
2542 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007

Intrinsic Limits of Dimensionality and Richness in
Random Multipath Fields

Rodney A. Kennedy, Fellow, IEEE, Parastoo Sadeghi, Member, IEEE, Thushara D. Abhayapala, Member, IEEE,
and Haley M. Jones, Member, IEEE

Abstract—We study the dimensions or degrees of freedom of
farfield multipath that is observed in a limited, source-free region
of space. The multipath fields are studied as solutions to the wave
equation in an infinite-dimensional vector space. We prove two
universal upper bounds on the truncation error of fixed and
random multipath fields. A direct consequence of the derived
bounds is that both fixed and random multipath fields have an ef-
fective finite dimension. For circular and spherical spatial regions,
we show that this finite dimension is proportional to the radius
and area of the region, respectively. We use the Karhunen-Loève
(KL) expansion of random multipath fields to quantify the notion
of multipath richness. The multipath richness is defined as the
number of significant eigenvalues in the KL expansion that achieve
99% of the total multipath energy. We establish a lower bound on
the largest eigenvalue. This lower bound quantifies, to some extent,
the well-known reduction of multipath richness with reducing the
angular power spread of multipath angular power spectrum.

Index Terms—Multipath propagation, random scattering, spa-
tial correlation function.

I. INTRODUCTION

A. Motivation and Background

W
IRELESS communication systems use space as the
physical medium for information transfer. The trans-

mitted signal is often received via multiple paths due to
reflection, diffraction, and scattering by objects in the wireless
environment [1]. Using the spatial aspects of multipath is an in-
creasingly active thread of research in wireless communications
and signal processing [2]–[4]. This motivates studying the fun-
damental physical limits that space imposes on the dynamics of
multipath wave propagation and wireless information transfer.
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The primary aim of this paper is to find the intrinsic limits
on the dimensions or degrees of freedom for multipath fields
when they are observed in, or coupled to a source-free region
of space. This region of space is where multiple sensors may
be potentially located to sample the multipath field for signal
processing or communication purposes. However, our aim is
to find universal bounds on multipath dimension without ex-
plicitly considering a specific sensor setup or application and
hence, to show that the coupling of multipath into a spatial re-
gion is fundamentally limited by a finite number of orthogonal
basis sets or modes. Throughout the paper, we will frequently
refer to the radius or area of the two-dimensional (2-D) or three-
dimensional (3-D) multipath observation regions, respectively.
In sensor array signal processing applications, an alternative
terminology is the antenna aperture.

In this paper, we also aim to define spatial multipath rich-
ness. The predicted benefits of using spatial multipath in mul-
tiple-sensor wireless communications usually hinge on the im-
precise assumption of rich multipath [5]–[7] or having a rich
scattering environment. However, rich multipath needs to be
mathematically quantified based on the dynamics of the multi-
path field random process and the wave equation. More specif-
ically, we aim to precisely quantify the effects of multipath an-
gular power spread and spatial observation region on richness,
regardless of sensor setup.

Earlier works, [8], [9] introduced a general theoretical
framework for studying the degrees of freedom in spatial mul-
tipath fields, where it was proposed that there is, essentially,
a finite number of multipath that can be distinctively coupled
to a source-free region. In another approach, [10] established
a general analogy between the degrees of freedom in the
time-frequency domain and in the spatial-angular domain for
2- and 3-D fields. It was concluded that the spatial-angular
dimensionality is linearly related to the effective sensor array
aperture and the angular power spread of scatterers.

B. Approach

The analysis in this paper considers multipath fields as the
functional solutions to the wave equation [11]. This mathemat-
ical framework is similarly used in [8], [9], and [12]. The dis-
tinctive feature of this framework is that it directly considers the
wavefield, which corresponds to continuous sampling in space,
instead of a normal array model. In this presentation, the mul-
tipath field lies in a countable infinite-dimensional linear vector
space, where vectors consist of functions. The advantage of the
functional wave representation is that: 1) it is general enough to
be applied to any narrowband multipath environment, regard-
less of the number or nature of multipath sources; 2) it accom-
modates representation of random multipath fields with a gen-
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eral spatial correlation function (SCF) [13]; and 3) it allows us

to determine the effective number of dimensions (in the infi-

nite-dimensional functional space) that essentially contribute to

the coupling of multipath fields to a spatial region. In order not

to obscure the approach, we present the main results for a nar-

rowband 2-D multipath farfield environment. We will briefly ex-

plain how our methodology extends to 3-D fields. Unless ex-

plicitly stated, the equations and results in the paper are written

assuming 2-D multipath fields.

The integral kernels for the spatial channel response in [10]

and multipath field representations in this paper are both derived

from the solutions to Maxwell equations. One difference is that

[10] considers a zoomed-out granularity for describing channel

scattering, where the total effect of scattering is modeled by the

angular power spread in the kernels and appears in the expres-

sions for scattering richness [10]. In this paper, however, scat-

tering is directly incorporated into the multipath field represen-

tation. This formulation enables us to derive universal bounds

on wavefield dimensionality or richness (Theorems 1 and 2) that

hold equally well for any scattering angular power spread and

with any angular power spectrum1 (APS), including isotropic

scattering. Another difference is that [10] takes antenna polar-

ization into account and shows that using tri-polarized arrays

can result in a maximum twofold increase in multipath channel

dimensionality. In this paper, we focus on unipolarized repre-

sentation of multipath, where a similar conclusion as in [10] is

expected by including polarization.

After deriving general bounds on scattering dimension-

ality, we wish to find bounds on scattering richness for a

given multipath field with a known APS. It is known that the

Karhunen-Loève (KL) expansion [14] of a random process

allows a parsimonious representation/truncation of the process

in the minimum mean square error (MMSE) sense. The KL

expansion of a non-isotropic multipath field provides the max-

imally parsimonious and customized orthonormal expansion

for that particular field. Therefore, we propose to use the KL

expansion of random multipath fields to quantify their richness.

In the KL expansion of multipath fields, the SCF eigenvalues

and eigenfunctions play a central role. In particular, the number

of significant SCF eigenvalues defines multipath richness,

since random multipath is essentially generated by the cor-

responding significant eigenfunctions and an uncorrelated

random sequence.

C. Contributions

The Dimension of Multipath Fields: In Section III, we estab-

lish two universal upper bounds on the truncation error of mul-

tipath fields in their infinite-dimensional presentation to a finite

number of orthogonal modes. The first upper bound considers

fixed multipath fields and complements the preliminary results

in [8] by providing a mathematically rigorous proof. The second

upper bound explicitly considers random multipath fields and

upper bounds the field truncation mean square error (MSE). We

show that for 2-D multipath fields, the truncation (mean square)

error upper bound exponentially decays to zero, if the number of

considered orthogonal modes is greater than a critical number

1The angular power spectrum quantifies the distribution of multipath power
from different incident angles.

. The critical value is directly related to the normalized

radius of the 2-D region, and is given as

( is the integer ceiling function and is the wavelength). The

results are noteworthy, as they show that the dimensionality in

fixed or random 2-D multipath fields is essentially limited by the

radius and not by the area of the 2-D observation/coupling re-

gion. The dimensionality in 3-D multipath fields is determined

by and, hence, is related to the area and not to the

volume of the 3-D region.

Multipath Richness: In Section IV, we use the multipath KL

expansion to quantify the notion of multipath richness based on

the number of significant SCF eigenvalues. More specifically,

richness is defined as the number of SCF eigenvalues that cap-

ture at least 99% percent of the total multipath energy. This

definition provides multipath richness results that are consistent

with the definition in [12], where is the angular

power spread. In [10], the channel dimensionality was shown to

be , for , where is the normalized array

aperture and is the solid angular power spread of scatterers.

We also establish a lower bound on the largest SCF eigenvalue.

This lower bound quantifies, to some extent, the well-known

qualitative effect of decreasing the angular power spread of scat-

terers on decreasing multipath richness.

II. 2-D MULTIPATH FIELD REPRESENTATION

Let represent a vector in 2-D space, , and let

denote the Euclidean distance of from the origin, which is the

center of some region of interest. The unit vector in the direction

of nonzero vector is denoted . Further, let

represent the azimuth angle of vector . Then, we can

write , where denotes transpose.

The vector may also be represented in its polar form as

Let denote a finite complex-valued narrowband multipath

field in a region of interest , for some finite range ,

generated by sources and scatterers external to that region.2 In

particular, we assume that all sources exist outside some radius

. Then, satisfies the Helmholtz or reduced wave

equation (in the region of interest) [11]

(1)

where is the Laplacian and is the wavelength. The time

harmonic solution to the related full wave equation is then

, where , , and is the

frequency [11]. Since (1) is a linear partial differential equation

(PDE), we see immediately that valid multipath fields in a

source-free region of interest are constrained to lie in a linear

subspace given by the nullspace of the operator

( is the identity operator). That is, if and are any two

solutions of (1), then so is with and being

scalars.

2More generally, the region could be any shape. This paper considers circular
regions, because this is one of the cases where rigorous analytic bounds are
possible. How more general shapes can be treated in an analogous way is not
explicitly treated in this paper.
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In the framework of continuous sampling in space, we con-

sider the wavefield at point , without explicitly assuming

an -element array of receiver antennas (that could be located

at points to ). We will quantify how essentially has a

finite dimensionality and richness. Since the treatment considers

wavefields, regardless of the number of antenna elements or

their placement, it can be concluded that that no matter how an-

tenna elements are placed, the scattering has a limited richness.

Two broad classes of representations of the solution to (1) will

be considered. The first class is based on plane wave synthesis

and is considered in Section II-A. The second class is based on

orthogonal solutions to the wave equation and is considered in

Section II-B.

A. Multiple Plane Wave Representation

A standard multipath model involves modeling every distinct

path explicitly as a plane wave. The plane wave model assumes

the scattering to be in the far field, which primarily makes the

analysis relevant for outdoor scenarios. In this model, the field

is given by

(2)

where the plane wave of index has complex amplitude ,

the propagation direction is denoted by the unit vector

, and denotes the scalar (dot) product between vec-

tors and . We interpret representation (2) as encoding the

field with a countable number of pairs enumerated by

. Representations similar to (2) appear in array sensor signal

processing applications, such as in [15]. Typically, only a fi-

nite number of plane waves are considered, although distributed

sources are considered in [16]–[18]. For example, [18] extended

the classical Bello’s work [19] and established the duality be-

tween continuous spatial direction dispersion and spatial selec-

tivity. The spatial duality is analogous to the duality between

delay dispersion and frequency selectivity or between Doppler

frequency dispersion and time selectivity in wireless channels.

A ready generalization that subsumes (2) is the superposition

of plane waves from all azimuth directions as

(3)

where and is the complex-valued gain of scat-

terers as a function of the direction of arrival .

B. Orthogonal Representation

A more general representation than (3), which implicitly

required that any sources be in the farfield, is now given. If

we assume that the narrowband multipath field is generated by

sources outside some radius , then for , we can use

the Jacobi-Anger expansion [11, p. 67] to represent the plane

waves in (3) as

(4)

where is the Bessel function of the first kind of integer

order [20], [21]. In array signal processing applications, the

Jacobi-Anger expression is used to expand the elements of array

covariance matrix [15]. By substituting (4) into (3), we obtain

(5)

where is the th Fourier series coefficient of in

(3) defined as

(6)

and

(7)

This shows the relationship between the angular distribution of

far-field sources in (3) and the coefficients of the gen-

eral expression (5). In (5), we identify a countable set of or-

thonormal basis functions over the 2–D disc of size as

(8)

where

(9)

The orthonormality is verified

otherwise
(10)

We can rewrite (5) in its orthonormal expansion

(11)

In comparison with (2) and (3), representation (11) encodes

the field with a countable set of Fourier coefficients .

Moreover, the multipath field in (11) is represented as a su-

perposition of a countable set of orthonormal basis functions

, whereas (2) lacks a parsimonious property, since

plane waves lack orthogonality.

The sequence in (5) and its statistical properties

play a central role in this paper, as they provide, through trunca-

tion, an efficient or parsimonious parameterization of general

narrowband multipath fields and allow studying their dimen-

sionality or degrees of freedom.

C. Random Multipath Fields

Detailed information about scatterers that generate the multi-

path field is usually limited. Therefore, it is reasonable to

represent a multipath field as a random process. Referring

to (3), the scattering gain is random and so is in (11).
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For mathematical tractability of the analysis, we assume uncor-

related scattering, which means that the random gains and

at two distinct incident angles are uncorrelated from each

other and the normalized APS is given by

(12)

where and denote expectation and complex conjugate, re-

spectively. Using (6), (12), the uncorrelated scattering assump-

tion, and following a few intermediate steps we find that

(13)

The normalized correlation between and is defined as

(14)

It is observed from (14) that is, in fact, the th

Fourier series coefficient of the normalized APS, .

Using (3), the normalized spatial correlation function (SCF)

of multipath fields and at points and is de-

fined as [13]

(15)

(16)

Since we assume uncorrelated scattering, in

(16) is nonzero only for . Therefore, the double integrals

in (16) reduce to single integrals and upon using the APS

definition in (12), is simplified to

(17)

Equation (17) shows that due to the uncorrelated scattering as-

sumption, the SCF is only a function of the spatial separation

between points and and therefore, is spatially stationary.

Using the Jacobi-Anger expansion (4) for the plane waves in

(17) yields

(18)

(19)

where the second equality is written using the summation the-

orem for Bessel functions [22, pp. 930, 931]. In (19),

is the distance between vectors and and is the angle

of the vector that connects to . The SCF in (17)–(19) will

be used later in Section III-B and Section IV to find the dimen-

sionality and richness of random multipath fields, respectively.

Before concluding this section, we reiterate that the assump-

tion of spatially uncorrelated scattering, originally used in [19]

for uncorrelated scattering in delay dispersion domain, enables

a mathematically tractable analysis. However, the assumption

of spatially uncorrelated scattering may be violated in prac-

tical situations, where electromagnetic rays reflect nonspecu-

larly off scatterers and the received amplitudes and phases of

paths with similar angles of arrivals become correlated. Re-

cently, [23] proposed a physical model to represent spatially

correlated scattering, which requires a 2-D Fourier expansion

of the scattering APS, . It is shown that a scattering cor-

relation with Gaussian density and the standard deviation of 2

degrees has modest and mostly negligible effects on the SCF,

whereas for a randomly generated angular correlation, the dif-

ference cannot be neglected. The actual effect of correlated scat-

tering on the dimensionality of multipath fields is still unknown.

Our conjecture is that it could only reduce the dimensionality

and not increase it. Hence, the results of this paper may serve

as an upper bound on the available degrees of freedom. Quan-

tifying the effects of correlated scattering on multipath dimen-

sionality is an open problem.

III. DIMENSIONALITY OF MULTIPATH FIELDS

Multipath fields are usually observed in a limited region in

space and, as such, the degree to which one can determine the

effects of the multipath field is also limited. In the following sec-

tions, we will see that one needs to consider explicitly the region

in space when considering concepts such as dimensionality and

richness.

In Section II-B, the multipath field was repre-

sented by a countable, but infinite sum of orthogonal modes

in (11). In this section, we define the dimen-

sionality of multipath by the number or cardinality of effective

modes that essentially build the field. To this end, we define the

truncated field by selecting the first indexed

coefficients of

(20)

As will be shown in the following sections, although all coef-

ficients in the synthesis of multipath field in (11) have the same

variance [refer to (13)], it is still possible to accurately truncate

the field with a carefully chosen truncation length . Equiva-

lently, the truncated field in (20) is synthesized as if the Fourier

series coefficients were zero for . The question is

how to choose so that the truncated field represents the actual

field within a given region and with a prescribed accuracy.
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Our approach consists of two parts. In Section III-A, we find

an upper bound on the normalized truncation error of the multi-

path field as a function of the truncation length . This is car-

ried out for an arbitrary multipath (subject to satisfying condi-

tions discussed in Section II), without explicitly considering its

random nature. Hence, the field is assumed to be deterministic.

From the truncation error upper bound in Section III-A we con-

clude that the effective dimensionality of multipath is directly

related to the radius of the 2-D region, to which the field is cou-

pled. Then in Section III-B, we find a universal upper bound on

the normalized MSE of multipath field truncation, which takes

multipath randomness into account. Considering the truncation

MSE upper bound consistently predicts the same dimensionality

for random multipath fields as in Section III-A. This is expected,

because the absolute upper bound in Section III-A applies for

any multipath. However, the MSE upper bound bears a more

physical significance, because: 1) it takes the stochastic random

scattering into account by computing the average error; and 2) it

signifies the normalized energy of truncation error, which is

more physically meaningful than the absolute error. Moreover,

considering truncation MSE of random multipath fields paves

the way for the MMSE KL expansion of multipath in Section IV

and for investigating the dimensionality of random fields with

a limited angular power spread and for quantifying multipath

richness.

A. Arbitrary, Deterministic Multipath Fields

Using (11) and (20), we define the normalized field truncation

error of the multipath field, over a 2-D disk of radius , as

(21)

where assuming far-field sources , is finite and

defined to be

(22)

Based on (22) and referring to (3), the field intensity is

also upper bounded by . The normalization in (21) provides

a relative error satisfying properties of: 1) scale invariance, that

the relative error is the same for and for complex

scalar ; and 2) unit plane wave invariance, that normaliza-

tion leaves a unit amplitude plane wave unchanged.

We now elaborate on the normalized truncation error in (21).

Since is the truncation of an exact series, the two fields

and will be essentially indistinguishable at any

point , provided that is appropriately chosen ac-

cording to . In mathematical terms

(23)

The first contribution of this paper is to precisely quantify the

limit parameters and to show how may be chosen, so that

the normalized truncation error is smaller than , for any given

. More specifically, we will show that

(24)

where is the integer ceiling function. Therefore, in (23) and

for any given , one can find such that

and then, choose . Throughout the rest

of the paper, the statement “the truncation error exponentially

approaches zero for ” is interpreted in the con-

text of (23) and (24). We will show that the decaying property

of the truncation error carries over to a 2-D disk of size . In

particular, the truncation error in (21) exponentially approaches

zero for .

Now, consider the integrand in (21), which is written using

(5)

(25)

where the second inequality follows from (6) and (22)

and the last equality follows from

. From (25), it is evident that the behavior of the

truncation error depends on the properties of Bessel functions

for sufficiently large . We use the following bound

for the Bessel function [24, p. 362]:

(26)

to upper bound (25) as

(27)

The following theorem shows quantitatively that, for a fixed ,

by taking the truncation depth large enough, we can make

as small as desired.

Theorem 1: Relative Truncation Error Bound of the Multi-

path Field: A multipath field generated by farfield sources,

having representation (11), can be truncated to terms as

in(20),where thenormalized truncationerror isupperboundedas

(28)

provided that the truncation length is chosen as

(29)

In the above, and .
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Theorem 1 states that the relative truncation error is no more

than 16.1% once equals the critical threshold ,

and thereafter decreases at least exponentially to zero as in-

creases. In other words, a larger truncation depths only mar-

ginally increases the accuracy of the truncated field represen-

tation. See Appendix I for the proof. The significance of the

critical truncation depth is that it is rigorously de-

rived. Moreover, the truncation threshold is simple and robust

enough to be used for engineering applications.

Now, we turn back to the definition of the normalized trun-

cation error (21) over a disk of radius . We note that

in (27) only depends on . From Theorem 1, we

conclude that for a fixed , exponentially decays to zero for

. Therefore, we choose , so

that the truncation error at the outer edge of disc is bounded

as . Since for every

, for every . As a result,

guarantees . This is summarized

in the following corollary to Theorem 1.

Corollary 1.1: Truncation of Multipath Fields in a 2-D Re-

gion: In the region , the truncation of multipath field

to in (20) results in a normalized absolute trunca-

tion error defined in (21). The truncation error is upper

bounded as for , where

and the truncation depth is defined as

(30)

Theorem 1 complements the preliminary results in [8] by ex-

plicitly quantifying how the normalized truncation error in

(28) exponentially decreases as a function of excess truncation

length , and by providing a more rigorous and detailed math-

ematical derivation of the bound in Appendix I. More specifi-

cally, in [8] the normalized truncation error was bounded as

(31)

where

(32)

and . Equation (31) does not explicitly

elaborate on how behaves for .

Quantifying the truncation error in the form of (28) is

one contribution of this paper. Corollary 1.1 is an another con-

tribution of this paper, compared to [8], which explicitly defines

and upper bounds the normalized truncation error over a 2-D

disk of radius .

Example: Fig. 1 compares the predicted relative truncation

error bound in Theorem 1 with multipath simulation results.

We have synthesized a large number of 2-D multipath fields

according to the plane wave model (2) and computed and

plotted the worst case relative error in (25)

over the circular region ( is the wavelength). The

parameter is the truncation depth . Note that in the context

of an antenna array for communications, this region is not so

small since, for example, it would accommodate a linear array

of 5 antennas or 13 antennas in a diamond configuration at

Fig. 1. Simulation results for the maximum relative errormax f� (xxx)g
versus the truncation order N for a circular 2-D region, kxxxk 1�, for a large
number of randomly generated 2-D multipath fields. Every trial value is marked
with a cross. The stars define the analytic bound of (28) for N = N +� =
d�ee+� 9, which is independent of the multipath field.

spacing. Fig. 1 summarizes the results of 50 trials, each field

composed of plane

waves. The directions of propagation in (2) for the plane

waves are uniformly chosen in the interval . Therefore,

the scattering is considered to be isotropic. However, when the

number of plane waves is small, the resulted scattering is far

from being dense. The complex amplitude of each plane

wave was randomly selected from a uniform [0,1] amplitude

distribution and uniform phase distribution. It is evident

that for all fields, the relative error decreases faster than expo-

nentially with increasing . In this figure, we have also plotted

the bound (28). According to Theorem 1 and (30), for a 2-D re-

gion of size the truncation error exponentially decays

if . It is evident that the relative

error bound is quite conservative and the actual relative error

is of the order of 1% at (in comparison to our bound

of approximately 16.1%). The bound exponent does, however,

well model the slope of the relative error at . The

fact that the slope is greater at higher truncation lengths can be

inferred from the proof given in Appendix I [see (72)], but has

not been reflected in Theorem 1 to simplify its statement. These

experiments and similar experiments for regions of different

sizes verify that one can bound the relative error independent of

the multipath field where the bound depends only on the size of

the region. Therefore, it is essentially impossible to distinguish

between fields with relatively few paths and ones with 1000 or

more paths (including diffuse multipath) for this size region.

This example quantitatively confirms the well-known limitation

that array aperture (size) imposes on resolving multipath fields.

B. Random Multipath Fields

In this section, we prove a universal bound on the truncation

error of random multipath fields in the MSE sense. Since the

multipath field is a random process, we compute the normalized

truncation MSE over a 2-D disc with radius , when the field in
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(11) is truncated to its first terms in (20). This is defined

as

(33)

Compared to (21), please note that the expectation operation is

over all multipath fields in the numerator and a different en-

ergy normalization factor in the denominator is used. Although,

upper bounding the absolute truncation error is often harder than

deriving a bound for the truncation MSE, the truncation MSE

is physically more meaningful. This is because it evaluates the

normalized average energy of truncation error. The exact de-

caying behavior of (33) cannot be directly inferred from The-

orem 1. As will be seen in Theorem 2, the truncation MSE upper

bound decays even faster than (28) with the excess truncation

length and, hence, strengthens the physical significance of

the results. Moreover, the truncation MSE will upper bound the

truncation MMSE in the KL expansion in Section IV. There-

fore, studying the truncation MSE is nontrivial and useful. We

use (11), (20), the orthonormality of basis functions in

(10), and the definition of in (9) to write the MSE in

(33) as

(34)

From (13) it is observed that the expectation is inde-

pendent of index , which yields

(35)

where the summation in the first denominator is equal to one

according to the summation theorem for Bessel functions [22,

pp. 930, 931]. To find an upper bound for (35), we use the same

bound for the Bessel functions given in (26). The following the-

orem provides a universal upper bound for the MSE in (35).

Theorem 2: Universal MSE Upper Bound for the Truncation

of 2-D Random Multipath Fields: A random multipath field

generated by far-field sources, having representation (11),

can be truncated to terms as in (20), with the normal-

ized truncation MSE given in (35), upper bounded as

(36)

provided that is chosen as and .

In (36), .

The proof is provided in Appendix II. We note that in the

derivation of multipath truncation MSE in (33)–(36), we did not

assume anything about the multipath SCF, , or equiv-

alently about the APS, in (17). Therefore, (36) is a uni-

versal bound on multipath truncation MSE, regardless of mul-

tipath scattering spatial correlation. Therefore, no matter how

random the scatter is, the field can be truncated to terms

in (20) with an upper bound on MSE given in (36). In other

words, is an upper bound on the effective richness of

random multipath fields in the MSE sense.

So far, we have observed that the truncation of multipath

fields results in an exponentially decaying error both in the ab-

solute error and in the MSE sense for the truncation depth

(Theorems 1 and 2), where the actual number of terms

in (20) to represent the field is . As was observed in Fig. 1,

the above truncation length is quite conservative. We are now in

a position to provide the following definition for the dimension

of multipath fields.

Definition 1: Universal Bound on the Dimension of 2-D

Random Multipath Fields: For a circular region in space given

by , the effective dimension of a 2-D multipath field

is given by

(37)

Here, we summarize a few observations based on the above

definition.

• The dimension, increases with the linear size of the

region (in wavelengths), not with the area of the

region.

• The dimension increases with the precision required. Di-

mension (37) actually specifies a threshold effect, where

the truncation error is small (in the sense of Theorems 1

and 2 and Corollary 1.1) and is decreasing with an expo-

nential rate.

• It is sufficient to use only of the in (11) to effec-

tively encode any field within a distance of the origin.

In the following two subsections, we interpret the finite di-

mensionality of multipath fields in the context of spatial sam-

pling and multiple antenna communication systems.

C. Spatial Sampling

If an actual multipath field can be expressed exactly in

the form (20) for some , then we refer to the multipath field as

being mode-limited. Hence, we have an exact sampling theory

analogous to the sampling theory of time harmonic functions.

That is, appropriately chosen sampling points in space

are sufficient to completely determine in the 2-D region.

For a general field restricted to the region ,

our theory implies that is essentially mode-limited within

and, thereby, is well represented by a limited number

of spatial samples (equal to the dimension). The point to be

made is that a sufficiently regular multipath field3 has an in-

trinsic spatial forgetting which gives it a natural parsimonious

representation in terms of the lower-order terms in the expansion

(11).

D. Number and Placement of Receiver Antennas

We can interpret the finite dimensionality of multipath

fields in the context of multiple antenna communication sys-

3Sufficiently regular in the sense of this paper means that the multipath field
is generated by discrete or distributed farfield sources. The generalization to
nearfield sources requires a more refined argument which is beyond the scope
of this paper, but nonetheless the general conclusion remains.
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tems. Consider antennas in a region at distinct

locations that are sampling a multipath field

for communication purposes, such as multiple-input

multiple-output (MIMO) systems [3], [4]. Since is well

modeled by with terms given in (37), we can

regard up to of the antennas as superfluous—that is,

any number of antennas in the region beyond the

dimension of the region, provide little or no additional

information, depending on how wisely the antennas are spaced.

This guides how densely we can usefully populate space with

antennas. For small spatial regions, is small and the

asymptotic analysis and predictions about MIMO capacity

enhancements should be cautiously interpreted.

It remains an open problem to determine the best placement

of a given number of antenna elements in a given area (or

volume) to maximize the capacity or minimize other system-re-

lated cost functions. However, some preliminary results for

optimizing the capacity of MIMO systems are available in [25].

E. Extension to 3-D Multipath Fields

After studying the dimensionality of 2-D multipath fields, we

are interested to find how the results are extended to the 3-D

case. For this purpose one needs to consider the 3-D equiva-

lent of the 2-D Helmholtz equation in (1) for a spherical region

of radius wavelengths, or . The solution to 3-D

Helmholtz equation is more mathematically involved than (5)

and is given by

(38)

where are constants independent of position, and

(39)

are the spherical Bessel functions, and

(40)

are the spherical harmonic functions, which are expressed in

terms of the associated Legendre polynomials . In

(40), is the elevation angle and is the azimuth angle, as

before. The 3-D field in (38) is encoded with the countable set

, which are 3-D counterparts of in (5). Also, and

are orthogonal for or . It was shown in [26]

that the first summation in (38) can be truncated to terms as

(41)

where for the normalized absolute trunca-

tion error is bounded as

(42)

(43)

where and is the Gamma function. The proof

is structurally similar to the proof of Theorem 1 and hinges on

the asymptotically decaying behavior of spherical Bessel func-

tions in (42) and (43). More details about characterization of

3-D multipath fields can be found in [26].

We note that by truncating to terms in (41), the

number of significant coefficients is . Hence,

we can assert what follows.

Definition 2: Dimensionality of 3-D Multipath Fields: For

a spherical region in space given by , the effective

dimensionality of 3-D multipath is given by

(44)

In summary, given in (44) bounds the spatial dimension-

ality of 3-D multipath and increases quadratically with , not

with the volume of the region. For the sphere, the dimensionality

scales with the surface area. It is sufficient to use only of

in (38) to effectively encode any field within a distance

of the origin.

F. Dimensionality Results and Huygen’s Principle

Before concluding this section, we comment on the con-

sistency of the dimensionality results obtained here with

Huygen’s principle [11, p. 53, p. 176]. In electromagnetic

theory, Huygen’s principle states that given the tangential

components of the electric and magnetic fields on a surface

enclosing a radiation source, the field anywhere outside the

surface can be determined without the need to know the source

distribution inside the surface. According to Huygen’s prin-

ciple, each point of an advancing wave front is, in fact, the

center of a fresh disturbance and the source of a new train of

waves. With Huygen’s principle in mind, we can say that in

the 2-D wave propagation, the electromagnetic field incident

on the receiver can be determined from the field distribution

on a circular ring enclosing the source. Likewise, in the 3-D

wave propagation, the wave front incident on the receiver can

be determined from the field distribution on the surface of

a sphere enclosing the source. Hence, the fact that 2-D/3-D

field dimensionality depends on the radius/area of the region is

consistent with Huygen’s principle.

IV. KARHUNEN-LOÈVE EXPANSION OF RANDOM MULTIPATH

FIELDS: MULTIPATH RICHNESS

In Section III, we found an upper bound on the MSE of mul-

tipath field truncation error when the field is represented by the

natural choice of orthonormal basis in (11). We showed that the

essential dimensionality of 2-D multipath, which is observed in

a disk with radius , is , regardless

of stochastic scattering characteristics. Since accurate trunca-

tion of multipath to terms applies for any (and every)

farfield multipath, serves as an upper bound for mul-

tipath dimensionality. But, does truly predict the di-

mensionality of a random multipath field with a specific spa-

tial correlation function (SCF)? Of particular interest is the case

where multipath power has a limited angular power spread. It

is generally known that a limited angular power spread makes

the multipath process correlated and hence, reduces its degrees
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of freedom. However, quantification of the relation between the

angular power spread and multipath dimensionality, which is

based on the general wave propagation and stochastic scattering

theory deserves further investigation.

The treatment of multipath fields using the orthonormal basis

in (11) is insufficient for analyzing the effects of limited angular

power spread on multipath dimensionality. In fact,

that encode multipath in (11) may be correlated random vari-

ables, as defined in (12)–(19). While multipath truncation to

terms in Section III is universally applicable to any mul-

tipath field, regardless of correlation in , a customized

model should allow the optimal, maximally parsimonious rep-

resentation of a particular field with a given SCF. With a fixed

truncation length, the truncation error will be minimum when

the multipath field is truncated in its optimal representation,

or the MMSE truncation. Alternatively, with a fixed truncation

error, the optimal modeling of multipath allows the minimum

truncation length. For 2-D fields with a limited angular power

spread, multipath dimensionality will be often much less than

the predicted .

In this section, we first define the optimal representation of

random multipath fields and then, use this definition to quan-

tify the notion of multipath richness. The Karhunen-Loève (KL)

expansion is a widely-used signal processing model for the op-

timal representation of stochastic processes in time domain. The

KL expansion takes away the redundant correlation of a random

process and allows its representation with the minimum number

of uncorrelated terms [14]. Here, we apply the KL expansion for

the representation of stochastic multipath fields in spatial do-

main. The objective is to find the maximally parsimonious trun-

cation of a random field and the effects of limited angular

power spread on multipath dimensionality. The KL modeling

of multipath is a novel means of defining multipath richness

that complements and confirms previous approaches in [10] and

[12].

Based on the KL theory, the optimal expansion of a random

multipath field in the region may be written as

(45)

where is a sequence of uncorrelated (white) random vari-

ables with unit variance, and and are the th

eigenvalue and eigenfunction of the SCF, respectively. That is,

in the 2-D case

(46)

where was given in (18) and .

The major difference between the orthogonal representations

of the random multipath field in (11) and in (45) is that the

coefficients in (11), regarded as random variables, may be

correlated with covariance coefficients given in (14), whereas

all correlation is taken away from in (45). Moreover, the

orthonormal functions in the KL expansion (45) are

customized for a particular multipath field with a given SCF,

whereas the closed-form, orthonormal functions in the

expansion (11) are universally applicable for any multipath

field. While the universal expansion of the 2-D field in (11) pre-

dicts a universal dimensionality of , a specific multipath

richness is predictable using the KL expansion. If we assume

that (45) is arranged in descending order of eigenvalues, then

the truncation of multipath field to terms in (45)

results in an MMSE [14] that is already upper bounded by the

MSE in Theorem 2 for .

For isotropic scattering, with the APS given by

, , we have , and for [see

(14)], and the coefficients in (11) are already uncor-

related. Therefore, in (8) is the th SCF eigenfunction

and is its corresponding eigenvalue. In other

words, the truncation MSE bound in Theorem 2 is tight for

an isotropic multipath field, asserting it as the richest type of

scattering.

For other types of scattering and according to (45), the

number of effective terms that generate the field is directly

related to the eigenvalue spread of SCF. Therefore, we study the

characteristic of SCF eigenvalues. In Section IV-A, we define

multipath richness based on SCF eigenvalues and also prove

a lower bound on the maximum eigenvalue of .

Section IV-B presents numerical results and compares the

defined multipath richness in Section IV-A with those provided

in [12].

A. Multipath Richness

We first review some of the important properties of SCF

eigenvalues. The integral operator with kernel

(47)

is symmetric, self-adjoint and compact [27]. Then, there exists

at most countably many different eigenvalues of . If has

infinitely many eigenvalues , then [27, p. 191]

We now show that the sum of all the eigenvalues of the kernel

is finite and equal to in a 2-D disk of radius .

From [28, pp. 117, 118], it is known that the sum of eigenvalues

is equal to the trace of kernel

(48)

since according to (12) and (17).

Now we are in a position to define multipath richness from the

characteristics of SCF eigenvalues. In defining multipath rich-

ness, we use the fact that the total sum of eigenvalues in (45) is

finite and propose the notion of significant eigenvalues.

Definition 3: Multipath Richness: Suppose that in the KL

expansion of multipath field given by (45) the eigen-

values are indexed in descending order (including multiple
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eigenvalues). The field is said to have richness when the

following normalized eigenvalue residual is less than 0.01.

(49)

In other words, multipath richness is defined to be when at

least 99% of the multipath energy is contained in the first

eigenvalues.

Now, we wish to study the properties of eigenvalues for mul-

tipath fields with a limited angular power spread in the APS.

An APS with a limited angular power spread is called a direc-

tional APS. To this end, we assume the APS, in (12), to

be nonzero and uniformly distributed in the azimuth angular in-

terval , where is a fraction of . We denote this

fraction by . In short, we may refer to this

directional APS as .

The following theorem proves a lower bound on the largest

eigenvalue of the SCF. It is noted that, according to (48), the

sum of eigenvalues is fixed for a given disk radius . Therefore,

a lower bound on the largest eigenvalue upper bounds the sum

of remaining eigenvalues. Hence, according to Definition 3, a

larger lower bound on the maximum eigenvalue means reduced

multipath richness.

Theorem 3: A Lower Bound on the Largest Eigenvalue of the

Spatial Correlation Function: The largest eigenvalue of the spa-

tial correlation function in (17) in a 2-D disk of size with a

uniformly directional APS in the range ,

where , , is lower bounded by

(50)

The proof is provided in Appendix III. It may be verified that

the lower bound on the maximum eigenvalue increases with de-

creasing the angular power spread . This, in turn, results in

a smaller multipath eigenvalue spread. Therefore, (50) quanti-

fies, to some extent, the well-known qualitative relationship be-

tween eigenvalue spread and multipath richness. Equation (50)

is useful in most situations, where closed-form expressions for

multipath SCF eigenvalues do not exist.

Before concluding this section, we review a standard upper

bound on the largest eigenvalue. For the 2-D case, the upper

bound is written as [27, p. 86]

(51)

which, by using the definition of in (18), is simplified

to

(52)

In Section IV-B, the numerical comparison of the largest SCF

eigenvalue with the lower and upper bounds shows that the de-

rived lower bound in (50) is tight.

B. Eigenvalue Analysis

Before we present the eigenvalue analysis results, we briefly

discuss two numerical calculation methods of SCF eigenvalues.

Numerical eigenvalue computation is often inevitable, because

closed-form expressions for SCF eigenvalues may not exist.

More specifically, one needs to numerically solve (46), which

is also known as the Fredholm equation [27, p. 209]. A known

technique to solve equations similar to (46) is to accurately

approximate the integrals on the left-hand side by a sum, and

transform the problem to a finite-dimensional, matrix-based

eigenequation [29, pp. 782–785]. For this purpose, a set of

quadrature points and quadrature weights are required to

sufficiently sample the integral. Suppose that the th quadra-

ture point and quadrature weight are denoted by and ,

respectively. Then, at each point , (46) is approximated as

(53)

The computational complexity of simultaneously solving

equations of the form (53) is [29, p. 783]. Hence, a

clever choice of quadrature points and weights is required to

optimally sample the region of interest. As can be seen from

(46), this involves selection of points in a 2-D circular region

(or in a 3-D spherical region for 3-D multipath). For a large

region radius , populating the area (or volume) with enough

quadrature points becomes problematic (as a rule of thumb,

points at the outer edges of the region should be sampled with

the separation no larger than ).

Here, we define an alternative approach for the numerical so-

lution of SCF eigenvalues, which is based on the equivalence of

representations of the multipath field in (11) and (45). The

main advantage of the proposed algorithm over the aforemen-

tioned quadrature-based numerical technique is that it does not

try to explicitly solve (46), and as such, the selection of quadra-

ture points is avoided. To see this, we combine (11) and (45) to

write

(54)

It is evident from (54) that the change of orthonormal basis

from to whitens the weighted random se-

quence to obtain the uncorrelated random

sequence with variance . Let the covariance

matrix of the sequence be denoted by

with elements

. In Section III, we concluded that

the first terms of adequately represent

the field. We summarize the above discussion in the following

algorithm to numerically obtain SCF eigenvalues .



2552 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007

Fig. 2. The largest eigenvalue of the spatial correlation function as a function
of APS spread 
. The eigenvalues are computed on a disk of radius R = 1�.
The lower bound is computed using (50) in Theorem 3. The upper bound is
computed using (52). Also in the figure, the largest eigenvalue is calculated nu-
merically using the algorithm in Section IV-B. The results show that the lower
bound is very close to the actual eigenvalue and that multipath richness reduces
with reducing 
. (Also see Table I.)

1) Based on Theorem 1 and Theorem 2, truncate the random

sequence in (54) with truncation length

, to obtain the random vector

2) Using (14), form the covariance matrix for the random

vector defined as .

3) The eigenvalues of the covariance matrix give the

first eigenvalues of the SCF .

Now, we present the lower bound, upper bound, and numer-

ical results for the SCF largest eigenvalue for a set of directional

scatterers. The results are shown in Fig. 2. The parameter is

the angular power spread, , which varies from

(highly directional) to (isotropic). The eigenvalues

are computed on a disk with radius . The lower bound

is computed using (50) in Theorem 3. The upper bound is com-

puted using (52). Also in the figure, the largest eigenvalue is

calculated numerically using the algorithm described above. It

is clear from this figure that the proposed lower bound on the

largest eigenvalue is tight. As becomes smaller, the largest

eigenvalue increases and multipath richness is reduced. Multi-

path richness for some typical values of in this figure are cal-

culated according to Definition 3 and are given in Table I. The

results quantitatively confirm the qualitative speculations that

reducing the multipath angular power spread would make the

field more spatially correlated and reduce its richness.

Next, we present the numerical analysis of eigenvalues for

three different APSs with angular power spread 0.05,

0.5, and 1. The eigenvalues are computed on a disk of size

using the algorithm described earlier. The results are

shown in Fig. 3. From this figure, it is clear that the eigenvalue

spread decreases with decreasing the angular power spread .

Table I shows the predicted dimension or richness of multipath

TABLE I
DIMENSION OR RICHNESS OF MULTIPATH FIELDS STUDIED IN FIGS. 2–3, WHICH

IS CALCULATED USING DEFINITION 3 AND ITS COMPARISON WITH (55) [12]

Fig. 3. Numerical eigenvalue analysis for three different APSs with spread

=� = 0.05, 0.5, and 1. The eigenvalues are computed on a disk of radius
R = 1� using the algorithm in Section IV-B. The number of significant eigen-
values decreases with decreasing 
.

fields in Fig. 3 according to Definition 3, where the eigenvalue

residual falls below 0.01 of the total . For comparison, we

have also presented the predicted dimension of directional mul-

tipath fields in [12]. It was argued in [12] that the dimension of

spatial multipath fields with a restricted angular power spread

between in a 2–D region of size is equal to

(55)

Compared to (37), the above dimension takes the restricted an-

gular power spread into account. From Table I, it is observed

that the calculated richness using Definition 3 is either identical

to or below the predicted dimension in (55).

V. CONCLUSION

The degree to which a multipath field is resolvable in

space depends on the size of space where the field is coupled

to. For 2-D spatial regions of radius , we proved that the

number of effective multipath modes is limited by ,

where . For 3-D spatial regions of radius , the

number of effective multipath modes is limited by . We

also defined random multipath richness based on the number

of SCF eigenvalues in the KL expansion that capture 99% of

the multipath energy. We showed that multipath richness is

upper bounded by in the MMSE sense and the bound

is achieved for isotropic multipath. By proving a lower bound

on the largest SCF eigenvalue, we quantitatively verified the

well-known reduction of multipath richness with reducing the
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angular power spread. Since the treatment in this paper consid-

ered wavefields, corresponding to the continuous sampling of

space, it is concluded that random multipath scattering has an

intrinsic limited richness, regardless of the number of receiver

antenna elements or their placement. A possible extension of

this paper would be to consider optimization of practical an-

tenna arrangements to utilize the maximum available scattering

richness for communication purposes. A practical application

would be to optimize receiver antenna placements in MIMO

systems to maximize channel information capacity for a given

scattering environment.

APPENDIX I
PROOF OF THEOREM 1

Proof: For reference, (27) is repeated by defining

and, hence,

(56)

Therefore, we find an upper bound on , which is ex-

panded by changing the summation variable as

(57)

(58)

Note that for integer , each term in the summation in (58)

is upper bounded as

(59)

Hence, for integer satisfying , we can use the

sum of geometric series to upper bound in (58) as

(60)

Now, we use the Stirling lower bound, , to

write

(61)

Now, using the following exponential inequality

(62)

we obtain the following upper bound on

(63)

To contain the exponential in (63), for a given , consider se-

lecting . Then

(64)

Fig. 4. The remainder R (z) in (57) with N = N(z) � deze. The stepped
curve is the bound given by (67) and the uniform bound corresponds to (68).

from which it can be shown that

(65)

(66)

Using (65) and (66) in (63) yields

(67)

Selecting implies that in (67)

is a piecewise function of with local maxima at

, where steps up to the next integer

value. By searching over these local maxima we can use the

exact expression (57) to obtain a uniform tight bound

(68)

which improves on (67) when . Fig. 4 displays the

truncation error bounds for given in (67) and (68) as a

function of and using .

When , which we refer to as the critical regime,

we infer from (68) that . Therefore,

that establishes (28) for .

Now, we show that , for a fixed , exponentially de-

creases as increases provided that . First, we note

that for a positive fixed , in (57) is decreasing with .

Using (58) we write the ratio for as

(69)

We observe that for

(70)
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Therefore, each term in the summation in numerator in (69) is

smaller than each term in the summation in the denominator and

hence, their ratio is less than 1, which yields

(71)

(72)

Therefore, whenever , we have and the re-

mainder decreases exponentially as increases. In

the critical regime, , this implies and the expo-

nential decrease is at least as fast as by (72). There-

fore, the truncation error upper bound for

is written as

(73)

It is also easily verified that for all positive values of satisfying

the inequality is automatically satisfied and the

assumptions throughout the proof are valid.

APPENDIX II

PROOF OF THEOREM 2

Proof: The proof of Theorem 2 is similar to the proof of

Theorem 1. Referring to (35) and using (26), we first find an

upper bound for the summation in the integral

(74)

where . Using a similar procedure as in (57)–(59),

we obtain

(75)

for . Now using the same steps as (61) and (62), the

following bound is derived:

(76)

If we choose , we obtain

(77)

We can further examine the bound on given in (75) at

critical points of the ceiling function ( , ) to obtain

a universal upper bound

(78)

by choosing in (75). Similar to the steps in (69)–(72), it

is possible to show that for , , and ,

the following ratio holds

(79)

Based on (78), it is possible to show that the truncation MSE in

(35)

(80)

Moreover, if we choose , so that at

the outer edge of disk is bounded as ,

from (79) we conclude that for every

. Therefore, , which completes

the proof.

APPENDIX III

PROOF OF THEOREM 3

Proof: Before proceeding, we remember that according to

the maximum eigenvalue property [27, p. 198] and by the defi-

nition of the operator norm [27] for the kernel

(81)

it is possible to find a lower bound on the maximum eigenvalue

by arbitrarily choosing any function with the only condition

being that . In the following, we will obtain a close

lower bound for by proper choice of . Let the function

in the region and be expanded as

(82)

where requires that . We write the inner

product using (47), the definition of in

(18), and the definition of in (82), which yields

(83)

Now, we use the definition of in (14) for a directional APS

to write

(84)

A set of orthonormal basis functions for the limited spread

are . We expand

the exponentials in (84) in terms of the new basis functions

(85)
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where . Replacing (85) into (84)

and changing the summation order yields the following:

(86)

where is defined as

(87)

Now, using the orthonormality of the basis functions in (86) we

write

(88)

Since all the terms in the summation are nonnegative, the inner

product is greater than every including its maximum

. To find the closest lower

bound on , we first use Cauchy’s inequality to upper bound

each term in (87)

(89)

where the upper bound is achieved when

(90)

and is a constant that is chosen

(91)

to normalize the function in (82) in the region .

Therefore, by choosing according to (90), each term is

maximized as . And by definition

(92)

Finally, by combining (81), the definition of following

(85), and (92) the following lower bound on the maximum

eigenvalue is derived

(93)
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