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0. Introduction. The object of this paper is to analyse the structure of stochastic

processes with finitely many states which behave qualitatively like Markov

chains, in that the 'possible' sequences of the processes are determined by a

chain rule. Such processes are called intrinsically Markovian.

In §1 we establish some necessary and sufficient conditions in order that a

stochastic process be intrinsically Markovian. In §2 we investigate an equivalence

relation compatibility (weaker than probability equivalence—equivalence) be-

tween stochastic processes with finitely many states. Within the compatibility

class of an intrinsic Markov chain there are stationary Markov chains and proc-

esses which we term piecewise linear. These latter processes are in turn equiv-

alent to stationary Markov chains. In §3 we define the absolute entropy of

a stochastic process with finitely many states and show that this is an invariant

of compatibility which dominates all the (probability) entropies of stationary

processes within the compatibility class of an intrinsic Markov chain.

However, there is a unique stationary probability whose entropy is equal to

the absolute entropy. This probability makes the process a Markov chain. More-

over, this Markov chain is equivalent to a process which is not only piecewise

linear, but uniformly piecewise linear. This result leads to the conclusion that

for every positive number between zero and the absolute entropy, there is a

compatible stationary Markov chain (equivalent to a piecewise linear process)

with this number as its entropy. We also outline a simple procedure for deter-

mining the absolute entropy and the chain which has this maximal entropy.

An incidental result states that a process which behaves information theoretically

like a Markov chain must be a Markov chain. These results appear in §3 and §4.

Definitions.

1. A nonatomic stochastic process with a finite number of states (n.p.f.)

is a system (X,3t, m, T) where:

(i) For some integer s = 2,

Xcz {x = x0,x1,---:xie(0A,--,s-l)}.

(ii) is the c-algebra generated by cylinders C„(x) of X, where
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C„(x) = {y:y0,-,y» = x0, — ,xK}

=  (Xq)"' > xn)

(iii) m is a nonatomic probability on B,

m{x} = 0 for all xeX.

(iv) T is the shift transformation of X onto itself,

T(x0,Xj,-") = (xi,x2, '••)

and Tis nonsingular on cylinders, i.e.,

mT-1C„(x) = 0 if and only if mC„(x) = 0.

(We may suppose without loss of generality that mC0(x) > 0 for all x e X.)

2. An n.p.f. is called transitive of order k if for each pair of cylinders

(xl,-",xk),(yi, — ,yk) of length k with positive probability there exists a finite

sequence z1,- -,z„ such that

m(x1,---,xt,z1,---,z„, yt,'-,yk) > 0.

An n.p.f. which is transitive of order 1 is said to be, simply, transitive.

3. An n.p.f. is said to be intrinsically Markovian of order k if

m(x0,--,x„) >0 and m(x„_*+1, •••,xn + 1) > 0

implies m(x0, ••■,x„,xn+1) > 0.

An n.p.f. which is intrinsically Markovian of order 1 is said to be, simply,

intrinsically Markovian.

4. An n.p.f. is said to be reduced if m Cn(x) > 0 for all x e X, n = 0,1, •••.

5. (X,&,m,T) and (X,3),p,T) are said to be compatible (m ~ p) when

m C„(x) > 0 implies p C„(x) > 0, and vice versa.

6. (X,3S,m,T) and {X,@t,p,T) are said to be equivalent (m «p) when

m(E) > 0 implies p(E) > 0 for all E e    and vice versa.

7. The structure matrix of an intrinsic Markov chain (X,@,m,T) is defined

as the s x s matrix

£ = ||ff('J)|>   iJ = 0>1» —,s-1
where

o-(U) = 0 if m(U) = 0

= 1 otherwise, and s is the number of states.

Evidently S is an invariant of compatibility.

Remark 1. It is not difficult to see that an n.p.f. can always be replaced by a

reduced n.p.f. In fact if is the set of cylinders C(x) for which mC(x) = 0,

then a reduced n.p.f. is obtained by considering the n.p.f. induced on the set

X* = X — [Je« e jt-C(x). (Note that Jf is a countable collection of null cylinders.)
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Remark 2.  If (X, 3ä, m, T) is transitive of order k, so is its reduction.

Remark 3.  The reduction of an n.p.f. which is intrinsically Markovian of

order k is also intrinsically Markovian of order k.

1. Intrinsic structure.

Lemma 1. An n.p.f. (X, 38, m, T) is intrinsically Markovian of order k, if and

only if

mCk-1(Tx) = mTCk(x)

whenever m Ck(x) > 0.

We remark that TCk(x) = Ck-1(Tx) n TC0(x). Consequently the condition

mCk^l(Tx) = mTCk(x)

is equivalent to

TC0(x) ^ Ck_A[Tx)    [m~\, i.e., m\Ck_A[Tx) - TC0(x)] = 0.

Lemma 1 is a consequence of:

Lemma 2.  A reduced n.p.f. is intrinsically Markovian of order k, if and only if

Ck^(Tx) = TCk(x) or TC0(x) => Ck^(Tx).

Proof. Suppose m(x0,---,x„) > 0 and m(x„_k+i, x„,xn + 1) > 0 implies,

m(x0, ••-,x„+1) > 0 and

TCk(x) ^ Q.^Tx),

i.e., m(x0, •■■, xk) > 0 and

T(x0, •••, xk) ^ (xl,---,xk).

Then there exists C = (xj, •••, xk, xk+l, ■■■, xk+l) ^ 0 such that (x0) n T-1C = 0

but

(xo)nr^1(x1,-,xJt+,_i)^0.

Therefore m(x0, •■•, xt + i_t) > 0 and m(x(,xk+l) > 0 and by hypothesis

m(x0, ■■■, xk+t) > 0 which is a contradiction.

Suppose Ck^1(Tx) = TCk(x). Suppose m(x0, •••, x„)>0, m(xn_k+ „ ••• ,xn+1)>0,

and m(xo,—,xH+1) = 0. Then (x0,••• ,xB+j) = 0 and

0 = T(x0,-,xn+1)= T[(x0,--,x(i)nr-,* + 1)(x,+1,-,xB+1)]

= (Xjv-.Xj) n T"k(xt+1,---,x„+1)(2)

= (xt, •••,xi1+1).

(2) We have not assumed 7" to be one-one. Nevertheless, if A cz (xt) and B is any set,

then T(A n r-<ß) = TA nB.
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Proceeding in this way we get

(xn-k+ 1> '"'xmxn+ l) = (xn-k+1> ' "> xn) ^ T    (x„ + 1)

= 0,
which is absurd since

m(xtt-k+u-,xn+i) > 0.

It is not difficult to see that an n.p.f. which is intrinsically Markovian of order k

can be regarded as intrinsically Markovian of order 1, by enlarging and recod-

ing the state space. In fact we need only assign non-negative integers to the dis-

tinct cylinders Ck-X(x) and note that

(x) = (x0,x1;--) = cv^x) n r^cv^rx) n T-2Ck.1(T2x)n -

for if

j(6C,.,(x)nr,C,.1(Ti)n.»

then

^O' "■>3;*-i   = x0>'">Xk-l

yi>'">yk — xi''">xk

yki'">y2k-l   — xk'"',x2k-l

i.e.,

y = x.

After recoding, the condition Ct_|(rx) = TCk(x) for a reduced n.p.f. is then

transformed into the condition C0(Tx) = TC,(x) for the new cylinders and

transitivity of order k becomes transitivity of order 1.

From here on we assume that (X,@l,m,T) is a fixed reduced process which

is intrinsically Markovian and transitive of order 1.

2. Compatibility of probabilities. If S = || o(i,j) || is the structure matrix of

(X,^,m,T) we say that t = ||t(f,;)| is a stochastic transition matrix com-

patible with S, if t is s x s (s is the number of states) and z(i,j) > 0 if o-(ij) = 1,

x{i,j)= 0 if a(i,j) = 0 and if ZjT(i'j') = 1.

Theorem 1. For every transition matrix x compatible with 2Z,(X,38,m,T)

is compatible with a stationary ergodic Markov chain (X,&,p,T), with x as

its transition matrix.

Proof. It is well known that there exist "stationary absolute positive prob-

abilities" p(0),---,p(s-i) such that the probability denned by

p(x0, ••-,x„) = p(x0) tCXqXj) ••• t(xB_txn)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1964] INTRINSIC MARKOV CHAINS 59

makes (X,@l,p,T) an ergodic stationary Markov chain. (The ergodicity of T

and the positivity of p are consequences of the transitivity of T.) Moreover

p ~ m.

(X,$,p,T) is said to be a piecewise linear process if for each i = 0, *• •, s — 1

there exist constants K(i) such that

K(i)p(i,xu---,xn) = p(xu---,x„)

for all cylinders (i,xu •■■,x„) with

p(i,xu---,x„) > 0.

(X,38,p, T) is said to be uniformly piecewise linear if it is linear and if the multi-

plicative factors K(0), •••,K(s—l) are all equal.

Theorem 2. For every s positive numbers 1(0),-••,l(s— 1) with Z;/(/) = l,

(X,&,m,T) is compatible with a piecewise linear process (X,3$,p,T) such that

p(i) = l(i). (The piecewise linear process is completely determined by p(i) = l(i),

/ = 0,-,s-l.)

Proof.  Define p(i) = /(/),

m = ̂ - z poxu)
and

pi},}) = ji^pOMU);
then

£ Pi},}) = p(0-
i

Define

p(x0,---,x„) =       NfcY^y eyy—a   if m(xo,-,x„)>0,

= 0 otherwise.

It will suffice to note that if p(i,x1,---,x„)>0 then

P(x„)
p(i,x1,--,x„) =

K(i)K(Xl) - X(xn_t)

= ~Pixu-,xn).

Consequently [X,@l,p,T) is a piecewise linear process and p ~ m.

It is clear that there is only one piecewise linear process (X,@),p,T) for which

p(i) = ?(0. / = 0, • • •, s — 1.

Theorem 3. // (X,3S,m,T) is a piecewise linear process there exists a

probability p, equivalent to m, such that (X,^,p,T) is a stationary ergodic

Markov chain.
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Proof.  Define a transition matrix t = || t(i J) || by

m(i,j)

m(<)

There exist stationary absolute probabilities p(0),■••,p(s — 1) such that the

probability

p(x0,---,x„) = p(x0)T(x0,x1)---x(xn^l,xn)

makes (X,@,p,T) an ergodic stationary Markov chain.

We note that

**„,-,*.) = K-Xo)^ -
m(x0) m(x„_!)

and

Consequently

p(x0, •■•,x„) p(x0)

and therefore,

m(x0,---,x„) m(x0)

^ = /i(x0) on (x0)

where h(x0) is a finite positive number depending only on x0.

3. Absolute entropy.

Lemma 3. For each i,je(0, — ,s— 1) there exists n such that the enfry

of £" is positive.

Proof. We will show by induction that if m(i,x1,"-,xH-i,j)>0 then the

(/,;') entry of Z" is positive. (The lemma will then follow from the transitivity

of {X,0S,m,T).) This is certainly true for n = 1, by the definition of I. Suppose

that it is true for n = k. If w(i,x,, ••■,xk+1,j) > 0 then m(i,---,xk+1) > 0 and

m{xk+uj) > 0. Consequently the (i,xk+l) entry of E* is positive,and the (xk+uj)

entry of Z* is positive. But the (ij) entry of 2?+1 is a(ij) = 2ZiZ^b(i,l)-o-(l,j)>0,

where o(/,/) is the (i,/) entry of £*.

Lemma 4. £ nas a simple eigenvalue ß > 1 smc/i l/iai i/ie right and Ze/t

eigenvectors corresponding to it have all their entries positive and \ß \ > |z|

for all eigenvalues z other than ß.
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Proof.  Cf. [1] and Lemma 3.

Theorem 4. (X,3&,m,T) is compatible with a uniformly piecewise linear

process (X,$,l,T).

Proof. Let n = (/(0), ••■,/(s-l)) be the right eigenvector corresponding to ß

(defined in Lemma 4) such that \n\ = 1(0) + ••• + l(s-1) = 1. Define

l(x0,--,x„) =        if m(x0,—,x,)>0,

= 0 otherwise.

It suffices to note that

K(i)= ß = t^- 2 lUMUf),

by virtue of the proof of Theorem 2.

Theorem 5. The unique stationary probability p equivalent to I (defined

in Theorem 4) is given by

p(£) = j h(x)dL

where

h(x) = h(i) on (i)

and

£ = (A(0),-,Ä(s-l))

is the left eigenvector of Z corresponding to ß for which

(=0

Proof. We know that (X, 38,1, T) is equivalent to an ergodic stationary Markov

chain (X,3),p,T) (by Theorem 3). Consequently p is unique. Moreover, the

absolute probabilities p(0),■■■,p(s — 1) are given by the left eigenvector of the

transition matrix t= ||r(ij)|| where

rfi ft-KU) _l(j)<*iJ)
XKhJ) m    ßia) •

Therefore

P(j) = Z jjfö-«iMi) Ü-0.-.s-1),
i.e,

/p(0) p(«-l)\
*"•' l(s-l))
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is a left eigenvector of 2 corresponding to ß and

The entropy of a stationary process (X,08,q,T) is denned as

A,(T) = lim ~ •   I aC„(x) logqCJLx).
n-» co    » C„(x)

It is not difficult to compute the entropy of (X, 38, p, T) where p is defined

as in Theorem 5; in fact

hp(T) = log/!.

We define an invariant of compatibility in the following way:

e(T) = lim -log0„

where 0„ is the number of cylinders C„(x) for which mC„{x) > 0. e(T) is called

the absolute entropy of the process {X,08,m,T).

Theorem 6.  The limit

e(T) = lim Jlog0„

exisls and e(T) ^ nm(T) or a/Z compatible probabilities m.

Proof.  It is not difficult to see that

0nm ^ (A)m •

Consequently

— Iog0„m ^ -logfl..
nm n

The proof now follows a well-known procedure [2]. Let a = liminfn-1logö„,

and choose e > 0. Choose JV so that

oc^ jj-logdN< a + e.

If n > JV then n = mJV + k where 0 ^ k < JV, and

ilogö„ ^ Jlog0(m+1)V ̂ _log0(m+1)S

^ m + 1 1 .    „      m + 1..
^ -— -rTlogON < —-■ (oc + e).

m    JV m
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This is sufficient to establish the convergence of n_1log0„. We note that

— HCnMmC„(x)logmC„(x) is maximised, by the distribution of equal weights

to each C„(x) for which mC„(x) > 0, i.e.,

- I mC„(x) log mCn(x) =   I 1 logÖ„ = log0„.

Consequently, hm(T) g e(T).

Theorem 7.

e(T)=\ogß

where ß is the maximum eigenvector of E.

Proof. Let (j>\ be the number of C„(x) for which x„ = i and mC„(x) > 0. Then

0n = H;4>„ = I <t>„ I where <p„ is the row vector (<p°, ■■■,<j)n~1). Evidently

</>„'+! = 4>y(0,j) + - + (pn-l<j(s-l,j). Consequently

<p„ = 0OS"= (1,-,1) S".

But £ £ = /?£ where ^ is the positive eigenvector defined in Theorem 5. If e, ö

are the least and greatest entries of respectively

E Ö
i.e.,

e o

Therefore

= |*.| = *u*\\n\*
i.e.,

= em =

and lim„-,a)n~1log0,, = logy?.

4. The uniqueness of a maximal process. We have shown that log/? is the

maximal entropy for all compatible stationary probabilities. Moreover this

entropy is assumed by one stationary ergodic Markov chain. We devote this

section to proving that this is the only stationary process within the compatibility

class of probabilities which assumes this entropy.

Our first result states that a process which behaves like a Markov chain, from

the point of view of information theory, is in fact a Markov chain.

For the notation we adopt cf. [3]. Let s/ denote the partition of X into sets

Ah i = 0,—,s-l, where A-t = (i) = {x:x0 = i}. Let (X,3S,q,T) be a stationary

process. It is well known that if (X,    q, T) is a Markov chain then
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H{T~lsi/si) = H(T~in+l)^i/T~nsi)

Theorem 8. If H(T~lsi/si) = H(T'(n+i)si / \/"i=oT~' si for n=0,l,---,

then (X,&,q,T) is a Markov chain.

Proof.  In general, for partitions e€,sii (/ = 0, !,•••)

and equality holds if and only if and si0 are independently distributed when

sil,---,sin are fixed, i.e.,

for all Ce#, Aesi0; cf. [4].

If H(T~lsi/si) = HiT-i'+Vst/MUvT-^si) for n = 0,1,-, then (cf. [4])

H(T~ln+l)si/T-nsi) = h(T"("+1W/T"(""'V VT~"si)

= //(r"(n+1V/r_1j/ v-vr'j/)

= H(T'(n+1)s//si v-vrv).

Consequently, for all A, Be si

q(T~in+1)AnB/ V T'jA = q(T~iB+1)Aj s/T''si)xq(Bj VT-ijA

when q(xu •■•,xn) > 0.

This relation clearly defines a Markov chain.

Theorem 9. // hq(T)~ log/3 where q ~ m, then {X,3S,q,T) is a Markov

chain.

Proof.  It is not difficult to show that

i.e.,

q(x0,Xi,-• • ,xn,xa+1) _ g(xt, •■•,xn+1)

q(xu-,x„) «(x!,-,*,)

g(x0,---,xH)

9(*i>-.*.,)

h,(D = Hm Jh;^
n-foo "
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where H„{s£) = HiXJl^^T'1^/sf). Moreover, Hn\(s/) = kHln(sf)t and if

Hl(s/) < kH\(stf) for any k, then hq{T) < H\{si). But H\(s/) is the entropy

of the Markov chain with transition matrix || t(i'j') ||

l<u>l-^ ra.

Consequently /i4(T) < log ß if

< kH\(j*).

Hence by hypothesis,

= kH\(sf),     k = l,2,-.

However,

= (fe-l)Hj(jaO + H ̂ T_V/ Vr"'j/j,

i.e.,

Therefore by Theorem 8, (X,3),q, T) is a Markov chain.

Theorem 10. There is one and only one stationary process (X,@,p,T)for

which p~m and hp(T) = logß.

Proof. We have proved that there is one stationary process (X, äS, p, T) for

which p~m and hp(T) = log ß. Suppose that q~m and hq{T) = log/?; then

(X,äS,q, T) is a stationary Markov chain and since every transitive Markov chain

is ergodic, {X,8$,q, T) is ergodic. But (p + q)/2 ~ m and (p + q)/2 is stationary.

Moreover

\p+„/2(T)= lim  -1 Z P+!Cn(x)log^Cn(x)
B-00 "   c„(X)       Z Z

£ lim Z (pCn(x)logpC„(x) + qC„(x)logqCn(x))

= log/? (by the convexity of x logx).
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Consequently /i(p+4)/2(T) = log/? and (X,3#,(p + q)ß,T) is a stationary Markov

chain. Hence T is ergodic with respect to (p + q)/2. Either p = q, and there is

nothing to prove, or p is singular with respect to q. In the latter case there exist

invariant sets E, F such that £ U F = X and £ n F = 0 and p(£) = 1, <?(£) = 0,

p(F) = 0, q(F) = 1. Consequently (p + <?) (£)/2 = | and (p + q)(F)/2 = i and

this contradicts the ergodicity of Twith respect to (p + q)/2.

Remark. We have shown that every piecewise linear process is equivalent to

a Markov chain, and to every set of absolute probabilities p(0),--,p(s —1) there

corresponds a unique piecewise linear process. By setting p(i), say, close to one

and the remaining probabilities close to zero, one can show that piecewise linear

processes with entropies arbitrarily close to zero can be constructed. By con-

tinuity considerations, therefore, we can conclude that for every real number

0 < h ^ logß, there exists a stationary ergodic Markov chain (equivalent to

a piecewise linear process) with h as its entropy.
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