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ABSTRACT The accuracy of classification and retrieval significantly depends on the metric used to compute

the similarity between samples. For preserving the geometric structure, the symmetric positive definite (SPD)

manifold is introduced into the metric learning problem. However, the SPD constraint is too strict to describe

the real data distribution. In this paper, we extend the intrinsic metric learning problem to semi-definite case,

by which the data distribution is better described for various classification tasks. First, we formulate the

metric learning as a minimization problem to the SPD manifold on subspace, which not only considers to

balance the information between inner classes and inter classes by an adaptive tradeoff parameter but also

improves the robustness by the low-rank subspaces presentation. Thus, it benefits to design a structure-

preserving algorithm on subspace by using the geodesic structure of the SPD subspace. To solve this model,

we develop an iterative strategy to update the intrinsic metric and the subspace structure, respectively.

Finally, we compare our proposed method with ten state-of-the-art methods on four data sets. The numerical

results validate that our method can significantly improve the description of the data distribution, and hence,

the performance of the image classification task.

INDEX TERMS Metric learning, subspace representation, low-rank optimization, structure preserving,

image classification.

I. INTRODUCTION

Metric, as a measure defined on a data set, plays a crucial role

in the description of data distribution. Deferent metrics can

offer different views of data. How to learn a suitable metric

to well describe the data distribution and further improve

the separability of the data becomes a fundamental issue in

machine learning [1], [2].

Metric learning aims to find a proper metric for a given

collection of pairs with similar/dissimilar samples [3]. It is

widely used in classification [4]–[6], image and 3D object

retrieval [7]–[9], face recognition [10]–[13], and person

re-identification tasks [14], [15], etc. From the geometric

viewpoint, metric learning can be divided into two categories:

linear and nonlinear metric learning. In linear metric learning

the metric is formulated by a globally linear mapping, while
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in nonlinear metric learning it is defined locally. The nonlin-

ear metric learning is often based on the linear metric learn-

ing, while the local linearization method [16] and the kernel

based method [17], [18] are two mainly used techniques in

nonlinear metric learning. Therefore, the linear metric learn-

ing is the cornerstone and will improve the performance of

the nonlinear metric case.

In past decades, several linear metric learning studies

have been developed. These include the Mahalanobis dis-

tance metric for clustering [19], the metric matrix parame-

terization method to learn a weighting diagonal matrix [20],

the Neighborhood Component Analysis (NCA) method in a

probabilistic framework [21], and the Large Margin Near-

est Neighbors (LMNN) method [22]. As in Support Vector

Machines (SVMs), LMNN proposes a margin criterion based

on hinge loss. Then, Der and Saul adopt the alternating itera-

tive method to solve it more efficiently [23].
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On the other hand, Shen et al. propose a dual method

to improve the computational efficiency [24]. Kunapuli and

Shavlik propose the mirror descent metric learning method

for online Mahalanobis distance learning [25]. Recently,

Nguyen and Baets solve the metric learning model by using

the difference of convex functions programming [28].

Focusing on the energy function, Davis et al. develop the

Information-Theoretic Metric Learning (ITML) method by

introducing an information measure [26]. ITML is important

because it introduces the LogDet divergence regularization

used in several other Mahalanobis distance learning meth-

ods [27]. Also, Nguyen et al. develop the Distance Metric

Learning through Maximization of the Jeffrey divergence

(DMLMJ) between two distributions derived from local pair-

wise constraints [28]. Later, Gu et al. compare the Schatten

norm and the vector norm in metric learning [29], and Zhang

et al. design an FLS-SVM-ML algorithm by combining the

fuzzy least squares SVM and metric learning [30].

From the statistic viewpoint, Li et al. propose a maximum

margin criterion, in which an insightful rule for distribution

of data and a feature extraction method are established [31].

Liu et al. further discuss this criterion [32]. Later, Li et al.

develop a distributed approach to discriminative distance

metric learning [33]. Recently, Li and Chen propose a non-

parametric metric learning approach based on Gaussian pro-

cess (GP-Metric) and extend the bilinear similarity into a

non-parametric form [34].

Although the above-mentioned metric learning approaches

have shown excellent performance, they do not consider

the geometric structure of the set of all metrics, thus less

improvement in the accuracy and efficiency is achieved. To

solve these issue, Zadeh et al. revisit the metric learning

from the viewpoint of geometric mean on the manifold of

all positive definite matrices [35]. In this work, the best

linear metric is learned on the manifold of positive defi-

nite matrices, which ensures that the metric in each itera-

tion is positive definite. Reference [36] proposes an intrinsic

structure-preserving semi-supervised approach (ISSML) for

the linear metric learning, where a parameter is introduced

into the objective function to fit the data distribution between

inner and inter classes.

Nevertheless, the distribution of real data may not be fully

filled in the whole feature space. That is, features may be

located on a subspace of the feature space. On the other

hand, noise and outliers may influence the learned metric.

Therefore, it is important to design a more robust method for

linear metric learning with noise and outliers.

Fortunately, many effective approaches, especially the sub-

space based methods, have been proposed to reduce the

dimension of the feature space, as well as to improve the

robustness of learning algorithms [37]–[41]. They attempt to

find the underlying low dimension structure from the high

dimensional data, which realizes the effective description

and reduces the computation complexity. One fundamen-

tal method is Principal Component Analysis (PCA), which

seeks the subspace by maximizing the variance of projected

samples [38]. It offers a common technique for dimension

reduction and feature representation. To improve the robust-

ness of PCA, Candès et al. propose the Robust PCA (RPCA)

method, which decomposes the data into low-rank back-

ground and sparse noise parts, and hence greatly promotes

the robustness of data recovery [42]. Qiao et al. develop

an explicit nonlinear mapping for manifold learning [43].

Further, He et al. propose a Local Preserving Projection (LPP)

to find subspaces by preserving local structure of samples

[44]. Later, Zhang develops the Linear Discriminant Anal-

ysis (LDA) by considering the inner class and inter classes

information [39]. Li and Fu well realize the subspace discov-

ery by introducing the low-rank constraints [40], [41]. They

also apply this approach to balanced and unbalanced graphs

learning [45]. Recently, Ding and Fu improve it to multi-view

data analysis by collective low-rank subspace learning [46].

The subspace based methods well represent the features

for learning issues, but they do not fully consider the metric

factor in data representation. On the other hand, although the

LDA considers the inner class and inter classes information

with the basic idea to maximize the quotient of inter class

matrix and inner class matrix after projecting samples to low

dimensional space, the dimension of the projected space is

fixed. Recently, Bhutani et al. propose a low-rank variant

Low Rank Geometric Mean Metric Learning (LR-GMML)

method of the GMML [35] based on the subspace meth-

ods [56], which makes GMML scalable in a high dimen-

sional data sets. However, this work does not pay enough

attention to the noise distribution. Therefore, this paper

will synthesize the advantages of intrinsic metric learning,

subspace representation and noise sparsity to form a more

robust metric learning method. Our contributions are twofold

below.

1) Model: We extend our SPD metric learning model [36]

to the subspace SPD metric learning for better fitting the

real data distribution, which not only considers to balance

the information between inner class and inter classes by an

adaptive tradeoff parameter, but also improves the robustness

by the low rank subspaces representation and sparsity of

noise.

2) Algorithm:We propose an alternate structure preserving

algorithm. The algorithm benefits much from the geodesic

structure of positive-definite matrix group, which can trans-

fer an SPD constrained optimization problem to an uncon-

strained problem on an SPD sub-manifold.

The rest of this paper is organized as follows. In Section II,

after recalling the traditional metric learning model, we intro-

duce the low rank constraints to the model to represent

the optimal subspace for supervised metric learning. Then,

to solve the model, we propose an alternately iterative strat-

egy in Section III, where a structure preserving algorithm is

designed by using the manifold structure of positive definite

matrix group. In Section IV, we demonstrate the effectiveness

of our method, as well as compare it with ten state-of-the-

art methods for classification on four real data sets, including

ORL and Extended YaleB facial data sets, COIL-100 object
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data set [54], and USPS digit data set [55]. Finally, this paper

is concluded in Section V.

II. THE PROPOSED MODEL

A. METRIC LEARNING MODEL ON MANIFOLD

Given a data set X = {x1, . . . , xn} with the label set Y =

{y1, . . . , yn}, where xi ∈ R
d , yi ∈ L = {c1, . . . , cK }, d is

the dimension of sample, n is the number of samples, and K

is the number of class. Traditional supervised metric learning

is to seek the best Mahalanobis distance metric M , such that

samples are as close as possible in the same class and as far

as possible in different classes.

Denote the Mahalanobis distance between xi and xj by

D2
ij = (xi − xj)

TM (xi − xj), (1)

where M is a positive definite matrix (i.e. M ≻ 0). Then,

a triplet set Ŵ := {(xi, xj, xk ) : D2
ij < D2

ik} is used to

distinguish the relationship between samples, where xi and

xj are in the same class, i.e. yi = yj, and xi, xk are in different

classes, i.e. yi 6= yk .

Then, the supervised linear metric learning problem [22] is

modeled by

min
M≻0

∑

Ŵ

(D2
ij − D2

ik ). (2)

To better balance the influences of the inner-class

and inter-class data, we introduce an adaptive parameter

γ = 1/(1 + D̄−1) into the objective function, where D̄ is

the mean distance of the data set D [36]. Then, the model is

rewritten by

min
M≻0

∑

Ŵ

(D2
ij − γD2

ik ). (3)

To reduce the computational complexity, we only calculate

the distances of k nearest neighbors in the same class for each

sample. Therefore, the energy function is translated into

min
M≻0

n
∑

i,j,k=1

ηij(1 − yik )(D
2
ij − γD2

ik ), (4)

where ηij and yij are two indicative functions defined by

ηij =

{

1, xi and xj are neighbors in the same class

0, otherwise

yij =

{

1, yi = yj,

0, yi 6= yj.

Let Y = (yij)n×n, H = (ηij)n×n, e be a column vector with

all elements 1, and Ei be a column vector with all elements

0 except the ith element 1. Then the energy function is further

simplified by

min
M≻0

n
∑

i,j=1

CijD
2
ij, (5)

where Cij =
(

ETi (ee
T − Y )e

)

ηij − γETi He(1 − yij).

Further, we rewrite the objective function by matrix form

and the model is translated to

min
M≻0

2tr(X (Dc − C)XTM ), (6)

where Dc = diag(Ce) and C = (Cij)n×n. For more detail

deduction, we refer to [36].

To enhance the generalization ability, inspired by [47]

we introduce a locally topological structure of data to (6)

in [36]. Although it improves the robustness, there are still

some shortages: 1) The metric matrix M is always assumed

to be positive definite, but the distribution of data may not

be fully filled in the whole feature space in real cases, and

2) the computation of the distances of the nearest neighbors

is time-consuming. Therefore, we should find amore efficient

way to improve the robustness. Fortunately, subspace based

methods have been proposed from another way to reduce

the dimension of the feature space, as well as to improve

the robustness of learning algorithms. They always assume

that the samples may be located on a subspace of the feature

space and offer a way to improve the robustness for feature

representation. Therefore, we can improve the robustness of

metric learning by a more robust feature representation.

B. METRIC LEARNING MODEL ON SUB-MANIFOLD

In subspace learning, one efficient way is the sparse low

rank self-representation [40]. That is, all samples can almost

be linearly represented by few samples in the data set

X = XZ + E , where Z is an n × n coefficient matrix and

E is the noise. From another viewpoint, samples used to

represent the whole data set X span a subspace. Therefore,

we reformulate the metric learning problem on subspace by

min
M≻0,Z ,E

tr(XZ (Dc − C)ZTXTM ) + µ · r(Z ) + λ‖E‖2,1

s.t. X = XZ + E

where r(Z ) is the rank of Z , µ and λ are two balance param-

eters, and ‖ · ‖2,1 is the l2,1 norm, which can model the

group-wise regularity of noise [37], [48]. In fact, the second

and third terms provide a way to settle the above issues by

considering the metric learning on such subspace. That is,

we can introduce the low rank self-representation for the data

set X , and then consider the metric learning on the projected

samples.

The rank of Z can be approximated by its nuclear norm.

Then, the objective function can be rewritten as

min
M≻0,Z ,E

tr(XZ (Dc − C)ZTXTM ) + µ‖Z‖∗ + λ‖E‖2,1

s.t. X = XZ + E (7)

where ‖ · ‖∗ is the nuclear norm of the matrix. The first term

represents the weighted difference of inner-class distances

and inter-class distances on the subspace determined by Z

when Z is fixed.Minimizing the second term assumes that the

dimension of subspace is as low as possible, while the third

term means that XZ well represents the data set X . Therefore,

this model well balances the robustness and the description

of data distribution.
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III. ITERATIVE STRATEGY AND ALGORITHMS

In this section, we propose an iterative strategy to solve the

model (7). The detail is described as follows.

There are two kinds of independent variables in (7): the

metric M ≻ 0 and the variables of low rank self represen-

tations Z and E . Hence a common solving strategy is the

alternate iteration. Concretely, the model can be solved by

iteratively minimizing two subproblems below.

S1) For current fixed Z and E , we updateM by solving the

following minimization problem.

min
M≻0

tr(XZ (Dc − C)ZTXTM ). (8)

S2) For current fixedM , we update Z and E by solving the

following minimization problem.

min
Z ,E

tr(XZ (Dc − C)ZTXTM ) + µ‖Z‖∗ + λ‖E‖2,1

s.t. X = XZ + E (9)

For the subproblem S1), we can adopt the same intrinsic

steep descent method on the positive definite matrix group

P(d) in [36]. Only we need to modify is to replace the data

set X in [36] by XZ k . That is, the iterative format for solving

M by the geodesic structure of P(d) can be defined by

M k+1 = [M k ]
1
2 exp(−αG(M k ))[M k ]

1
2 , (10)

where α is the optimal step, and G(M k ) is the gradient of the

objective function (8) atM k . It is calculated by

G(M k ) = [M k ]−
1
2XZ k (Dc − C)Z k

T
XT [M k ]−

1
2 . (11)

The detailed deduction can be found in [36] and we use the

symmetry of XZ k (Dc − C)Z k
T
XT .

For solving the subproblem S2) easier, we introduce a slack

variable V with respect to Z , and then the model (9) equals to

min
V ,Z ,E

tr(Z (Dc − C)ZTXTM k+1X ) + µ‖V‖∗ + λ‖E‖2,1

s.t. X = XZ + E,Z = V (12)

Then, by using the augmented Lagrangemethod, themodel

is translated into

min
V ,Z ,E

tr(Z (Dc − C)ZTXTM k+1X ) + µ‖V‖∗ + λ‖E‖2,1

+ tr(LT1 (X − XZ − E)) + tr(LT2 (Z − V ))

+
σ

2
(‖X − XZ − E‖2F + ‖Z − V‖2F ), (13)

where L1 and L2 are two Lagrange multipliers, σ > 0 is a

penalty parameter, and ‖ · ‖F is the Frobenius norm.

Using the same strategy, the minimization problem (13)

can be solved by iterating the following three steps.

S2-1) For current fixed Z k and Ek , we update the V k+1 by

solving

min
V

µ‖V‖∗ + tr(LT2 (Z
k − V )) +

σ

2
‖Z k − V‖2F . (14)

To solve (14), we adopt the singular value threshold-

ing (SVT) technique [49]. That is,

V k+1 = Sµ
σ
(Z k +

L2

σ
), (15)

where Sτ (·) is the shrinkage thresholding operator.

S2-2) For current fixed V k+1 and Ek , we update Z k+1 by

solving

min
Z

tr(Z (Dc − C)ZTXTM k+1X )

+ tr(LT1 (X − XZ − Ek )) + tr(LT2 (Z − V k+1))

+
σ

2
(‖X − XZ − Ek‖2F + ‖Z − V k+1‖2F ).

(16)

From the KKT condition, we have

0 = 2XTM k+1XZ (Dc − C) − XTL1 + L2

+ σ (−XTX + XTXZ + XTEk + Z − V k+1). (17)

Then, we can solve Z k+1 by a fast algorithm in [50].

S2-3) For current fixed Z k+1, we update Ek+1 by solving

min
E

λ‖E‖2,1 + tr(LT1 (X − XZ k+1 − E))

+
σ

2
‖X − XZ k+1 − E‖2F . (18)

The minimization problem (18) can be solved by the

method in [51]. Concretely,

E(:, i) =







‖Qi‖ − α

‖Qi‖
Qi, ‖Qi‖ > α,

0, otherwise,

(19)

where Q = X − XZ k+1 +
L1
σ
, Qi is the i-th column of Q, and

α = λ
σ
.

Finally, it should be pointed out that the Lagrange multi-

pliers L1, L2 and σ are updated by

Lk+1
1 = Lk1 + σ k (X − XZ k+1 − Ek+1), (20)

Lk+1
2 = Lk2 + σ k (Z k+1 − V k+1), (21)

and

σ k+1 = min(ρσ k , σmax). (22)

Then, we obtain the algorithm for metric learning via the

subspace representation and summarize it as Algorithm 1.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed robust met-

ric learning algorithm, in this section, we compare it with ten

state-of-the-art methods for classification on four real data

sets, including ORL [52] and Extended YaleB [53] facial data

sets, COIL-100 object data set [54], and USPS digit data

set [55]. All programs are written in Matlab 2013a and run by

PC with Intel(R) Core(TM) i7-7500U CPU and 32GB RAM.
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Algorithm 1Metric Learning Algorithm

Require: Data matrix X , parameters µ, λ, ρ = 1.3 and

σmax = 1010.

Ensure: M∗, Z∗, and E∗.

1: Initialize M0 = Id, Z0 = 0, E0 = 0, σ 0 = 0.1 > 0,

ε = 10−8.

2: while Error > ε or k < maxIteration do

3: Calculate the gradient G(M k ) by (11);

4: Calculate the optimal stepsize α by inexact line search.

5: M k+1 = [M k ]
1
2 exp(−αG(M k ))[M k ]

1
2 .

6: Update V k+1 by (15) with Z k fixed.

7: Update Z k+1 by solving (17) with V k+1 and Ek fixed.

8: Update Ek+1 by (19) with Z k+1 fixed.

9: Update the multipliers Lk+1
1 and Lk+1

2 by

Lk+1
1 = Lk1 + σ k (X − XZ k+1 − Ek+1),

Lk+1
2 = Lk2 + σ k (Z k+1 − V k+1),

10: Update σ k+1 = min(ρσ k , σmax)

11: Calculate the Errork+1 by Eq. (13) at M k+1, V k+1,

Z k+1 and Ek+1.

12: Set k ⇐ k + 1.

13: end while

14: Output: M∗ = M k , Z∗ = Z k and E∗ = Ek .

FIGURE 1. Representative samples from (a) COIL-100, (b) ORL,
(c) extended YaleB, and (d) USPS.

A. DATASETS AND COMPARED METHODS

We compare our method with ten state-of-the-art methods on

four widely used data sets. Fig. 1 shows some representative

images in four data sets while Table 1 shows the attributes of

the data sets.

Fig. 1(a) shows the representative samples of the COIL-

100 object data set. This data set contains 100 objects. All

images of one object were taken 5 degrees apart because the

object is imaged on a rotated turntable, and hence each object

has 72 images. The size of each image is 32× 32 pixels with

256 grey levels per pixel. Thus, the original dimension of each

image is 1024. The bottom low shows the image with 10%

salt & pepper noise.

TABLE 1. Attributes of four data sets.

Fig. 1(b) shows the representative samples of the ORL

facial data set. This data set contains 400 images with

40 classes acquired under different lighting conditions. All

images in data sets are cropped and resized to the size of

32× 32. Thus, the original dimension of each image is 1024.

The bottom row shows the image with 10% Gaussian noise.

Fig. 1(c) shows the representative samples of the Extended

YaleB facial data set. This data set contains a total

of 2414 images, including 64 frontal pose images of 38 dif-

ferent subjects. The variability between images of the same

person is mainly due to different lighting conditions. The

images are automatically centered by using optical flow and

then converted to vectors. All images in data sets are cropped

and resized to the size of 32×32. Thus, the original dimension

of each image is 1024.

Fig. 1(d) shows the representative samples of the USPS

data set. This data set is one of the standard data sets for

handwritten digit recognition. It contains 9298 images with

the digits from 0 to 9, which have been normalized to size of

16 × 16. Thus, the original dimension of each image is 256.

To validate the abilities of classification and dimension

reduction, we compare our method with ten state-of-the-art

metric learning methods (ITML [26], LMNN [22], DMLMJ

[28], LR-GMML [56], LDA [39], LPP [44], LSDA [57]

and SRRS [41]) and two baseline methods (Euclidean met-

ric (EU) and PCA). For fair comparison, we only adopt the

k-NN classifier under the learned metrics, because the ability

of classification depends on the classifiers. Also, we use

the recognition error rate to evaluate the performance of all

compared methods. The recognition error rate is defined as

The recognition error rate =

∑n
i=1 f (xi) 6= yi

n
.

where n is the number of samples, f (xi) is the prediction label

of the sample, and yi is the real label of the sample.

B. NUMERICAL RESULTS AND DISCUSSION

1) COIL-100 OBJECT DATA SET

For COIL-100 object data set, the first 20 classes are selected

as the subset of samples. Then, we randomly select 10 images

in each class as the training samples and the rest as the testing

samples. We repeat this process 20 times. Further, to validate

the robustness of algorithms, we randomly add the salt &

pepper noise from 10% to 50% on the data, respectively. The

bottom of Fig. 1(a) shows the images with 10% salt & pepper

noise. Then, the numerical results are displayed in Table 2

and Figs. 2–5.

Also, we adopt the area under ROC curve (AUC) and F1-

measure as the evaluation metric, we report AUCs and F1s

68576 VOLUME 7, 2019
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TABLE 2. The recognition error rates (Average ± Std) on COIL-100 data set with different percentages of salt & pepper noise.

.

FIGURE 2. Averaged error rates of classification on COIL-100 data set
with different percentages of salt & pepper noise.

in Table 3. For the multi-classification task, we divide it into

C2
K (K is the number of class) binary-classification tasks

to calculate the mean of AUCs and F1s. F1 is defined as

follows:

P =
TP

TP+ FP
,R =

TP

TP+ FN
,F1 =

2 × P× R

P+ R
.

where P, TP, FN , R, FP and TN represent precision, the true

positive, the false negative, recall, the false positive and the

true negative, respectively.

Table 2 shows the recognition error ratios of classification

task for all methods in the different noise levels. The number

in the bracket is the dimension of reduced feature space. We

have the following three observations. 1) All learned metrics

improve the performance of classification. It is validated from

the results of ITML and LMNN. Their performance is better

than the EU-based method under the learned metric in the

original feature space with dimension of 1024. 2) The dimen-

sion reduction also contributes to improve the classification

performance. It is demonstrated from the comparison results

between EUmethod and all dimension reduction based meth-

ods. 3) Our proposed method outperforms listed state-of-the-

art methods under different salt & pepper noise in aspects of

accuracy and robustness, as shown in Fig. 2.

Table 3 shows AUCs and F1s for all methods on

COIL-100 data set. We can find that our method outperforms

FIGURE 3. Averaged error rates of classification of seven methods on
COIL-100 data set with different percentages of salt & pepper noise and
dimensions of feature space. (a) 0%. (b) 10%. (c) 20%. (d) 30%. (e) 40%.
(f) 50%.

the other state-of-the-art methods under different evaluation

metrics.

Fig. 3 shows the relationship between the recognition error

ratios and dimension of the learned feature space. We have

selected six methods to compare with our proposed method,

since some methods are less efficient without dimension

reduction. At the same time, we only display the EU curves

to be baselines. Our proposed method almost obtains the best

subspace representation for the samples.

To show the distributions under the corresponding metrics,

we project all learned features to two dimensional spaces

by PCA and display them in Fig. 4. Visually, the separa-

bility of data are all improved in different degrees under

different learned metrics, where different colors represent

VOLUME 7, 2019 68577
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TABLE 3. AUCs and F 1s for all methods on COIL-100 data set with different percentages of salt & pepper noise.

.

FIGURE 4. Data set visualization of ten methods on two dimensional feature spaces without noise on COIL-100 data set. Different colors represent
different classes with ten classes. (a) EU. (b) ITML. (c) LMNN. (d) DMLMJ. (e) PCA. (f) LDA. (g) LPP. (h) LSDA. (i) SRRS. (j) Ours.

TABLE 4. The recognition error rates ( Average ± Std) on ORL data set with different training samples.

different classes. The results of EU and PCA are the same

because the final projections are the same. Further, the sepa-

rability of data by our projection is the best.

Finally, to test the sensitivity of the model parameters,

we validate the parameters in a large range. Concretely,

we selectµ from 102 to 105 and λ from 103 to 106. The results

are shown in Fig. 5. The recognition error ratio is not sensitive

to the model parameters and hence the model is robustness.

2) ORL AND EXTENDED YALEB FACIAL DATA SETS

To further validate the efficiency, we conduct the classifica-

tion tasks on the ORL and Extended YaleB facial data sets.

In experiments, we further consider the change of classifi-

cation performance with the number of training samples on

these two data sets.

First, we randomly select 3, 4, 5 and 6 images in each

class as the training samples and the rest as testing samples.

We repeat this process 20 times, and record the recognition

error ratios with their standard variations by all methods,

respectively. The results are displayed in Table 4 and Fig. 6.

From Table 4, we obtain the following facts. 1) All learned

metrics improve the classification performance. It is validated

from the results of ITML and LMNN. Their performance is

better than the EU-based method under the learned metric

in the original feature space. 2) The dimension reduction

also contributes to improve the performance of classification.

It is demonstrated from the comparison results between EU

method and all dimension reduction based methods. Espe-

cially, compared with PCA, our proposed method has a large

improvement even the dimensions of feature spaces are close.
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FIGURE 5. Averaged error rates for different model parameters on COIL-100 data set. (a) Sensitivity of parameter λ. (b) Sensitivity of
parameter µ.

FIGURE 6. Averaged error rates of classification on ORL data set with
different training samples.

3) The recognition error ratio of each method decreases with

the increment of the training samples. On the other hand,

at the same number of training samples, our proposed method

significantly outperforms all other methods. Further, our pro-

posed method obtains more promotion in the case of small

training samples.

To further validate the robustness of the proposed method,

we randomly add the Gaussian noise from 10%–50% on the

data. In each noisy case, we randomly select 5 images in

each class as training samples and the rest as testing samples,

and repeat this process 20 times. Then, we obtain the results

shown in Table 5 and Fig. 7.

Table 5 shows that the above three facts still hold in

the noisy cases. Further, Fig. 7(a) shows the relationships

between recognition error ratios and dimension of the learned

feature space in the case of 50%Gaussian noise. In this figure,

we also exclude the ITML and LMNN methods because

they do not reduce the dimension of feature space. At the

same time, we only display the EU curves to be baselines.

It is seen that our proposed method almost obtains the best

subspace representation for the samples. On the other hand,

FIGURE 7. Results on ORL data set. (a) Averaged error rates on ORL data
set with 50% Gaussian noise. (b) Averaged error rates of on ORL data set
with different percentages of Gaussian noise.

from Fig. 7(b), we conclude that recognition error ratios

increase with increment of the noise, while our proposed

method obtain the best performance in all noisy cases.

Further, the above process is repeated on the Extended

YaleB facial data set. We randomly select 10, 20, 30 and

40 images in each class as training samples and the rest as

testing samples. We repeat this process 20 times again, and
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TABLE 5. The recognition error rates (Average ± Std) on ORL data set with different percentages of Gaussian noise.

TABLE 6. The recognition error rates (Average ± Std) on extended YaleB data set with different training samples.

FIGURE 8. Averaged error rates of classification on extended yaleB data
set with different training samples.

record the recognition error ratios with their standard varia-

tions by all methods, respectively. The results are displayed

in Table 6 and Fig. 8.

Fig. 8 reveals the same phenomenon with the results on

ORL data set, but the performance of PCA on this data

set is not well like it on ORL data set. On the other hand,

the performances of SRRS and our method are close, but our

method is still better than all other methods in the same size

of training samples.

3) USPS DIGITAL DATA SET

Finally, we compare all methods for the image retrieval

task on USPS digital data set. Here, we only use the first

100 images for each number to be subset. Then, we randomly

select 30 images in each class as training samples and the

TABLE 7. The recognition error rates (Average ± Std) on USPS data set.

FIGURE 9. Averaged error rates on USPS data set.

rest as testing samples. We also repeat this process 20 times.

By applying nine methods on them, we obtain the results and

display them in Table 7 and Figs. 9 and 10.

From Table 7, we see that 1) All learned metrics improve

the performance of retrieval. It is validated from the results

of ITML and LMNN. The performances are better than the
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FIGURE 10. Nearest neighbor samples from USPS data set. The first row
shows the queries. The rest rows correspond to the nearest neighbors of
the queries obtained under eleven methods.

FIGURE 11. Convergence curves of our proposed method on four data
sets. (a) ORL. (b) Extended YaleB. (c) COIL-100. (d) USPS.

EU-based method under the learned metric in the original

feature spacewith dimension of 256; 2) The dimension reduc-

tion also contributes to improve the performance of retrieval.

It is demonstrated from the comparison results between EU

method and all dimension reduction based methods; and

3) Our proposed method still outperforms the rest state-of-

the-art methods.

Fig. 9 shows the relationship between the recognition error

ratios and the dimension of the learned feature space. Here,

we only display the PCA, SRRS and our method with the EU

baselines. It is seen that our proposed method almost obtains

the best subspace representation for the samples.

To intuitively display the results, we portrait the image

retrieval results in Fig. 10. Our proposed method finds the

most similar images by using the learned metric.

Finally, we give the convergence analysis by the numerical

experiments. Fig. 11 shows the convergence curves of our

proposed method on four data sets without noise. It is seen

that our proposed method has a fast convergence rate.

V. CONCLUSION

In this paper, we have proposed a robust intrinsic met-

ric learning method based on the subspace representation

for samples. Concretely, we formulate the metric learning

problem as a minimization problem on the SPD manifold.

To extend this model to the semi-definite cases, we introduce

the robust subspace representation to our geodesic preserving

metric learning method by applying the low-rank and sparse

representations. To solve this model, we develop an iterative

strategy to update the metric and the subspace structure,

respectively. In the step of updating the metric, we construct a

structure-preserving algorithm. Finally, the numerical results

validate that our method can significantly improve the perfor-

mance of image classification, even under high noise.

REFERENCES

[1] B. Kulis, ‘‘Metric learning: A survey,’’ Found. Trends Mach. Learn., vol. 5,

no. 4, pp. 287–364, 2013.

[2] D. Li and Y. Tian, ‘‘Survey and experimental study on metric learn-

ing methods,’’ Neural Netw., vol. 105, pp. 447–462, Sep. 2018.

doi: 10.1016/j.neunet.2018.06.003.

[3] L. Yang and R. Jin, ‘‘Distance metric learning: A comprehensive survey,’’

Michigan State Univ., East Lansing, MI, USA, Tech. Rep., 2006, pp. 1–51.

[Online]. Available: https://www.cs.cmu.edu/~liuy/frame_survey_v2.pdf

[4] Z. Ding and Y. Fu, ‘‘Robust transfer metric learning for image classifica-

tion,’’ IEEE Trans. Image Process., vol. 26, no. 2, pp. 660–670, Feb. 2017.

[5] C. Geng and S. Chen, ‘‘Metric learning-guided least squares classi-

fier learning,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12,

pp. 6409–6414, Dec. 2018. doi: 10.1109/TNNLS.2018.2830802.

[6] Z. Zhang, H. Lin, X. Zhao, R. Ji, and Y. Gao, ‘‘Inductive multi-hypergraph

learning and its application on view-based 3D object classification,’’ IEEE

Trans. Image Process., vol. 27, no. 12, pp. 5957–5968, Dec. 2018.

[7] Y. Gao, M. Wang, Z.-J. Zha, J. Shen, X. Li, and X. Wu, ‘‘Visual-textual

joint relevance learning for tag-based social image search,’’ IEEE Trans.

Image Process., vol. 22, no. 1, pp. 363–376, Jan. 2013.

[8] Y. Gao, R. Ji, P. Cui, Q. Dai, and G. Hua, ‘‘Hyperspectral image classifica-

tion through bilayer graph-based learning,’’ IEEE Trans. Image Process.,

vol. 23, no. 7, pp. 2769–2778, Jul. 2014.

[9] Y. Gao, M. Wang, R. Ji, X. Wu, and Q. Dai, ‘‘3-D object retrieval with

Hausdorff distance learning,’’ IEEE Trans. Ind. Electron., vol. 61, no. 4,

pp. 2088–2098, Apr. 2014.

[10] Z. Ding, S. Suh, J.-J. Han, C. Choi, and Y. Fu, ‘‘Discriminative low-

rank metric learning for face recognition,’’ in Proc. IEEE 11th Int. Conf.

Workshops Autom. Face Gesture Recognit. (FG), May 2015, pp. 1–6.

[11] Z. Huang, R. Wang, S. Shan, L. Van Gool, and X. Chen, ‘‘Cross

Euclidean-to-Riemannian metric learning with application to face recogni-

tion from video,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 12,

pp. 2827–2840, Dec. 2018. doi: 10.1109/TPAMI.2017.2776154.

[12] J. Huo, Y. Gao, Y. Shi, W. Yang, and H. Yin, ‘‘Heterogeneous face

recognition bymargin-based cross-modality metric learning,’’ IEEE Trans.

Cybern., vol. 48, no. 6, pp. 1814–1826, Jun. 2018.

[13] X. Zhao, N. Wang, Y. Zhang, S. Du, Y. Gao, and J. Sun, ‘‘Beyond pairwise

matching: Person reidentification via high-order relevance learning,’’ IEEE

Trans. Neural Netw. Learn. Syst., vol. 29, no. 8, pp. 3701–3714, Aug. 2018.

[14] C. Sun, D. Wang, and H. Lu, ‘‘Person re-identification via distance metric

learning with latent variables,’’ IEEE Trans. Image Process., vol. 26, no. 1,

pp. 23–34, Jan. 2017.

[15] X. Xu, W. Li, and D. Xu, ‘‘Distance metric learning using privileged

information for face verification and person re-identification,’’ IEEETrans.

Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3150–3162, Dec. 2018.

doi: 10.1109/TNNLS.2015.2405574.

VOLUME 7, 2019 68581



L. Cai et al.: Intrinsic Metric Learning With Subspace Representation

[16] Y. Peng, L. Hu, S. Ying, and C. Shen, ‘‘Global nonlinear metric learning by

gluing local linear metrics,’’ in Proc. SIAM Int. Conf. Data Mining, 2018,

pp. 423–431.

[17] X. Li, Y. Bai, Y. Peng, S. Du, and S. Ying, ‘‘Nonlinear semi-supervised

metric learning via multiple kernels and local topology,’’ Int. J. Neural

Syst., vol. 28, no. 2, 2018, Art. no. 1750040.

[18] F. Wang, W. Zuo, L. Zhang, D. Meng, and D. Zhang, ‘‘A kernel classifi-

cation framework for metric learning,’’ IEEE Trans. Neural Netw. Learn.

Syst., vol. 26, no. 9, pp. 1950–1962, Sep. 2015.

[19] E. P. Xing, M. I. Jordan, S. J. Russell, A. Y. Ng, ‘‘Distance metric learning

with application to clustering with side-information,’’ in Proc. Adv. NIPS,

2003, pp. 521–528.

[20] M. Schultz and T. Joachims, ‘‘Learning a distance metric from relative

comparisons,’’ in Proc. Adv. NIPS, 2004, pp. 41–48.

[21] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. Salakhutdinov, ‘‘Neigh-

bourhood components analysis,’’ in Proc. Adv. NIPS, 2005, pp. 513–520.

[22] K. Q. Weinberger and L. K. Saul, ‘‘Distance metric learning for large

margin nearest neighbor classification,’’ J. Mach. Learn. Res., vol. 10,

pp. 207–244, Feb. 2009.

[23] M. Der and L. K. Saul, ‘‘Latent coincidence analysis: A hidden vari-

able model for distance metric learning,’’ in Proc. Adv. NIPS, 2012,

pp. 3230–3238.

[24] C. Shen, J. Kim, F. Liu, L. Wang, and A. Van den Hengel, ‘‘Efficient dual

approach to distance metric learning,’’ IEEE Trans. Neural Netw. Learn.

Syst., vol. 25, no. 2, pp. 394–406, Feb. 2014.

[25] G. Kunapuli and J. Shavlik, ‘‘Mirror descent for metric learning: A unified

approach,’’ in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery

Databases, 2012, pp. 859–874.

[26] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, ‘‘Information-

theoreticmetric learning,’’ inProc. 24th Int. Conf.Mach. Learn., Jun. 2007,

pp. 209–216.

[27] J. Mei, M. Liu, H. R. Karimi, and H. Gao, ‘‘Logdet divergence-based

metric learning with triplet constraints and its applications,’’ IEEE Trans.

Image Process., vol. 23, no. 11, pp. 4920–4931, Nov. 2014.

[28] B. Nguyen, C.Morell, and B. De Baets, ‘‘Supervised distance metric learn-

ing through maximization of the Jeffrey divergence,’’ Pattern Recognit.,

vol. 64, pp. 215–225, Apr. 2017.

[29] Z. Gu, M. Shao, L. Li, and Y. Fu, ‘‘Discriminative metric: Schatten norm

vs. Vector norm,’’ in Proc. ICPR, Nov. 2012, pp. 1213–1216.

[30] S. Zhang, W. Lu, W. Xing, and L. Zhang, ‘‘Using fuzzy least

squares support vector machine with metric learning for object

tracking,’’ Pattern Recognit., vol. 84, pp. 112–125, Dec. 2018.

doi: 10.1016/j.patcog.2018.07.012.

[31] H. Li, T. Jiang, and K. Zhang, ‘‘Efficient and robust feature extraction by

maximum margin criterion,’’ IEEE Trans. Neural Netw., vol. 17, no. 1,

pp. 157–165, Feb. 2006.

[32] J. Liu, S. Chen, X. Tan, and D. Zhang, ‘‘Comments on ‘Efficient and robust

feature extraction by maximum margin criterion,’’’ IEEE Trans. Neural

Netw., vol. 18, no. 6, pp. 1862–1864, Nov. 2007.

[33] J. Li, X. Lin, X. Rui, Y. Rui, and D. Tao, ‘‘A distributed approach toward

discriminative distance metric learning,’’ IEEE Trans. Neural Netw. Learn.

Syst., vol. 26, no. 9, pp. 2111–2122, Sep. 2015.

[34] P. Li and S. Chen, ‘‘Gaussian process approach for metric

learning,’’ Pattern Recognit., vol. 87, pp. 17–28, Mar. 2019.

doi: 10.1016/j.patcog.2018.10.010.

[35] P. H. Zadeh, R. Hosseini, and S. Sra, ‘‘Geometric mean metric learning,’’

in Proc. 33rd Int. Conf. Int. Conf. Mach. Learn. (ICML), New York, NY,

USA, Jun. 2016, pp. 2464–2471.

[36] S. Ying, Z. Wen, J. Shi, Y. Peng, J. Peng, and H. Qiao, ‘‘Manifold preserv-

ing: An intrinsic approach for semisupervised distance metric learning,’’

IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 2731–2742,

Jul. 2018.

[37] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, ‘‘Robust recovery

of subspace structures by low-rank representation,’’ IEEE Trans. Pattern

Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[38] M. Turk andA. Pentland, ‘‘Eigenfaces for recognition,’’ J. Cogn. Neurosci.,

vol. 3, no. 1, pp. 71–86, 1991.

[39] Z. Fan, Y. Xu, and D. Zhang, ‘‘Local linear discriminant analysis frame-

work using sample neighbors,’’ IEEE Trans. Neural Netw., vol. 22, no. 7,

pp. 1119–1132, Jul. 2011.

[40] S. Li and Y. Fu, ‘‘Robust subspace discovery through supervised low-

rank constraints,’’ in Proc. SIAM Int. Conf. Data Mining, Apr. 2014,

pp. 162–171.

[41] S. Li and Y. Fu, ‘‘Learning robust and discriminative subspace with low-

rank constraints,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 11,

pp. 2160–2173, Nov. 2016.

[42] E. J. Candès, X. Li, Y. Ma, and J. Wright, ‘‘Robust principal component

analysis?’’ J. ACM, vol. 58, no. 3, pp. 11:1–11:37, May 2011.

[43] H. Qiao, P. Zhang, D.Wang, and B. Zhang, ‘‘An explicit nonlinear mapping

for manifold learning,’’ IEEE Trans. Cybern., vol. 43, no. 1, pp. 51–63,

Feb. 2013.

[44] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, ‘‘Face recognition using

Laplacianfaces,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3,

pp. 328–340, Mar. 2005.

[45] S. Li and Y. Fu, ‘‘Learning balanced and unbalanced graphs via low-rank

coding,’’ IEEE Trans. Knowl. Data Eng., vol. 27, no. 5, pp. 1274–1287,

May 2015.

[46] Z. Ding and F. Yun, ‘‘Robust multiview data analysis through collective

low-rank subspace,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5,

pp. 1986–1997, May 2018.

[47] Q. Wang, P. C. Yuen, and G. Feng, ‘‘Semi-supervised metric learning

via topology preserving multiple semi-supervised assumptions,’’ Pattern

Recognit., vol. 46, no. 9, pp. 2576–2587, 2013.

[48] L. Ma, C. Wang, B. Xiao, and W. Zhou, ‘‘Sparse representation for face

recognition based on discriminative low-rank dictionary learning,’’ inProc.

IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 2586–2593.

[49] J. F. Cai, E. J. Candès, and Z. Shen, ‘‘A singular value threshold-

ing algorithm for matrix completion,’’ SIAM J. Optim., vol. 20, no. 4,

pp. 1956–1982, 2010.

[50] R. H. Bartels and G. W. Stewart, ‘‘Solution of the matrix equation

AX + XB = C [F4],’’ Commun. ACM, vol. 15, no. 9, pp. 820–826, 1972.

[51] J. Yang, W. Yin, Y. Zhang, and Y. Wang, ‘‘A fast algorithm for edge-

preserving variationalmultichannel image restoration,’’ SIAM J. Imag. Sci.,

vol. 2, no. 2, pp. 569–592, 2009.

[52] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, ‘‘From few

to many: Illumination cone models for face recognition under variable

lighting and pose,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6,

pp. 643–660, Jun. 2001.

[53] D. Cai, X. He, Y. Hu, J. Han, and T. Huang, ‘‘Learning a spatially smooth

subspace for face recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2007. doi: 10.1109/CVPR.2007.383054.

[54] S. Nene, S. Nayar, and H.Murase, ‘‘Columbia object image library (COIL-

100),’’ Columbia Univ., New York, NY, USA, Tech. Rep. CUCS-006-96,

1996.

[55] J. J. Hull, ‘‘A database for handwritten text recognition research,’’ IEEE

Trans. Pattern Anal. Mach. Intell., vol. 16, no. 5, pp. 550–554, May 1994.

[56] M. Bhutani, P. Jawanpuria, H. Kasai, and B. Mishra, ‘‘Low-rank geometric

mean metric learning,’’ in Proc. Geometry Mach. Learn. (GiMLi) Work-

shop Int. Conf. Mach. Learn. (ICML), 2018, pp. 1–4.

[57] D. Cai, X. He, K. Zhou, J. Han, and H. Bao, ‘‘Locality sensitive discrimi-

nant analysis,’’ in Proc. IJCAI, Jan. 2007, pp. 708–713.

LIPENG CAI received the B.Sc. degree in applied
mathematics from the Jiangxi University of Sci-

ence and Technology, Jiangxi, China, in 2016. She

is currently pursuing the master’s degree with the

Department of Mathematics, School of Science,

Shanghai University, Shanghai, China. Her current

research interests include metric learning and sub-

space methods.

SHIHUI YING (M’11) received the B.Eng. degree

in mechanical engineering and the Ph.D. degree in

applied mathematics from Xi’an Jiaotong Univer-

sity, Xi’an, China, in 2001 and 2008, respectively.

He held a postdoctoral position with the Biomed-

ical Re-search Imaging Center, The University of

North Carolina at Chapel Hill, Chapel Hill, NC,

USA, from 2012 to 2013. He is currently a Profes-

sor with the Department of Mathematics, School

of Science, Shanghai University, Shanghai, China.

His current research interests include geometric theory and methods for

medical image processing, and machine learning.

68582 VOLUME 7, 2019



L. Cai et al.: Intrinsic Metric Learning With Subspace Representation

YAXIN PENG (M’15) received the B.Sc. degree

in mathematics from Anhui Normal University,

Wuhu, China, in 2002, the M.Sc. degree in

mathematics from East China Normal University

(ECNU), Shanghai, China, in 2005, and the Ph.D.

degree in mathematics from the Ecole Normale

Suprieure de Lyon, Lyon, France, and ECNU,

in 2008. She is currently an Associate Profes-

sor with the Department of Mathematics, School

of Science, Shanghai University, Shanghai. Her

research interests include geometric variation, metric learning, point cloud,

and image processing.

CHANGZHOU HE received the B.S. and M.S

degrees in computational mathematics from

Peking University and the Chinese Academy

of Sciences, Beijing, China, in 2001 and 2004,

respectively. He is currently a Senior Staff Engi-

neer with Qualcomm (Shanghai) Co. Ltd., Shang-

hai, China. His current research interests include

machine learning and software engineering.

SHAOYI DU (M’11) received the B.S. degree

in computational mathematics and in computer

science, the M.S. degree in applied mathematics,

and the Ph.D. degree in pattern recognition and

intelligence system from Xi’an Jiaotong Univer-

sity, China, in 2002, 2005, and 2009, respectively.

He was a Postdoctoral Fellow with Xi’an Jiaotong

University, from 2009 to 2011, and visited The

University of North Carolina at Chapel Hill, from

2013 to 2014. He is currently a Professor with the

Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University.

His research interests include computer vision, machine learning, and pattern

recognition.

VOLUME 7, 2019 68583


	INTRODUCTION
	THE PROPOSED MODEL
	METRIC LEARNING MODEL ON MANIFOLD
	METRIC LEARNING MODEL ON SUB-MANIFOLD

	ITERATIVE STRATEGY AND ALGORITHMS
	EXPERIMENTAL RESULTS
	DATASETS AND COMPARED METHODS
	NUMERICAL RESULTS AND DISCUSSION
	COIL-100 OBJECT DATA SET
	ORL AND EXTENDED YALEB FACIAL DATA SETS
	USPS DIGITAL DATA SET


	CONCLUSION
	REFERENCES
	Biographies
	LIPENG CAI
	SHIHUI YING
	YAXIN PENG
	CHANGZHOU HE
	SHAOYI DU


