresponding quantities for germanium.

We calculate the thermal conductivity, (i) —K i of Si
and Ge for heat current parallel to the direction of the tem-
perature gradient, which is taken to lie along the [001] (z)
direction of the diamond lattice. The cubic symmetry is veri—
fied numerlcally by assuring that K(’) K(') (') and that K
=K;lz)— XZ—O Contributions to the 1ntr1n51c latt1ce thermal
conductivity for different phonon branches are obtained by
summing the integrand in Eq. (4) over all wave vectors. We
find that the contribution is dominated by the acoustic
branches. Specifically, at room temperature, the acoustic
branches provide 95% of the contribution to the thermal con-
ductivity for Si and 92% for Ge. This, however, does not
mean that the optic phonons are unimportant. In fact, to the
contrary, they provide a dominant scattering channel for the
heat-carrying acoustic phonons which, if removed would
precipitate a dramatic  increase in the thermal
conduct1v1ty

The calculated intrinsic lattice thermal conductivities for
silicon and germanium between 100 and 300 K are com-
pared with measured values'™'* in Fig. 1. The high isotopic
purity (99.9% Si and 99.9% °Ge) and quality of these
samples ensure that the dominant mechanism that limits the
thermal conductivity is phonon-phonon scattering. The
agreement between theory and experiment seen in Fig. 1 is
exceptionally good. For example, at room temperature the
calculated value for Si (Ge) is only 2% (5%) different than
the corresponding measured value. This is particularly no-
table given the poor a%reement obtained by us using the EIP
models for the IFCs. ™ Previous molecular dynamics calcu-
lations of «”) using different EIPs for Si obtained room tem-
perature values of about 2.4 (Ref. 7) and 1.4 W/em K2
about 60% h1 her and 10% lower, respectively, than the mea-
sured value."” This wide variation could be due to the sensi-
tivity of the result to the EIP used in each calculation and
that molecular dynamics approaches are expected to be more
accurate at high temperatures.

The computational rigor of the present approach cur-
rently precludes consideration of bulk materials with very
large unit cells.” However, in some nanosystems this is not
the case. For example, single-walled carbon nanotubes
whose unit cells may contain several tens of atoms could
nevertheless be treated using the present theory because the
phonon wave vectors are only one dimensional so that the
phase space for phonon-phonon scattering is dramatically re-
ducing compared to a bulk system with similar sized unit
cell.
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To our knowledge, the theoretical results presented here
are the only ones to date to provide excellent agreement with
measured lattice thermal conductivities of any material over
a substantial temperature range using a first-principles-based
adjustable-parameter-free approach. The demonstrated accu-
racy of our theory applied to silicon and germanium suggests
its predictive potential for calculating the <) of many other
bulk and nanostructured materials of scientific and techno-
logical interest. Calculations of «'” for other bulk materials
are currently underway to further verify the predictive capa-
bility of the theory.
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