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Abstract: We discuss nonlinear dynamic models for the fluctuational opening of the base pairs

in DNA and show that a standard model which is satisfactory for time-independent properties

has to be improved to properly describe the time scales of the fluctuations. The existence of an

energy barrier for the closing of the base pairs has to be taken into account. This introduces

a model which sustains a new class of Intrinsically Localized Modes (ILMs). We investigate

their properties numerically, and then consider two simplified versions of the improved DNA

model allowing an analytical study of some properties of those ILMs. The models are different

because the effective barrier necessary for the existence of this new class of ILMs is obtained

either through the on-site potential or through the nonlinear stacking interaction, but they

nevertheless sustain similar nonlinear localized excitations. An extension of the usual anti–

continuum limit has to be introduced for the analysis, and relies on a continuation of localized

equilibria from infinity.
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1. Introduction
The famous paper of A.J. Sievers and S. Takeno [1] pointed out the possibility that nonlinear coupling

between the sites of an atomic lattice could lead to the localization of vibrations even if the absence

of any defect or disorder. As noticed in this paper such modes may be thermally generated. However

atomic crystals are usually characterized by strong interatomic bonds so that, in order to excite

the nonlinearity one has to reach high excitation levels or high temperatures [2]. On the contrary

biological molecules are “soft” objects, which often have to undergo large conformational changes

at physiological temperature in order to perform their function, so that they are good candidates

to observe nonlinear phenomena. Among them DNA is particularly interesting as an example of

a nonlinear lattice because it has a regular structure. In his book What is life?, published in 1944

before the discovery of the DNA structure [3], Erwin Schrödinger introduced the concept of “aperiodic

crystal” to describe a gene. The famous double helix of DNA, proposed by J.D. Watson and F.H.C.
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Crick [4] confirmed this remarkable intuition. The molecule, with its two strands rolling around a stack

of base pairs, appears as a one-dimensional lattice in which the perfect periodicity of the structure is

only broken by the existence of different possibilities for the base pairs. The four bases, A, T, G, C,

are associated in two types of pairs only, AT and GC. These “Watson–Crick pairs” have remarkably

similar sizes in spite of the difference in their chemical formula, allowing the regular, crystal-like,

structure of DNA. Within a pair the bases are linked by hydrogen bonds (two for AT, three for GC)

which hold the two helices together.

However this remarkable structure is only the average structure. DNA is a highly dynamic entity.

The hydrogen bonds linking the bases in a pair can break, allowing the bases to move out of the

stack, into the surrounding solvent, before the base pair closes again. The lifetime of a closed base

pair is only of the order of a few milli-seconds [5], and the lifetime of the open state of the pair is of

the order of 100 nano-seconds. Experiments show that a base pair can open while its neighbors stay

closed. Owing to its structure and dynamics DNA can therefore be viewed as a lattice of coupled

oscillators, the base pairs, undergoing large amplitude fluctuations which are strongly localized.

Section 2 presents a simple model for the statistical physics and fluctuations of DNA. In this

framework the local openings of the base pairs appear as discrete breathers. It is interesting that

the biologists who first noticed these large fluctuations called them the “breathing of DNA” [6].

Independently from each other, the scientists in biology and theoretical physics had converged to the

same vocable.

However, although the model quantitatively describes the statistical properties of DNA, when its

dynamics is tested against experiments, the model presented in Sec. 2.1 appears to lead to time

scales of the base-pair fluctuations which do not match experiments. Section 2.2 shows how it can be

improved by modifying the potential that describes the interactions between the two bases in a pair.

Instead of a simple well representing the bonding between the bases, one must introduce a barrier for

the pair closing to take into account the interactions of the open bases with the solvent. This new

model turns out to be interesting for nonlinear science because it sustains a new class of Intrinsic

Localized Modes (ILM).

The last section examines the properties of these new ILMs more thoroughly by considering two

special cases: i) the intra-pair potential has a barrier but the stacking interaction is assumed to be

harmonic (Sec. 3.1), ii) the intra-pair potential is a Morse potential without barrier, but a strong

nonlinearity in the stacking interaction introduces nevertheless a barrier for the closing of a base pair

(Sec. 3.2).

2. A model for nonlinear dynamics and statistical mechanics of DNA

2.1 The PBD model and its statistical physics

When DNA is heated in the range 70◦ to 90◦ Celsius, depending on the base-pair sequence, the

occurrence of base pair breaking increases so much that segments of consecutive pairs open together,

giving rise to the so-called “DNA bubbles” and then the open regions grow until they extend to the

full molecule, leading to a complete separation of the two strands. This thermal denaturation, also

called “DNA melting” started to attract the attention of theoreticians soon after the discovery of

the structure of the molecule [7–10] because it poses the question of a phase transition in a quasi

one-dimensional system, where it is unexpected. The first models described a base pair as a two-state

system, which can be either closed or open. Such models are convenient for statistical physics, but they

cannot be used to study the dynamics of the opening and closing events because they do not describe

the intermediate states. The PB model [11, 12] is the simplest model which tries to go beyond Ising-

like descriptions. It does not intend to describe the helicoidal structure of the molecule and defines

the status of base pair n in terms of a single real number yn which measures the stretching of the bond

linking the two bases. This allows a description of intermediate states between fully closed and fully

open and therefore the investigation of the dynamics of the fluctuations of DNA at all amplitudes.

The Hamiltonian of the PB model is
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H =
∑

n

p2
n

2m
+ Wl(yn, yn−1) + V (yn). (1)

The first term corresponds to the kinetic energy of bases with momentum pn and mass m. The next

term Wl(yn, yn−1) describes the stacking interactions between the pairs. If base n moves out of the

stack, i.e. when yn increases, it tends to pull the adjacent bases too. In the PB model this coupling

is described by its simplest form, the harmonic approximation

Wl(yn, yn−1) =
1

2
K(yn − yn−1)

2. (2)

The last term of the Hamiltonian is the intra-pair potential that links the two bases in a pair. It comes

from the hydrogen bonds between the bases but is also affected by the repulsion between the charged

phosphates of the backbone. This binding corresponds to a potential well around the equilibrium

position yn = 0. At large distance, the force between the bases vanish, i.e. the potential tends to a

constant value, while at very short distance the two bases strongly repel each other, which corresponds

to a sharp rise of the potential. A potential function which satisfies these conditions is the Morse

potential (Fig. 1)

VM (yn) = D
(

e−αyn − 1
)2

. (3)

Fig. 1. Intra-pair potentials used in the DNA models. The full line shows
the Morse potential of the PB and PBD models. The dotted line shows the
potential with a barrier introduced in Sec. 2.2.

For this one-dimensional model, with nearest neighbor coupling, the statistical physics properties

can be determined by an explicit calculation of the partition function

Z =

∫

∏

n

dpndyn e−βH({pn,yn}). (4)

In the strong coupling limit (large K) this can be done analytically by the transfer integral method [11,

13]. For lower values of K, which are appropriate for DNA, an efficient numerical integration can

be performed [14, 15] to get exact results. A thermal denaturation, with a divergence of the mean

value of the base-pair stretching 〈y〉 at a critical temperature Tc is found for this model. However,

for realistic parameters, the results show that the model leads to a broad, second order, transition

(Fig. 2) while experiments indicate that the transition is very sharp for a DNA homopolymer, where

all base pairs are the same.

Therefore the simplest nonlinear model is not sufficient to quantitatively describe the physics of

DNA. It can be improved by modifying the stacking potential [12, 16] Wl into a nonlinear expression

W (yn, yn−1) =
1

2
K

[

1 + ρ e−δ(yn+yn−1)
]

(yn − yn−1)
2. (5)

In this form the model is known as the PBD model. This expression for W means that the effective

stacking interaction decreases from K(1 + ρ), when both interacting pairs are closed, to K when

29



Table I. Parameters for the calculations using the PBD DNA model. With
energies in eV, lengths in Å and masses in atomic mass units, the time unit is
10−14 s.

DAT = 0.12905 eV DGC = 0.16805 eV

αAT = 4.2 Å−1 αGC = 6.9 Å−1

K = 0.00045 eV/Å2 ρ = 50 δ = 0.2 Å−1

m = 300 atomic mass units

either one is open. This is reasonable because the opening of a base pair leads to a decrease of the

overlap of the π–electrons of adjacent bases, which is mostly responsible of the stacking interaction.

Equation (5) means that the DNA chain becomes much more flexible when base pairs are open. This

is consistent with the observed sharp decrease of the persistence length of DNA when the two strands

separate. This is the characteristic length of the decay of the angular correlations along the molecule,

which measures the rigidity of the molecule. It is of the order of 50 nm for double stranded DNA,

but it drops by a factor of about 50 when single strands of DNA are considered. This extra flexibility

allows large fluctuations of the open segments, which rise the entropy of the system, hence decrease

its free energy F = E − TS, making the melting transition easier. As a consequence, when open

regions start to appear by heating, this leads to an entropy driven transition and a sharp “melting”

of the double helix (Fig. 2).

Fig. 2. Melting curves of homopolymer poly-A DNA calculated with the
PBD and PB models. Full line with circles: fraction φ(T ) of open base pairs
versus temperature calculated with the PBD model using the parameters of
Table I. A base pair is defined as open when its average stretching is beyond
1.5 Å. The full line without symbols is the derivative versus T of φ(T ).
Dash line with triangles: fraction of open base pairs calculated with the PB
model, i.e. by setting ρ = 0 in the parameters. As this also slightly changes the
transition temperature, the parameter DAT = 0.105 eV has been selected for
this calculation instead of DAT = 0.12905 eV for the PBD model to get similar
transition temperatures for both cases. The dash line without symbols shows
the derivative of the melting curve for the PB model, magnified by a factor 20
to make it visible on the same vertical scale as dφ(T )/dT in the PBD case.

The change in the stacking potential to introduce the anharmonic potential W is sufficient to give

a model that quantitatively describes the thermal denaturation of DNA. The analysis of the melting

profiles of many long DNA sequences shows that they can be calculated to a good accuracy with a

single set of 7 parameters. This gives a predictive power to the PBD model to determine melting

profiles of various sequences, provided they are long enough to avoid subtle effects which are observed

when the thermal denaturation is studied with a high resolution on DNA segments of a few tens of

base pairs [17]. The parameter set used in our study is listed in Table I.

To describe the two types of base pairs in actual DNA sequences, the intra-base potential V (y)

uses different parameters for the AT and GC pairs. In this work, as we want to emphasize nonlinear

phenomena to localize the fluctuations in DNA, we will only consider homopolymers of DNA made of

AT base pairs. Therefore all results of the present paper correspond to homogeneous systems, without
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spatial disorder. They are obtained with D = DAT , α = αAT .

The parameter set of Table I has been applied to analyze a neutron scattering investigation of the

thermal denaturation of films made of oriented DNA molecules [18]. A quantitative analysis of the

neutron data, and further experiments to get some insight on the length of the fragments that stay

closed immediately before the full melting transition of DNA [19], show that the PBD model gives a

good quantitative analysis of the experiments. This indicates that this model can provide an accurate

description of the statistical physics of DNA, i.e. of its equilibrium statistical properties.

2.2 Improving the model to describe the dynamics of the opening

Let us now examine the time-dependence of the base-pair fluctuations given by the PBD model. To

compare with experimental data we need to study the dynamics of the model in contact with a thermal

bath. This can be done with molecular dynamics (MD) simulations by coupling the model to suitably

chosen fluctuating degrees of freedom. We use the Nose-Hoover thermostat for this study [20] with a

chain of 5 thermostats to achieve a good ergodicity.

Figure 3 shows the amplitude of the fluctuations of the base-pair stretching at 300 K along a DNA

homopolymer of 256 AT pairs, over a time interval of 0.4 ns. The blue background of this figure,

which corresponds to closed base pairs according to the color scheme used to display the stretching

of the base pairs, indicates that most of the base pairs are closed, as expected at 300 K. However the

Fig. 3. Fluctuations of the PBD DNA model for a DNA segment of 256 AT
base pairs at 300K. The horizontal axis corresponds to the position along the
molecule and the vertical axis corresponds to time. It extends over a time range
of 0.4 ns. The amplitude of the base-pair stretching is shown by a color scale,
indicated on the right of each figure. Blue corresponds to closed base pairs
(y ≤ 0) while red shows the base pairs which have a stretching at least equal
to 1.5 Å. The left Fig (a) shows the fluctuations of the whole DNA segment,
while the right Fig (b) is a magnification by a factor 8 in space and time, only
showing the central part of the left figure.
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figure shows vertical lines in colors corresponding to large stretchings. They correspond to sites which

open while their neighbors stay closed, in agreement with the experimental observations on DNA [5].

The magnification of one part of this diagram (Fig. 3(b)) shows how this opening occurs. The colored

lines are actually dotted lines including blue segments i.e. y ≤ 0, which alternate with segments where

y > 0. This indicates that, at those particular sites, the base pair stretching oscillates, or, in other

words that the thermal fluctuations have generated discrete breathers in the DNA lattice. As shown

in Fig. 3(b) the amplitude of those breathers can exceed 1.5 Å (red color on the figure). Figure 1

indicates that this value corresponds to the beginning of the plateau of the Morse intra-pair potential,

which means that the corresponding base pair can be considered as temporarily open.

Therefore the molecular dynamics simulations show that the PBD model of DNA has a small

number of base pairs which temporarily open at temperatures well below the melting temperature of

the double helix. Those openings are similar to the breathing of DNA observed by biologists. They

occur locally, generally concerning only one base pair at a time at 300 K while the adjacent pairs

only have small amplitude displacements. Qualitatively the results seem to agree with experimental

observations, but, to determine the validity of the model one must check the quantitative properties

of this DNA “breathing”. This can be done by performing long MD simulations and making statistics

of the times during which a base pair stays closed (the lifetime of a base pair) and how long does an

average opening event lasts. Figure 4 shows the results of such a calculation. In this study a base

pair is defined as “opened” when its stretching exceeds 1.5 Å, which is the beginning of the plateau

on the Morse intra-pair potential, and closed again when y falls below 0.3 Å. The quantitative results

slightly depend on the definition of the threshold but tests show that, as long as the threshold stays

in the same order, the variation is only marginal.

Fig. 4. Histogram of the duration of the open state (a) and lifetime of the
closed base pairs (b) in the PBD model at 300 K, computed by simulation of
DNA segment of 256 pairs for a total time of 6.5 ns.

Figure 4 shows that the durations of the opening events lie in a rather narrow range of 1 to

7 × 10−12 s. The average duration of the open state is 2.3 × 10−12 s. This time, in the ps range,

is very short. It is of the order of the typical periods of the lowest frequency vibrational modes in

DNA. This is consistent with the numerical observation that the opening of the base pairs occurs via

discrete breathers. The durations of the opening events given by the PBD model are much smaller

than the lifetime of the open base pairs of about 100 ns [5] inferred from experiments. The lifetimes

of closed pairs observed in the MD simulations have a much broader distribution, but they are found

to lie in the ns range (Fig. 4) with an average value of 2.9 ns, which is again far below the few ms

estimated lifetime of an AT pair [5].

This disagreement with experiments, by orders of magnitude, shows that, although it is satisfactory

when static properties of DNA are concerned, the PBD model is missing an essential ingredient to

describe the dynamics of the molecule. Some ideas to find what is missing can come from all-atom
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molecular dynamics simulations [21] biased to observe the free energy pathway associated to base-pair

openings, in spite of the fact that it is a very rare event. Adding a geometrical constraint with a bias

potential, it is possible to force the opening and observe the probability distribution of the fluctuations

to reconstruct a free energy corrected from the bias potential. The results are highly sensitive to the

detail of the solvent and counterion dynamics but they show nevertheless that the free energy of the

open state may have a shallow minimum, which explains why a base pair can stay open for a long time

rather than vibrating as a breather around the closed state. In defining the potentials of a mesoscopic

model like the PBD model one should think that the model only describes a subset of all degrees of

freedom. Therefore one micro-state of the model actually corresponds to a set of microscopic states of

the real systems, where all the degrees of freedom which are not present in the mesoscopic model are

fluctuating. It means that the “potentials” of a mesoscopic model are actually free energies averaged

over the degrees of freedom which are not represented at the mesoscopic scale. This suggests that

the Morse intra-pair potential, which had been motivated by only considering the stretching of the

base pairs, should be modified to take into account other hidden degrees of freedom which generate

a barrier for reclosing. This barrier could have different origins. The open bases can make hydrogen

bonds with the solvent, which must be broken before the base pair can close again. Moreover, when

they are out of the stack that they form in the double helix, the bases gain new degrees of freedom;

Their plane can rotate, which makes reclosing difficult.

To model these effects we have therefore introduced a new intra-pair potential

Vh(y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A
[

e−αy − 1
]2

if y < 0,

ay2 + by3 + cy4 if 0 ≤ σy ≤ d,

D + Ee−σy
(

y + 1
σ

)

if σy > d.

(6)

This potential, which replaces the Morse potential of the PBD model is plotted in Fig. 1 (dotted

line). It is determined by the parameters D, E, α, σ, and the choice of d. The other parameters

a, b, c, A, are derived by imposing the continuity of the potential and its two first derivatives in

y = 0 and y = d/σ. The analytical form has been chosen to preserve the expression of the Morse

potential for y < 0, and for analytical convenience in the range σy > d, while giving the required

shape of a potential that tends to a constant value for large y, and with a barrier between the open

and closed states. To study DNA with this new model we have used D = 0.13945 eV, E = 10 eV Å−1,

α = 4.2 Å−1, σ = 5.0 Å−1 and d = σ.

2.3 Properties of the improved DNA model

Let us now examine the validity of this new model to describe the statistical and dynamic properties

of the base pair fluctuations in DNA.

The parameters of the potential Vh have been chosen to give the same thermal denaturation tem-

perature as the PBD model for a DNA homopolymer made of AT base pairs. Figure 5 shows that this

Fig. 5. Comparison of the melting profiles for poly-A DNA sequences com-
puted with the modified PBD model with a closing barrier (full line with circles)
and the PBD model with the Morse potential (dotted line with triangles).
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choice leads to melting profiles for DNA homopolymers which are very similar for the two models,

although the potential with a barrier gives a slightly sharper transition. This feature has also been

observed in another statistical physics study of DNA where a barrier attributed to the solvent has

been introduced in order to sharpen the transition [22]. Studies of inhomogeneous sequences show

that this extra sharpness of the transition for a homopolymer also leads to melting profiles which are

more sensitive to the details of the local sequence than with the PBD model, however when thermal

averages are concerned the two models give results which are comparable.

2.4 Dynamics of the fluctuations

Conversely strong differences between the two models appear when one considers dynamical effects,

i.e. time dependent properties.

Figure 6 shows the amplitude of the fluctuations of the base-pair stretching at 300 K in the model

with potential Vh. It should be compared with Fig. 3 for the PBD model. Except for the intra-pair

potential all conditions are the same for the two figures, for the MD simulations and for the plots

which use the same color scale. Instead of many short-lived open states (corresponding to red spots

on the figures) for the PBD model, Fig. 6 shows a single, long-lived, open state that extends over the

whole time interval shown in the figure, i.e. 0.41 ns. The magnified image provides further information

Fig. 6. Fluctuations of the DNA model with a barrier in the intra-pair po-
tential, for a DNA segment of 256 AT base pairs at 300 K. The horizontal
axis corresponds to the position along the molecule and the vertical axis cor-
responds to time. It extends over a time range of 0.4 ns. The amplitude of
the base-pair stretching is shown by a color scale, indicated on the right of
each figure. Blue corresponds to closed base pairs (y ≤ 0) while red shows the
base pairs which have a stretching at least equal to 1.5 Å. The left Fig (a)
shows the fluctuations of the whole DNA segment, while the right figure is a
magnification by a factor 8 in space and time, showing only one part of the left
figure.
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about the nature of this open state. The maximum stretching at the open site is not constant. It

varies between a value larger than 1.5 Å (red color) and a lower value of about 1.1 Å (yellow color).

Therefore this figure suggests that, in the model with a barrier in the intra-pair potential, the thermal

fluctuations have generated a new kind of nonlinear localized excitation, different from the breathers

oscillating around the minimum of the intra-pair potential (y = 0) observed in the PBD model.

Fig. 7. Histogram of the duration of the open state (a) and lifetime of the
closed base pairs (b) in the PBD model at 300K, computed by simulation of
DNA segment of 256 pairs for a total time of 3.28 µs.

Before studying these excitations in the next subsection, let us examine the consequences of the

barrier in the potential on the time scales of the open and closed states of DNA. The histograms

of the duration of the open states and lifetimes of the closed base pairs in the new model (Fig. 7)

show that the distributions of these characteristic times is qualitatively changed by the barrier in the

intra-pair potential. Both the duration of the open states and the lifetimes of the closed pairs have an

exponentially decaying distribution. The average value of the duration of the open state is 3.3 ns i.e.

more than three orders of magnitude longer than for the PBD model with a Morse potential. Similarly

the lifetime of a closed base pair is 0.59 µs in the presence of the potential barrier, i.e. 2000 times

longer than for the PBD models. The duration of the open state is still about 30 times smaller than

the measured value, while the lifetime of a closed pair is still about three orders of magnitude smaller

than the values measured experimentally. The model is still not quantitatively correct to describe the

dynamics of the base-pair fluctuations in DNA, but the improvement brought by the new intra-pair

potential is nevertheless really significant. The discrepancy with experiments shows the limits of an

oversimplified model where a single degree of freedom is used to describe the complex phenomena that

take place in the actual molecular structure of DNA in contact with the solvent. Using an effective

potential such as Vh can correct some of the weaknesses of the simplified description but not all of

them.

Figure 8 shows that the temperature dependence of the lifetime of a closed base pair tc and the

duration of the open state to follow Arrhenius laws

to = t1e
E1/kBT tc = t0e

E0/kBT , (7)

which are characteristic of a thermal activation. As discussed in the next subsection the activation

energies E0 = 0.250 eV and E1 = 0.086 eV can be estimated from the properties of the ILM of the

model.

2.4.1 A new class of ILM

As shown by Fig. 6(b) the MD simulations of the improved DNA model find that thermal fluctuations

can lead to highly localized nonlinear excitations in which the base-pair stretching at one site is large
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Fig. 8. Arrhenius plot of the duration of the open state to (a) and of the
lifetime of a closed base pair tc (b) in the model with a barrier in the intra-pair
potential. The figure shows ln(t0) and ln(tc) versus 1/T .

and oscillates around a non-zero average, while the neighboring sites only show a very small stretching.

To understand the nature of those ILM it is useful to consider a reduced system made of only 3 sites,

the central site i0 of the ILM, and its two adjacent sites i0±1. In a first approximation the two

adjacent sites are assumed to be fixed at their equilibrium value yi0±1
= 0. The potential energy of

this reduced system is

Veff(yi0) = W (yi0 , 0) + W (0, yi0) + Vh(yi0). (8)

It can be viewed as an effective potential for the stretching at site i0.

Fig. 9. The effective potential Veff(y) defined by Eq. (8) (full line) and the
intra-pair potential Vh(y) (dotted line). The parameters for W and Vh are
those listed above for the improved DNA model with potential Vh.

Figure 9 shows the shape of this effective potential. It is an asymmetric double-well (DW) potential.

The deeper well is the ground state at y = 0, but the combination of the stacking interaction W and

intra-pair potential Vh generates a second, shallower, minimum, with a higher energy, at y = y0 �= 0.

The shape of the potential immediately suggests the possibility of two types of localized modes.

The first one is a “conventional” breather, oscillating with a large amplitude around the minimum

y = 0 of the on-site potential Vh. The second one is a new kind of breather, which oscillates around

y0 which is an unstable point for the on-site potential Vh, stabilized in the effective potential by

the coupling with the two adjacent sites. We call Double-Well breather (DW-breather) this type of

ILM as a reminder that its existence comes from the double well shape of the effective potential. As

discussed below it can oscillate in the second well only or even span both wells when its amplitude

becomes very large.

However this conjecture is based on the reduced system of three atoms, and it must be checked for

the full nonlinear lattice. We have used MD simulations to confirm its validity. These calculations
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are performed without any thermal bath as we want to study an intrinsic property of the model. We

simulate the equations of motions that derive from the Hamiltonian of the DNA model

m
d2yn

dt2
+

∂W (yn, yn−1)

∂yn
+

∂W (yn, yn+1)

∂yn
+ V ′

h(yn) = 0. (9)

The lattice comprises N = 512 sites. The initial condition imposes a given amplitude to the central

site yN/2(t = 0) = yc, all other sites starting from yn = 0. All initial velocities are equal to 0.

This initial condition does not correspond to an exact periodic solution of the equations of motions

and we observe the emission of small amplitude waves from the central site, together with a large

oscillatory motion at this site. In the finite lattice these waves would be reflected at the boundaries and

perturb the long term evolution of the dynamics near the center. This can be avoided by introducing

a damping term γ(n)dyn/dt in Eq. (9) in two regions near the end. In our calculation these regions

extend over 64 sites at both ends and the damping coefficient decays linearly from γ(n) = 0.2 at the

boundaries of the lattice to 0 at the boarder of the damped regions.

Figure 10 shows that, after a transient during which the central site emits very small amplitude

waves which are damped out at the boundaries, the dynamics evolves towards a stable oscillatory

Fig. 10. Dynamics of the improved DNA model when only the central par-
ticle is excited, in the presence of damping at both ends of the lattice. The
horizontal axis corresponds to the position along the lattice. The vertical axis
corresponds to time. (a) Initial stage of the dynamics, showing the complete
lattice (512 particles) between t = 0 and t = 0.8 10−8 s. The color scale
has been selected to show very small amplitude waves (in the range from 0
to 0.1 10−3 Å. (b) steady state solution obtained after t = 1.2 10−8 s. The
picture is magnified to show only the 16 central particles of the lattice. The
color scale extends from 0 to 2 Å and the time scale is also magnified to display
a few periods of the breather only (the time interval shown extends over 6 ps
only). This figure shows that the DW-breather oscillates between a minimum
of about 1 Å (green color) and a maximum reaching 2 Å (red color).
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state, with a DW-breather at the excited site. We can then record the properties of this breather, its

energy, amplitude, frequency, as a function of the amplitude of the initial excitation. The results are

shown in Figs. 11 and 12.

Fig. 11. Properties of the breathers created by exciting the central particle
of the lattice. (a) amplitude of its oscillations versus the amplitude yc of the
excitation of the central particle. For each value of yc the vertical line extends
between the extrema of the oscillations of the breather. The circles show the
initial value yN/2 = yc. (b) Frequency (stars) and energy (squares) of the
breather versus yc.

Fig. 12. Some examples of the the breathers created by exciting the central
particle of the lattice. In each case the top image shows the time dependence
of the oscillations yN/2(t) of the central particle, and the bottom image shows
the Fourier transform of yN/2(t), i.e. the spectrum of the breather. (a) for an

excitation of amplitude yc = 0.66 Å the breather oscillates in the main potential
well. (b) an excitation of amplitude yc = 0.86 Å creates a DW-breather, which
oscillates in the second well. Its frequency is much lower than the frequency of
the breather in the main well. (c) a very large excitation yc = 4.76 Å creates
a DW-breather that spans the two wells.

As shown by these figures the model has a rich variety of ILMs. When the excitation is sufficiently

small, it generates an ordinary breather that oscillates around the bottom of the main well (y = 0).

Its spectrum, which is quasi-harmonic at very low amplitude, becomes richer when the amplitude

increases, as shown in Fig. 12(a). When yc exceeds a threshold defined by the maximum of the

effective potential of Fig. 9, the nature of the breather changes. It turns into a DW-breather which

oscillates in the second well. Its frequency drops sharply, in agreement with the shallow shape of the
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second well. As shown by Fig. 11(b) the frequency of the DW-breather always stays small, and shows

a maximum when the amplitude drops to 0 around the minimum of the second well. In the vicinity

of this point the calculation of the spectrum of the breather shows that it is again single-frequency,

i.e. the DW-breather is quasi-harmonic. When yc passes a second threshold yc ≈ 4.7 Å, the nature

of the oscillation of the DW-breather changes because it spans both wells. This is accompanied by a

new decrease of the frequency. Figure 12 shows that the oscillation yN/2(t) of the central particle is

highly anharmonic in this case, and this shows up in the complex spectrum of the breather.

Figure 11(b), showing the energies of the DW-breathers, provides some insight on the activation

energies measured in MD simulations for the lifetime of a base pair E0 = 0.250 eV and for the

duration of the open state E1 = 0.086 eV. It appears that E0 is slightly above the minimum of

the DW-breathers energy (≈ 0.2 eV) while E1 corresponds to the energy difference between E0 and

the maximum energy of the DW-breather (≈ 0.32 eV). This is reasonable because it corresponds

to the energy that should be given to the DW-breather associated with the open state to allow it

to overcome the energy barrier which separates the DW-breathers in the second minimum from the

breathers around the closed state (Fig. 11(b)).

3. ILMs in nonlinear models inspired by DNA

The results on the DNA improved model have shown that it can sustain a rich variety of intrinsic

localized modes. However this model is complex because it has both an on-site (intra-pair) potential Vh

with a barrier and a coupling W which is nonlinear. This is consistent with the properties of DNA,

and necessary to quantitatively describe the experimental results, but it makes analytical studies

difficult. In this section we show that this complexity is not necessary if we are interested in the new

class of excitations, the DW-breathers, that the DNA model has exhibited. We examine two models,

inspired by the DNA model, but simpler, and show that they can also sustain DW-breathers.

3.1 Model 1: on-site potential with a barrier, and harmonic coupling

In this first simplified version of the DNA model, the intra-pair potential with a barrier, Vh (Eq. (6) )

is preserved but the stacking interaction W is replaced by the linear approximation Wl (Eq. (2) ) so

that the equations describing the dynamics of the model are

m
d2yn

dt2
+ V ′

h(yn) = K (yn+1 − 2yn + yn−1), n ∈ Z. (10)

A preliminary step to find time-dependent solutions is to determine the stationary points, i.e. the

equilibria of the system which are determined by the system

K (yn+1 − 2yn + yn−1) = V ′
h(yn), n ∈ Z. (11)

If they are spatially localized they must moreover satisfy

lim
n→±∞

yn = 0. (12)

A standard method to analyze spatially localized equilibria in nonlinear lattices is the anti–continuum

limit technique (see [23–25] and section 9 of [31]). The usual anti–continuum limit starts from an

exact solution y0
n of (11)–(12) obtained for K = 0. For a finite number of sites n, y0

n is set to the

local maximum of Vh at the top of the potential barrier, and to the global minimum y = 0 at all the

remaining sites (in infinite number). In a second step, one continues this solution for K ≈ 0 using the

implicit function theorem, which yields an exponentially localized solution of Eq. (11). In the present

case, all these solutions are unstable at small coupling because the only nontrivial critical point of

Vh is a local maximum. Consequently, the usual anti–continuum limit technique cannot be readily

applied to the model that we consider here in order to find stable localized equilibria and it must be

extended.

Localized equilibria can nevertheless be obtained from an extension of the anti–continuum limit,

introduced in [33]. This method relies on the observation that Vh admits a “critical point at infinity”,
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which should allow to construct highly localized equilibria of (11) at small coupling. This requires to

extend the above perturbative analysis to the singular situation when the excited site lies at infinity on

the plateau of the potential Vh for K = 0. In [33], localized equilibria are obtained by “continuation

from infinity” for arbitrarily small values of K, but without reaching K = 0. The perturbative analysis

is performed near an approximate solution ỹn of Eqs. (11) and (12) for K ≈ 0, instead of an exact

solution for K = 0 as in the classical anti–continuum limit. This initial guess satisfies ỹn = 0 for

n �= 0, and ỹ0 is a critical point of the modified potential

VK(y) = Vh(y) + Ky2,

which incorporates a restoring force due to nearest-neighbors. This is the effective potential introduced

in Eq. (8) written in the context of the particular model that we study here. As shown by Fig. 13,

it has a double-well shape, qualitatively similar to the shape of the effective potential found for the

improved DNA model (Fig. 9) so that we can expect to find the same kind of ILMs in the two models.

Fig. 13. Effective potential for model 1, with the linear stacking interaction
Wl and the intra-pair potential Vh. The parameters are K = 0.01 eV Å−2,
D = 0.0857 eV, E = 4 eV Å−1, α = 4 Å−1, σ = 4 Å−1.

The special potential Vh defined by Eq. (6) allows simple computations because (for K small enough)

the solution of V ′
K(ỹ0) = 0 in the interval [d σ−1,∞) reads explicitly

ỹ0 = −
1

σ
ln (

2K

σE
). (13)

An exact solution yeq
n of (11)–(12) is obtained in [33] for K ≈ 0, using the contraction mapping

theorem in some neighborhood of ỹn.

Theorem 1 There exists a constant K0 > 0 such that for all K ∈ (0, K0), problem (11)–(12) admits

a solution yeq
n (K) satisfying

Sup
n∈Z

|yeq
n (K) − ỹn(K) | = O( |K ln (K) | ), K → 0. (14)

Moreover, yeq
n decays to 0 exponentially as n → ±∞ and has the symmetry yeq

−n = yeq
n .

Note that estimate (14) implies

lim
K→0

yeq
0 (K) = +∞, lim

K→0
yeq

n (K) = 0 for n �= 0, (15)

i.e. the equilibrium is highly localized when K is small. The equilibrium is spatially symmetric, but

more general (not necessarily symmetric) solutions could be obtained by the same method. Figure 14

shows a numerical test of this theorem. The equilibrium solution has been found by minimizing the

energy of the system, with the condition that the central site should have y0 larger than the value

that corresponds to the barrier of the effective potential. It shows that the localized equilibrium exists

and that it decays exponentially away from the center as indicated by theorem 1.
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Fig. 14. Shape of the equilibrium solution in model 1 with the parame-
ters for Vh indicated in the caption of Fig. 13, and 4 values of K: K =
0.01, 0.005, 0.0025, 0.00125 eV Å−2. The different curves correspond to the
different values of K, the curves decaying more rapidly corresponding to smaller
K. This solution, obtained from a numerical solution of the equilibrium equa-
tions Eq. (11) confirms the results resulting from Theorem 1: yeq

n decays ex-
ponentially to 0 away from the center and moreover smaller Ks lead to a more
localized state.

Fig. 15. (a) Linear spectrum of the equilibrium solution shown in Fig. 14 for
the case K = 0.01 eV Å−2. The circles attract the attention on three particular
frequencies which are outside of the phonon band. One of them is far below
the band. It is the frequency ωb of the discrete breather. The two others also
correspond to localized modes. The inset shows a magnification of the lower k
part of the phonon band. The two frequencies right below the band are clearly
visible. (b) Plot of the eigenvectors associated with the three modes which are
outside of the phonon spectrum. The full line corresponds to the lowest mode,
and, as expected it has the shape on the discrete breather. The dotted line
corresponds to mode 2 and the dash line to mode 3. These numerical results
show that modes 2 and 3 are also highly localized in spite of the fact that their
frequencies are close to the phonon band.

The linear spectrum of this equilibrium solution shows the existence of a low frequency with an

associated localized eigenvector, and suggests the existence of Lyapunov periodic orbits emanating

from the localized equilibrium. These solutions correspond to the discrete breathers numerically com-

puted in [29, 33]. Figure 15 shows the numerical calculation of the spectrum of one of the equilibrium

solutions shown in Fig. 14 (case K = 0.01 eV Å−2). As predicted theoretically it exhibits a frequency

well below the bottom of the phonon band, which is associated with a localized symmetric eigen-

vector which corresponds to the shape of the corresponding discrete breather in the small amplitude

limit. Moreover the spectrum shows two other frequencies slightly below the phonon band, which are

associated with localized modes. All other frequencies belong to the phonon band and correspond to

extended modes.

An existence theorem for discrete breathers oscillating in some finite-size neighborhood of yeq
n has

been proved in [29]. As above, the proof requires to extend the classical anti–continuum limit for

periodic solutions [31, 34] to the case when the excited site lies at infinity for K = 0, with the

additional difficulty that breather frequencies depend on K and vanish as K → 0. The existence
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Fig. 16. (a) Frequency ωb of breather solutions of Eq. (10) numerically com-
puted by the Newton’s method [29], as a function of breather amplitude y0(0)
(expressed in Å). Resonances with phonons, represented by black bands, pre-
vent the existence of breathers (only the first ten resonance bands have been
represented for clarity). Parameters are α = σ = 4 Å−1, D = 0.0857 eV,
E = 4 eV Å−1. Particle masses are set to m = 300 atomic mass units and
K = 0.01 eV Å−2. (b) Frequency of the breathers obtained numerically by
exciting only the central particle of the lattice, as explained in Sec. 2.4. The
numerical results given by the two different methods are in excellent agreement.

result of [29] is valid for small values of K, and under a non-resonance condition implying that all

multiples of the breather frequency ωb lie outside the phonon band. More precisely, Eq. (10) linearized

at yn = 0 admits solutions in the form of linear waves (phonons) yn(t) = C cos (kn − ωqt), whose

frequency satisfies the dispersion relation

m ω2
q = 2 Aα2 + 2K(1 − cos k). (16)

Phonon frequencies belong to the band [ωmin, ωmax], where ωmin = α(2A/m)1/2 and ωmax = (ω2
min +

4K/m)1/2. For a fixed value of K, Fig. 16 shows the forbidden frequency bands for discrete breathers,

consisting of the phonon band and its submultiples.

The condition of non-resonance with linear waves is classical in the context of discrete breathers [31,

32], but yields unusual features in the continuation from infinity of [29], because the maximal frequency

of discrete breathers beyond the potential barrier goes to 0 with K. As we have seen, close to their

maximal frequency, the breathers beyond the barrier correspond to (weakly-nonlinear) localized modes

of a spatially localized equilibrium yeq
n . When K is small, yeq

0 goes to infinity on the flat part of the

potential, which induces low-frequency oscillations. As a consequence, breathers exist for parameters

(ωb, K) lying outside certain resonance tongues accumulating near (0, 0) [29]. When a multiple of

the breather frequency lies in the phonon band, numerical results of [29] indicate that breathers are

replaced by “almost localized” solutions having a small oscillatory tail at infinity. Such solutions are

known as phonobreathers or nanopterons (see [26, 27, 32] and references therein).

Figure 16(a) taken from [29] provides the frequency-amplitude relation for a family of discrete

breathers at fixed value of K obtained using a Newton’s method using continuation from infinity.

The local maximum of the breather frequency at ωb ≈ 0.02 corresponds to oscillations near the lo-

calized equilibrium. As discussed in Sec. 2.4.1 these breathers can also be generated in numerical

simulations by exciting a single particle and letting the dynamic solution relax to a steady oscilla-

tory solution after the radiation of small amplitude waves which are absorbed by damping near the

boundaries. Figure 16(b) shows that the numerical result is in very good quantitative agreement with

the frequencies of exact discrete breathers, shown in Fig. 16(a). This indicates that the breathers are

stable solutions which behave as attractors for an approximate initial condition.

In addition to the discrete breathers oscillating beyond the barrier and the classical ones oscillating

below [28, 31], numerical computations of [29] yield another family of breather solutions oscillating on

both sides of the barrier. These solutions also appear from infinity as K → 0 and the proof of their

existence is still an open theoretical problem. However, similar solutions have been proved to exist
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in particular classes of Klein-Gordon lattices where the local anharmonic potential is constant above

some amplitude threshold [30]. Moreover numerical simulations for the model indicate that, as shown

in Sec. 2.4 for the DNA model, those breathers oscillating in both wells can be easily generated by a

large amplitude localized initial excitation, and they are stable.

3.2 Model 2: Morse on-site potential. Anharmonic coupling

In the improved DNA model with the intra-pair potential Vh, as well as for its simplified version

discussed in the previous section, the double-well shape of the effective potential Veff (Eq. (8) ) comes

from the barrier in the intra-pair potential. It is interesting to notice that, if the nonlinearity in

stacking is large enough, a similar double-well shape can also appear even if the intra-pair potential

does not have a barrier, as shown in Fig. 17 for the case of the Morse intra-pair potential VM . In this

case the barrier for reclosing is entirely due to the interaction between sites, i.e. the stacking potential

W (yn, yn−1) defined in Eq. (5). It persists as long as ρ is large enough (ρ > 40.6 for the parameters

used to draw Fig. 17) but becomes shallower when ρ decreases. It is therefore interesting to study the

properties of the ILMs in this model, which is the PBD model in the particular case of a very strong

nonlinearity in the stacking interaction.

Fig. 17. Effective potential of the PBD model with a Morse intra-pair poten-
tial VM and a nonlinear stacking interaction W for two values of ρ. The dotted
line shows the Morse potential VM for D = 0.13 eV, α = 4.2 Å−1. The full
line shows the effective potential Veff(y) (Eq. (8) ) for K = 0.00045 eV Å−2,
δ = 0.4 Å−1 and ρ = 200. The parameters of the model have been chosen
to give a denaturation transition temperature Tc ≈ 340 K, which is a realistic
value for DNA. The dash line shows Veff(y) for a smaller value ρ = 70, all
other parameters being unchanged.

3.2.1 Main results

As a first step let us analyze spatially symmetric localized equilibria of the Morse chain with nonlinear

stacking interactions, when K is small and ρ is large, with ρ = O(K−1). Such equilibria are found as

critical points in ℓ2(Z) of the potential

U =
∑

n∈Z

VM (yn) + W (yn, yn−1). (17)

Setting ρ = κ/K, the stacking potential (5) becomes

W (yn, yn−1) =
1

2
(K + κ e−δ (yn+yn−1)) (yn − yn−1)

2.

The equilibria are then determined by

V ′
M (yn) +

∂W

∂yn
(yn+1, yn) +

∂W

∂yn
(yn, yn−1) = 0, n ∈ Z. (18)
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The above scaling of ρ allows us to obtain localized solutions by continuation from infinity, using the

approach introduced in [33] and reviewed in section 3.1. The main difference with the case of [33] is

that the barrier of the effective potential originates from the nonlinear stacking and the above scaling

of ρ.

We shall prove the following existence theorem giving localized solutions of Eq. (18) at small

coupling K (in what follows we denote by δm,n the usual Kronecker symbol).

Theorem 2 Assume α > δ > 0 and set ρ = κ/K in the nonlinear stacking potential (5), where

κ > 0 is a fixed constant. For all K > 0 small enough, the potential (17) admits a critical point

{yn}n∈Z ∈ ℓ2(Z) satisfying

yn = δ0,n y∗
0 + ψn, (19)

y∗
0 =

1

δ
[− ln (

2K

κ
) + ln (− ln (

2K

κ
)) ], (20)

‖{ψn}‖ℓ2(Z) = O
(

−
ln (− ln (2K

κ ))

ln (2K
κ )

)

as K → 0+. (21)

Moreover, yn decays to 0 exponentially as n → ±∞ and has the symmetry y−n = yn.

As shown by Eqs. (19)–(21), when K → 0 the amplitude at site n = 0 diverges logarithmically,

whereas the amplitudes at the other sites decay to 0 (at least extremely slowly).

Fig. 18. (a) Numerical solution for the localized static equilibrium that ex-
ists in the PBD model with a large nonlinearity in the stacking interaction.
The Morse potential parameters are those used for Fig. 17: D = 0.13 eV,
α = 4.2 Å−1. The stacking potential W uses δ = 0.4 Å−1. The coupling
K takes 8 values K = 0.00045/2p (p = 0, 1, . . . 7) and ρ is determined by
the condition ρ = κ/K with κ = 0.09, i.e. ρ = 200 for the largest value of
K, K = 0.00045 eV Å−2, as in Fig. 17. (b) comparison between the numeri-
cally determined amplitude y0 at the center of the equilibrium solution (filled
squares) and the theoretical expression Eq. (20) (dash line). The results show
an excellent agreement between the numerical data and the theoretical predic-
tion as soon as K is small enough to have ln(2K/κ) ≤ −6 .

Before turning to the proof of this theorem, let us check its validity by numerical analysis. Figure 18

shows that the predicted localized solution, decaying exponentially away from the center, is found by

a numerical minimization of the potential energy of the system and that its amplitude evolves with K

as indicated by theorem 2. The linear spectrum of the excitations around this static solution is shown

in Fig. 19. As for the model studied in Sec. 3.1, it includes a low frequency mode corresponding to

the low amplitude discrete breather around the equilibrium solution, and two other localized modes

below the phonon band. Figure 20 shows the variation of the frequency of the lowest mode when K

varies in a large range. This suggests that the DW-breathers can exist in a broad parameter range,

and this can be checked by MD simulations by exciting a single site. For ρ = 200, starting for instance

from an initial amplitude yc = 15.5 Å we get a small amplitude breather in the vicinity of the shallow

minimum of the effective potential (Fig 17). Its frequency, determined by the Fourier transform of
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Fig. 19. (a) Linear spectrum of the equilibrium solution shown in Fig. 18
for the case K = 0.00045 eV Å−2. The circles attract the attention on three
particular frequencies which are outside of the phonon band. One of them is
far below the band. It is the frequency ωb of the discrete breather. The two
others also correspond to localized modes. The inset shows a magnification
of the lower k part of the phonon band. The two frequencies right below the
band are clearly visible. (b) Plot of the eigenvectors associated with the three
modes which are outside of the phonon spectrum. The full line corresponds to
the lowest mode, and, as expected it has the shape on the discrete breather.
The dotted line corresponds to mode 2 and the dash line to mode 3.

Fig. 20. Variation versus ln(2K/κ) of the frequency of the lowest mode
around the equilibrium solution of the PBD model. The model parameters
are the same as those used to draw Fig. 18.

yN/2(t) is found to be ω = 0.368 10−2 inverse time units, which corresponds, up to numerical accuracy,

to the frequency of the localized excited state of the localized equilibrium, ω1 = 0.366 10−2.

The proof of theorem 2 is performed in two steps. In section 3.3, we derive a single-site approxi-

mation of the localized equilibria, whose principal part is given by Eq. (20). In section 3.4 this initial

guess is used to obtain the exact solutions of theorem 2, using the implicit function theorem.

3.3 Single-site approximate equilibrium solution

In this section we derive an approximation of the highly localized equilibrium solution of Eq. (18)

described in theorem 2 for K ≈ 0. This approximate solution ỹn = 0 is localized at a single-site, i.e.

satisfies ỹn = 0 for n �= 0.

The most natural choice is to search for ỹ0 as a critical point of the effective potential (8). Setting

ρ = κ/K, the potential can be rewritten Veff = Ṽh + K y2, where Ṽh(y) = VM (y) + κ e−δ y y2. When

α > δ, the potential Ṽh decreases towards D when y is large, therefore it possesses the same features as

the potential Vh, in particular a local maximum separating the open and closed states. Consequently,

as it was the case for Vh, there exists a critical point ỹ0 of Veff satisfying lim
K→0

ỹ0 = +∞.

At this stage the problem can be further simplified, because we do not need an explicit value of ỹ0

as in [33], but only a sufficiently good approximation when K → 0, allowing us to use the implicit
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function theorem in section 3.4. Since the Morse potential component of Ṽh can be neglected when

y → +∞ (due to the fact that α > δ), one can look for a large amplitude critical point of the simplified

potential

WK(y) = (K + κ e−δ y) y2

replacing Veff. Nonzero critical points of WK satisfy

(−2 + δ y) e−δ y =
2K

κ
, (22)

which implies that the large amplitude critical point y of WK grows at least logarithmically in K. In

what follows we obtain a more precise estimate by transforming the singular perturbation problem

(22) into a regular one, using several changes of variables.

The above-mentioned logarithmic singularity suggests the change of variables

δ y = − ln v, (23)

which brings Eq. (22) into the form

−v (2 + ln v) = ǫ, (24)

where we have set ǫ = 2K
κ . Now we look for a solution v ≈ 0 of Eq. (24) for ǫ ≈ 0. Using a simple

power-logarithmic ansatz for v suggests the change of variables

v = −
ǫ

ln ǫ
(1 + w), (25)

where w ≈ 0 is a new unknown. This transforms Eq. (24) into the following problem

(1 + w) (−2η + 1 − η ln (1 + w) + µ) − 1 = 0, (26)

with

η = −(ln ǫ)−1 (27)

and

µ = −η ln η. (28)

Using arguments from elementary calculus, η can be rewritten as a C1 function of µ ∈ [0, e−1)

satisfying η(0) = η′(0) = 0, which can be smoothly extended on an open neighborhood of µ = 0.

Considering now µ instead of K as a small parameter, Eq. (26) takes the form f(w, µ) = 0, where f is

C1 in a neighborhood of (0, 0) with f(0, 0) = 0, ∂wf(0, 0) = 1. Consequently Eq. (26) can be solved

locally by the implicit function theorem, which yields w = w(µ), where the function w is C1 in µ ≈ 0

with w(0) = 0. Returning to expressions (23)–(25), this yields the following result.

Lemma 1 Fix δ > 0 and κ > 0. For all K > 0 small enough, the potential WK admits a critical

point ỹ0(K) satisfying

ỹ0 =
1

δ
[− ln (

2K

κ
) + ln (− ln (

2K

κ
)) ] + R̃(µ), (29)

where the function R̃ is C1 in a neighborhood of 0, satisfies R̃(µ) = O(|µ|), and

µ = −
ln (− ln (2K

κ ))

ln (2K
κ )

→ 0+ as K → 0+. (30)

Lemma 1 provides an approximate localized solution ỹn = δ0,n ỹ0 of Eq. (18) for fixed α > δ > 0,

κ > 0 and K ≈ 0. The principal parts of the exact localized equilibrium solution of theorem 2 and

the approximate solution ỹn coincide (see Eq. (20)).
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3.4 Proof of theorem 2

In this section we show the existence of an exact localized solution of Eq. (18), close to the approximate

solution ỹn obtained in section 3.3. We can restrict ourselves to the case δ = 1 and D = 1, up to

rescaling yn and renormalizing the constants K, κ, α, which results in the assumption α > 1.

We assume that y−n = yn, which reduces Eq. (18) to an infinite system of nonlinear equations

defined for n ≥ 0. With this symmetry assumption, the case n = 0 of Eq. (18) becomes

V ′
M (y0) + W ′

K(y0 − y1) = 0. (31)

Now we set y0 = ỹ0 +u0 in Eq. (31), divide the resulting equation by 2Kỹ0, and use Eq. (22) and the

asymptotic expansion (29). This yields after lengthy but straightforward computations

u0 + y1 = R0(u0, y1, µ), (32)

where R0 = O(η1+αKα−1 + η(|u0| + |y1|) + u2
0 + y2

1) as (u0, y1, µ) → 0. We recall that η ≈ 0 is a C1

function of µ ≈ 0 implicitly defined through Eq. (28) and satisfying η(0) = 0. Consequently, from

Eq. (27) it follows that K = κ
2 e−1/η can be extended to a C1 function of µ in a neighborhood of µ = 0

with K(0) = 0. Using in addition the C1 regularity of the remainder R̃ in lemma 1, one can check

that the function R0 is C1 in a neighborhood of (u0, y1, µ) = 0.

In the same way, the case n = 1 of Eq. (18) reads

V ′
M (y1) +

∂W

∂y1
(y2, y1) +

∂W

∂y1
(y1, ỹ0 + u0) = 0. (33)

Using expansion (29), this yields after simple computations

2α2y1 + κ(y1 − y2) = R1(u0, y1, y2, µ), (34)

where R1 = O(|K ỹ0(K)|+y2
1 +y2

2) = O(|K ln K|+y2
1 +y2

2) when (u0, y1, y2, µ) → 0. After elementary

manipulations we find

K ỹ0(K) = (1 + µ)
κ

2η
e−

1

η + K R̃(µ),

hence we have K ỹ0(K) = ϕ(µ) for some C1 function ϕ defined on a neighborhood of µ = 0. Using

this property, one can check that the function R1 is C1 near 0.

Lastly, the case n ≥ 2 of Eq. (18) gives

2α2yn − κ ∆yn = R(yn−1, yn, yn+1, µ), n ≥ 2, (35)

where ∆yn = yn+1 − 2yn + yn−1, R = O(y2
n−1 + y2

n + y2
n+1 + |K|(|yn−1| + |yn| + |yn+1|)) when

(yn−1, yn, yn+1, µ) → 0 and the function R is C1 near 0.

The system (32)-(34)-(35) can be considered as a nonlinear equation for the infinite sequence

Y = (u0, y1, y2, . . . , yn, . . .) ∈ ℓ2(N0)

taking the form

AY = R(Y, µ), (36)

where A is the bounded linear operator in ℓ2(N0) defined by the right side of Eqs. (32)-(34)-(35),

the nonlinear map R : ℓ2(N0) × R → ℓ2(N0) is C1 in a neighborhood of 0 and satisfies R(0, 0) = 0,

DY R(0, 0) = 0 due to the above estimates on the components Rk.

Let us now prove the following:

Lemma 2 The operator A ∈ L(ℓ2(N0)) is invertible.

Proof. Consider Z = (z0, z1, z2, . . . , zn, . . .) ∈ ℓ2(N0) and look for Y ∈ ℓ2(N0) satisfying

AY = Z. (37)
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Equation (37) is equivalent to

u0 + y1 = z0, (2α2
I + κL) Ỹ = Z̃, (38)

where we note Z̃ = (z1, z2, . . . , zn, . . .) ∈ ℓ2(N). We define Ỹ in the same way, and introduce the

Laplacian operator

L Ỹ = (y1 − y2,−∆y2,−∆y3, . . . ,−∆yn, . . .).

We begin by solving the second equation of Eq. (38) which is independent of u0, and then obtain u0

using the first equation. The operator L is self-adjoint in ℓ2(N), and non-negative since (L Ỹ , Ỹ )ℓ2 =
∑+∞

n=1 (yn − yn+1)
2, therefore its spectrum σ(L) is included in R

+. Consequently, 2α2
I + κL is

invertible in ℓ2(N) and the second equation of Eq. (38) admits a unique solution Ỹ . The first equation

of Eq. (38) yields then u0 = z0 − y1, where y1 is the first component of the above solution Ỹ . This

completes the proof of the invertibility of A.

✷

For µ = 0, Y = 0 is a solution of Eq. (36). Thanks to lemma 2, the implicit function theorem

guarantees the local continuation of this solution to µ ≈ 0. More precisely, Eq. (36) admits a solution

Y = Y(µ) ∈ ℓ2(N0), where the function Y is C1 in a neighborhood of µ = 0 and satisfies Y(0) = 0.

Going back to the original variable yn, this immediately yields the existence result of theorem 2 and

estimates (20), (21).

To complete the proof of theorem 2, there remains to check the exponential decay of the localized

equilibrium. Since the equilibrium is spatially symmetric, it suffices to consider the case n → +∞.

Let us consider any solution yn of Eq. (18) decaying to 0 as n → +∞ and prove its exponential decay.

Setting zn = yn − yn−1, Eq. (18) can be rewritten (recall that D has been normalized to unity)

2 α2yn + (κ + K)(zn − zn+1) + N(yn, zn, zn+1) = 0, (39)

where N(yn, zn, zn+1) = O(y2
n + z2

n + z2
n+1) in the neighborhood of (0, 0, 0). Consequently, using the

fact that yn is spatially localized and the implicit function theorem, equality (39) can be rewritten in

the following form provided n is large enough

zn+1 = f(yn, zn), (40)

where f is analytic in a neighborhood of (0, 0) and

f(yn, zn) =
2α2

κ + K
yn + zn + O(y2

n + z2
n).

Consequently, we have in addition

yn+1 = yn + f(yn, zn). (41)

One can check that the fixed point (yn, zn) = (0, 0) of the two-dimensional mapping defined by (40)–

(41) is a hyperbolic saddle. Since localized solutions of Eq. (18) correspond to orbits lying on its

local stable manifold when n is large enough, this guarantees their exponential decay by the stable

manifold theorem. This completes the proof of theorem 2.

Remark 1 For the exact localized solution of theorem 2, expression (19) and estimate (21) imply

that {yn}n≥1 is small in ℓ∞(N) when K ≈ 0. Consequently, the sequence {(yn, zn)}n≥2 belongs to the

local stable manifold of the origin when K is small enough. However, (y1, z1) does not belong to this

local stable manifold (indeed |z1| = |y1 −y0| is large, i.e. diverges logarithmically when K → 0). This

unusual property comes from the fact that the reformulation of Eq. (18) as a map (40)–(41) is only

local, whereas theorem 2 describes another class of solutions which cannot be completely described

by the orbit of a map.
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4. Conclusions
DNA is undoubtedly a molecule that has inspired physicists interested in nonlinear science. S. Takeno

and S. Homma [35] examined the anharmonic rotation of the bases in a model that lead them to a

sine-Gordon equation. We have shown here that studies of the dynamics of the fluctuational opening

of the base pairs of DNA naturally lead to a model which describes the temporary breaking of the

pairs in terms of discrete breathers. It is this observation that stimulated the interest of S. Aubry

and lead to the first mathematical proof of existence of discrete breathers by R.S. MaKay and S.

Aubry [31]. However, although it can give satisfactory results for equilibrium properties, the simplest

nonlinear model of DNA fluctuations does not properly describe the time scales of the fluctuations.

To correct this deficiency we introduced a barrier for base-pair closing. The resulting model turns out

to be particularly interesting because it sustains a new class of ILMs which oscillate around a position

which is not an equilibrium position of the on-site potential. As a result the original anti–continuum

limit introduced in the paper of R.S. MacKay and S. Aubry [31] has to be extended to study them.

It is interesting that two types of models can lead to very similar localized excitations because the

barrier allowing this new class of ILMs can come either from the on-site potential or from nonlinear

stacking interactions.

For applications to DNA the models that we have introduced are however still incomplete. In

spite of an improvement by several orders of magnitude with respect to the first PB model, they are

not yet giving the correct time scales for the dynamics of the opening and closing of the base pairs.

In these models the geometry of the molecule is not described and the missing degrees of freedom,

particularly the torsion of the double helix, may be important. However another missing aspect is

the strong damping exerted by the solvent on the bases when they are out of the stack of the double

helix, while closed base pairs are protected form the solvent and only weakly damped as shown by

their vibrational modes which can be detected by spectroscopy. Due to the strong damping of the

solvent the equilibrium solutions that we derived as a first step towards the calculation of breathers

may actually be relevant for themselves because they could correspond to long-lived open states of

the base pairs in solution. Further studies of DNA in contact with its environment are necessary to

better approach the subtleties of its dynamics.
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[17] M. Peyrard, S. Cuesta López, and D. Angelov, “Experimental and theoretical studies of sequence

effects on the fluctuations and melting of short DNA molecules,” J. Phys. Condensed Matter,

vol. 21, no. 3, pp. 034103-1-13, January 2009.

[18] A. Wildes, N. Theodorakopoulos, J. Valle-Orero, S. Cuesta-Lopez, J.-L. Garden, and M.

Peyrard, “The thermal denaturation of DNA studied with neutron scattering,” PRL, vol. 106,

no. 4, pp. 048101-1-4, January 2011.

[19] A. Wildes, N. Theodorakopoulos, J. Valle-Orero, S. Cuesta-Lopez, J.-L. Garden, and M.

Peyrard, unpublished.

[20] G.J. Martyna, M.L. Klein, and M. Tuckerman, “Nosé-Hoover chains: The canonical ensemble
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