
 Open access  Book Chapter  DOI:10.1016/BS.PBR.2016.05.005

Intrinsic motivation, curiosity, and learning: Theory and applications in educational
technologies. — Source link 

Pierre-Yves Oudeyer, Jacqueline Gottlieb, Manuel Lopes

Institutions: Superior National School of Advanced Techniques, Columbia University

Published on: 01 Jan 2016 - Progress in Brain Research (Prog Brain Res)

Topics: Curiosity, Learning theory, Active learning, Experiential learning and Educational technology

Related papers:

 Intrinsic Motivation Systems for Autonomous Mental Development

 The psychology of curiosity: A review and reinterpretation.

 The Wick in the Candle of Learning: Epistemic Curiosity Activates Reward Circuitry and Enhances Memory

 The Psychology and Neuroscience of Curiosity.

 States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit

Share this paper:    

View more about this paper here: https://typeset.io/papers/intrinsic-motivation-curiosity-and-learning-theory-and-
42spckyh2l

https://typeset.io/
https://www.doi.org/10.1016/BS.PBR.2016.05.005
https://typeset.io/papers/intrinsic-motivation-curiosity-and-learning-theory-and-42spckyh2l
https://typeset.io/authors/pierre-yves-oudeyer-u6nxrugtgs
https://typeset.io/authors/jacqueline-gottlieb-3es6mhumsq
https://typeset.io/authors/manuel-lopes-5ft8a657oi
https://typeset.io/institutions/superior-national-school-of-advanced-techniques-v5kidc7j
https://typeset.io/institutions/columbia-university-2nw8vbgb
https://typeset.io/journals/progress-in-brain-research-1rai0axl
https://typeset.io/topics/curiosity-2zihechh
https://typeset.io/topics/learning-theory-32bojkmr
https://typeset.io/topics/active-learning-1we9h9pq
https://typeset.io/topics/experiential-learning-3hyxy9mz
https://typeset.io/topics/educational-technology-xapphx32
https://typeset.io/papers/intrinsic-motivation-systems-for-autonomous-mental-a9mds7ef42
https://typeset.io/papers/the-psychology-of-curiosity-a-review-and-reinterpretation-2bj8cmzgxx
https://typeset.io/papers/the-wick-in-the-candle-of-learning-epistemic-curiosity-5crbxbsh33
https://typeset.io/papers/the-psychology-and-neuroscience-of-curiosity-oznzlsvfuf
https://typeset.io/papers/states-of-curiosity-modulate-hippocampus-dependent-learning-39hg5kaua9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/intrinsic-motivation-curiosity-and-learning-theory-and-42spckyh2l
https://twitter.com/intent/tweet?text=Intrinsic%20motivation,%20curiosity,%20and%20learning:%20Theory%20and%20applications%20in%20educational%20technologies.&url=https://typeset.io/papers/intrinsic-motivation-curiosity-and-learning-theory-and-42spckyh2l
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/intrinsic-motivation-curiosity-and-learning-theory-and-42spckyh2l
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/intrinsic-motivation-curiosity-and-learning-theory-and-42spckyh2l
https://typeset.io/papers/intrinsic-motivation-curiosity-and-learning-theory-and-42spckyh2l


HAL Id: hal-01404278
https://hal.inria.fr/hal-01404278

Submitted on 28 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intrinsic motivation, curiosity and learning: theory and
applications in educational technologies

Pierre-Yves Oudeyer, Jacqueline Gottlieb, Manuel Lopes

To cite this version:
Pierre-Yves Oudeyer, Jacqueline Gottlieb, Manuel Lopes. Intrinsic motivation, curiosity and learning:
theory and applications in educational technologies. Progress in brain research, Elsevier, 2016, 229,
pp.257-284. 10.1016/bs.pbr.2016.05.005. hal-01404278

https://hal.inria.fr/hal-01404278
https://hal.archives-ouvertes.fr


 

Intrinsic motivation, curiosity and learning:  

theory and applications in educational technologies 

 

Pierre-Yves Oudeyer (1), Jacqueline Gottlieb (2), Manuel Lopes (1) 

(1) Inria and Ensta ParisTech, France 

(2) Department of neuroscience, Kavli institute for brain science,  

Columbia University, NY, US and 
 

Abstract: This article studies the bi-directional causal interactions between curiosity and 

learning, and discusses how understanding these interactions can be leveraged in educational 

technology applications. First, we review recent results showing how state curiosity, and 

more generally the experience of novelty and surprise, can enhance learning and memory 

retention. Then, we discuss how psychology and neuroscience have conceptualized curiosity 

and intrinsic motivation, studying how the brain can be intrinsically rewarded by novelty, 

complexity or other measures of information. We explain how the framework of 

computational reinforcement learning can be used to model such mechanisms of curiosity. 

Then, we discuss the learning progress (LP) hypothesis, which posits a positive feedback loop 

between curiosity and learning. We outline experiments with robots that show how LP-driven 

attention and exploration can self-organize a developmental learning curriculum scaffolding  

efficient acquisition of multiple skills/tasks.. Finally, we discuss recent work exploiting these 

conceptual and computational models in educational technologies, showing in particular how 

Intelligent Tutoring Systems can be designed to foster curiosity and learning. 

Keywords: curiosity; intrinsic motivation; learning; education; active learning; active 

teaching; neuroscience; computational modeling; artificial intelligence; educational 

technology. 

Curiosity fosters learning and memory retention 

Curiosity is a form of intrinsic motivation that is key in fostering active learning and 

spontaneous exploration. For this reason, curiosity-driven learning and intrinsic motivation 

have been argued to be fundamental ingredients for efficient education (Freeman et al., 2014). 

Thus, elaborating a fundamental understanding of the mechanisms of curiosity, and of which 

features of educational activities can make them “fun” and foster motivation, is of high-

importance with regards to the educational challenges of the 21
st
 century. 

While there is not yet a scientific consensus on how to define curiosity operationally 

(Oudeyer and Kaplan, 2007; Gottlieb et al., 2013; Kidd and Hayden, 2015), states of curiosity 

are often associated with a psychological interest for activities or stimuli that are surprising, 

novel, of intermediate complexity, or characterized by a knowledge gap or by errors in 

prediction, which are features that can themselves be quantified mathematically 

(Schmidhuber, 1991; Oudeyer and Kaplan, 2007; Barto et al., 2013). Such informational 

features that attract the brain’s attention have been called “collative variables” by Berlyne 

(1965). 



Recent experimental studies in psychology and neuroscience have shown that experiencing 

these features improved memory retention and learning in human children and adults, in other 

animals and in a variety of tasks. In a famous series of experiments with monkeys, Waelti et 

al. (2001) showed that monkeys could learn the predictive association between a stimuli and a 

reward only in situations where prediction errors happened: if the reward was anticipated by 

other means, then learning was blocked. This experiment complied with formal models of 

reinforcement learning, and in particular TD learning (Sutton and Barto, 1981), predicting 

that “organisms only learn when events violate their expectations” (Rescorla and Wagner, 

1972, p. 75). In a study mixing behavioral analysis and brain imaging, Kang et al. (2009) 

showed that human adults show greater long-term memory retention for verbal material for 

which they had expressed high curiosity than for low-curiosity questions. They observed that 

before the presentation of answers to high-curiosity questions, curiosity states were correlated 

with higher activity in the striatum and inferior frontal cortex. When subjects observed 

answers that did not match their predictions (i.e. an error was experienced), then an increase 

in activation of putamen and left inferior frontal cortex was observed. The modulation of 

hippocampus-dependent learning by curiosity states was confirmed in (Gruber et al., 2014). 

Recently, Stahl and Feigenson (2015) showed that a similar phenomenon happens in infants, 

observing that the infants created stronger associations between sounds/words and visual 

objects in a context where object movements violated the expected laws of physics. 

Novelty, surprise, intermediate complexity and other related features that characterize 

informational properties of stimuli have not only been shown to enhance memory retention, 

but they have also been argued to be intrinsically rewarding, motivating organisms to actively 

search for them. Three strands of research developed arguments and experimental evidence in 

this direction. First, psychologists proposed that forms of intrinsic motivation motivate the 

organism to search for information and competence gain. Second, neuroscientists have shown 

that reward-related dopaminergic circuits can be activated by information independently of 

extrinsic reward, and behavioral preference for novelty can be observed in various animals (as 

along with the apparently inconsistent observation of neophobia). Third, theoretical 

computational models and their experimental tests in robots have shown how such 

mechanisms could function and how they can improve learning efficiency by self-organizing 

developmental learning trajectories.. In what follows, we discuss these advances in turn, and 

then study how this perspective on curiosity and learning opens new directionsin educational 

technologies.   

Curiosity and intrinsic-motivation in psychology
1
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Parts	  of	  the	  text	  in	  this	  section	  is	  adapted	  with	  permission	  from	  (Oudeyer	  and	  Kaplan,	  

2007).	  	  
2 In this instantiation of the LP hypothesis, an internal module metaM monitors how learning 

progresses to generate intrinsic rewards. However, the LP hypothesis in general does not 

require such an internal capacity for measuring learning progress : such information may also 

be provided by the environment, either directly by objects or games children play with, or by 

adults/social peers.  

3 Here, action selection is made within a simplified form of reinforcement learning: learning 

progress is maximized only on the short term, and the environment is configured so that it 

returns to a rest position after each sensorimotor experiment. This corresponds to what is 



In psychology, curiosity can be approached within the conceptual framework of intrinsic 

motivation (Ryan and Deci, 2000; Berlyne, 1960). Ryan and Deci (2000) proposed a 

distinction of intrinsic and extrinsic motivation based on the concept of instrumentalization 

(pp. 56): 

“Intrinsic motivation is defined as the doing of an activity for its inherent satisfaction rather 

than for some separable consequence. When intrinsically motivated, a person is moved to act 

for the fun or challenge entailed rather than because of external products, pressures or 

reward.” 

Intrinsic motivation is clearly visible in young infants, who consistently try to grasp, throw, 

bite, squash or shout at new objects they encounter, without any clear external pressure to do 

it. Although the importance of intrinsic motivation declines during development, human 

adults are still often intrinsically motivated to engage in activities such as crossword puzzles, 

painting, gardening, read novels or watch movies. Accordingly, Ryan and Deci define 

extrinsic motivation as:  

“Extrinsic motivation is a construct that pertains whenever an activity is done in order to 

attain some separable outcome. Extrinsic motivation thus contrasts with intrinsic motivation, 

which refers to doing an activity simply for the enjoyment of the activity itself, rather than its 

instrumental value.” (Ryan and Deci, 2000)  

Given this broad distinction between intrinsic and extrinsic motivation, psychologists have 

proposed theories about which properties of activities make them intrinsically motivating, and 

in particular foster curiosity as one particular form of intrinsically motivated exploration 

(Oudeyer and Kaplan, 2007).  

Drives to manipulate, drives to explore. In the 1950s, psychologists attempted to give an 

account of intrinsic motivation and exploratory activities on the basis of the theory of drives 

(Hull, 1943), defined as specific tissue deficits that the organisms try to reduce, like hunger or 

pain. Montgomery, 1954 proposed a drive for exploration and Harlow, 1950 proposed that 

subjects have a drive to manipulate. This drive naming approach had shortcomings which 

were criticized by White in 1959 (1959): intrinsically motivated exploratory activities have a 

fundamentally different dynamics. Indeed, they are not homeostatic: the general tendency to 

explore is not a consummatory response to a stressful perturbation of the organism’s body.  

Reduction of cognitive dissonance. An alternative conceptualization was proposed by 

Festinger’s theory of cognitive dissonance (Festinger, 1957), which asserted that organisms 

are motivated to reduce dissonance, defined as an incompatibility between internal cognitive 

structures and the situations currently perceived. Fifteen years later, a related view was 

articulated by Kagan stating that a primary motivation for humans is the reduction of 

uncertainty in the sense of the “incompatibility between (two or more) cognitive structures, 

between cognitive structure and experience, or between structures and behavior” (Kagan, 

1972). More recently, the related concept of “knowledge gap” was argued to be a driver for 

curiosity-driven exploration (Lowenstein, 1994). However, these theories do not provide an 



account of certain spontaneous exploration behaviours which increase uncertainty (Gottlieb et 

al., 2013). Also, they do not specify whether the brain values differently or similarly different 

degrees of knowledge gaps.  

Optimal incongruity. People seem to look for situations  between completely uncertain and 

completely certain. In 1965, Hunt developed the idea that children and adults look for optimal 

incongruity (Hunt, 1965). He regarded children as information-processing systems and stated 

that interesting stimuli were those where there was a discrepancy between the perceived and 

standard levels of the stimuli. For Dember and Earl, the incongruity or discrepancy in 

intrinsically-motivated behaviors was between a person’s expectations and the properties of 

the stimulus (Dember and Earl, 1957). Berlyne developed similar notions as he observed that 

the most rewarding situations were those with an intermediate level of novelty, between 

already familiar and completely new situations (Berlyne, 1960). This perspective was recently 

echoed by Kidd et al. (2012) who showed an experiment where infants prefered stimuli of 

intermediate complexity. 

Motivation for competence. A last group of researchers preferred the concept of challenge to 

the notion of optimal incongruity. These researchers stated that what was driving human 

behavior was a motivation for “effectance” (White, 1959), personal causation (De Charms, 

1968), competence and self-determination (Deci and Ryan, 1985). Basically, these approaches 

argue that what motivates people is the degree of control they can have on other people, 

external objects and themselves. An analogous concept is that of optimal challenge as put 

forward in the theory of “Flow” (Csikszentmihalyi, 1991).  

Berlyne’s informational approach to curiosity and intrinsic motivation. These diverse 

theoretical approaches to intrinsic motivation and the properties that render certain activities 

intrinsically interesting/motivating have been proposed by diverse research communities 

within psychology, but so far there is no consensus on a unified view of intrinsic motivation. 

Even more, it could be argued that distinguishing intrinsic and extrinsic motivation based on 

instrumentalization can be circular (Oudeyer and Kaplan, 2007). Yet, a convincing integrated 

non-circular view has actually been proposed in the 60’s by Daniel Berlyne (Berlyne, 1965), 

and has been used as a fruitful theoretical reference for developing formal mathematical 

models of curiosity, as described below. The central concept of this integrated approach to 

intrinsic motivation is that of “collative variables”, as explained in the following quotations:  

“The probability and direction of specific exploratory responses can apparently be influenced 

by many properties of external stimulation, as well as by many intraorganism variables. They 

can, no doubt, be influenced by stimulus intensity, color, pitch, and association with 

biological gratification and punishment, ... [but] the paramount determinants of specific 

exploration are, however, a group of stimulus properties to which we commonly refer by such 

words as “novelty”, “change”, “surprisingness”, “incongruity”, “complexity”, “ambiguity”, 

and “indistinctiveness”. »  (Berlyne, 1965, pp. 245),  

« ... these properties possess close links with the concepts of information theory, and they can, 

in fact, all be discussed in information-theoretic terminology. In the case of “ambiguity” and 

“indistinctiveness”, there is uncertainty due to a gap in available information. In some forms 



of “novelty” and “complexity”, there is uncertainty about how a pattern should be 

categorized, that is, what labeling responses should be attached to it and what overt response 

is appropriate to it. When one portion of a “complex” pattern or of a sequence of “novel” 

stimuli is perceived, there is uncertainty about what will be perceived next. In the case of 

“surprisingness” and “incongruity”, there is discrepancy between information embodied in 

expectations and information embodied in what is perceived. For these reasons, the term 

“collative” is proposed as an epithet to denote all these stimulus properties collectively, since 

they all depend on collation or comparison of information from different stimulus elements, 

whether they be elements belonging to the present, past or elements that are simultaneously 

present in different parts of one stimulus field”.  

It should be pointed out that the uncertainty we are discussing here is “subjective 

uncertainty”, which is a function of subjective probabilities, analogous to the “objective” 

uncertainty (that is, the standard information-theoretic concept of uncertainty) that is a 

function of objective probabilities.” (Berlyne, 1965), pp. 245-246.  

As these psychological theories of curiosity and intrinsic motivation hypothesize that the 

brain could be intrinsically rewarded by experiencing information gain, novelty or complexity, 

a natural question that follows is whether one could identify actual neural circuitry linking the 

detection of novelty with the brain reward system.  We now review several strands of research 

that identified several dimensions of this connection. 

Information as a reward in neuroscience 

Dopaminergic systems that process primary rewards are activated by curiosity. To 

examine the motivational systems that are recruited by curiosity, Kang et al. used functional 

magnetic resonance imaging (fMRI) to monitor brain activity in human observers who 

pondered trivia questions (Kang et al., 2009). After reading a question subjects rated their 

curiosity and confidence regarding the question and, after a brief delay, were given the answer. 

The key analyses focused on activations during the anticipatory period – after the subjects 

had received the question but before they were given the answer.  

Areas that showed activity related to curiosity ratings during this epoch included the left 

caudate nucleus, bilateral inferior frontal gyrus (IFG), and loci in the putamen and globus 

pallidus. In an additional behavioral task, the authors showed that subjects were willing to pay 

a higher price to obtain the answers to questions that they were more curious about – i.e., 

could compare money and information on a common scale. They concluded that the value of 

the information, reported by subjects as a feeling of curiosity, is encoded in some of the same 

structures that evaluate material gains.  

Two recent studies extend this result, and report that midbrain dopaminergic (DA) cells and 

cells in the orbitofrontal cortex (OFC), a pre-frontal area that receives DA innervation, encode 

the anticipation of obtaining reliable information from visual cues  (Blanchard, Hayden, & 

Bromberg-Martin, 2015; Bromberg-Martin & Hikosaka, 2009).In that study on DA cells, 

monkeys were trained on so-called “observing paradigms”, where they had to choose between 

observing two cues that had equal physical rewards but differed in their offers of information 



(Bromberg-Martin & Hikosaka, 2009). Monkeys began each trial with a 50% probability of 

obtaining a large or a small reward and, before receiving the reward, had to choose to observe 

one of two visual items. If the monkeys chose the informative target, this target changed to 

one of two patterns that reliably predicted whether the trial will yield a large or small reward 

(“Info”). If the monkeys chose the uninformative item, this target also changed to produce one 

of two patterns, but the patterns had only a random relation to the reward size (“Rand”).  

After a relatively brief experience with the task, the monkeys developed a reliable and 

consistent preference for choosing the informative cue. Because the extrinsic rewards that the 

monkeys received were equal for the two options (both targets had a 50% probability of 

delivering a large or small reward), this showed that monkeys were motivated by some 

cognitive or emotional factor that assigned intrinsic value to the predictive/informational cue.  

Dopamine neurons encoded both reward prediction errors and the anticipation of reliable 

information. The neurons’ responses to reward prediction errors confirmed previous results 

and arose after the monkeys’ choice, when the selected target delivered its reward information. 

At this time, the neurons gave a burst of excitation if the cue signaled a large reward (a better 

than the average outcome) but were transiently inhibited if the cue signaled a small reward 

(an outcome that was worse than expected).  

Responses to anticipated information gains, by contrast, arose before the monkeys’ choice and 

thus could contribute to motivating that choice. Just before viewing the cue, the neurons 

emitted a slightly stronger excitatory response if the monkeys expected to view an 

informative cue and a weaker response if they expected only the random cue (red vs. blue 

traces). This early response was clearly independent of the final outcome and seemed to 

encode enhanced arousal or motivation associated with the informative option.   

A subsequent study of area OFC extended the behavioral results by showing that the monkeys 

will choose the informative option even if its payoff is slightly lower than that of the 

uninformative option – that is, monkeys are willing to sacrifice juice reward to view 

predictive cues (Blanchard et al., 2015). In addition, the study showed that responses to 

anticipated information gains in the OFC are carried by a neural population that is different 

from those that encode the value of primary rewards, suggesting differences in the underlying 

neural computations.  

Together, these investigations show that, in both humans and monkeys, the motivational 

systems that signal the value of primary rewards are also activated by the desire to obtain 

information. This conclusion is consistent with earlier reports that DA neurons respond to 

novel or surprising events that are critical for learning environmental contingencies 

(Bromberg-Martin ES, Matsumoto M, Hikosaka, 2010). The convergence of responses related 

to rewards and information gains is highly beneficial in allowing subjects to compare 

different types of currencies – e.g., knowledge and money – on a common value scale when 

selecting actions. At the same time, the separation between the neural representations of 

information value and biological value in OFC cells, highlights the fact these two types of 

values require distinct computations. While the value of a primary reward depends on its 

biological properties (e.g., its caloric content) the value of a source of information depends on 



semantic and epistemic factors that establish the meaning of the information.  

 

 

Seeking information for itself: liking and wanting novelty, surprise and intermediate 

complexity.  Many animal studies have shown phenomena of neophilia. Rats prefer novel 

environments and objects to familiar ones (Bardo and Bevins, 2000) and learn motor 

strategies that allow them to trigger the appearance of novel items (Myers and Miller, 1954). 

In certain contexts, rats have also been shown to prefer obtaining novel stimuli over obtaining 

food or drug or at the cost of crossing electrifying grids (see Hugues, 2007 for a review). 

Moreover, brain responses to novelty in rats have strong similarities with brain responses to 

drug rewards (Bevins, 2001). In human adults, studies by Itti and Baldi have shown that 

surprise, defined in the domain of visual features, attracts human saccades during free-

viewing exploration (Itti & Baldi, 2009).  Baranes et al extended this result to the epistemic 

domain, by showing that curiosity about trivia questions elicits faster anticipatory eye 

movements to the expected location of the answer, suggesting that eye movements are 

influenced by expected gains in semantic information (Baranes et al., 2015). Kidd et al. 

(2012) showed that human infants had a preference for looking at stimuli of intermediate 

complexity in the visual or auditory domain (Kidd et al., 2014).  

Another recent study suggests that novelty also recruits attentional resources through reward-

independent effects (Foley, Jangraw, Peck, & Gottlieb, 2014; Peck, Suzuki, Efem, & Gottlieb, 

2009). In this experiment, monkeys were trained on a task in which they had initial 

uncertainty about the trial’s outcome, and were given cues that resolved this uncertainty, by 

signaling whether the trial will end in a reward or a lack of reward. When the reward 

contingencies were signaled by novel visual cues (abstract patterns that the monkeys had 

never seen before), these cues evoked enhanced visual and orienting responses in the parietal 

lobe. If a novel cue signaled “bad news” (a lack of reward) the monkeys quickly learned this 

contingency and extinguished their anticipatory licking in response to the cues. Strikingly 

however, the newly-learnt cues continued to produce enhanced visual and saccadic responses 

for dozens of presentations after the extinction of the licking response. This suggests that 

novelty attracts attention through reward-independent mechanisms, allowing the brain to 

prioritize and learn about novel items for an extended period even if these items signal 

negative outcomes. 

The puzzle of neophobia. Gershman and Niv (2015) recently discussed a puzzling 

observation. Alongside a large experimental corpus showing neophilia in several animal 

species, an equally large corpus demonstrates neophobia - the avoidance of novelty (Hughes, 

2007). Neophobia has been observed in rats (Blanchard et al., 1974), in adult humans 

(Berlyne, 1960) in infants (Weizmann et al., 1971) and in non-human primates (Weiskrantz 

and Cowey, 1963). To explain the apparent contradiction between these results Gershman and 

Niv (2015) studied the hypothesis that certain kinds of novelty (characterized by their cues) 

can be selectively and aversively reinforced. That is, an individual may learn and generalize 

that, in different families of situations, novelty may be associated with positive or with 

negative outcomes, and thus learn to avoid novelty when their associated outcome is negative.  



However, another complementary hypothesis to explain this apparent contradiction is the 

“intermediate novelty” hypothesis proposed by Berlyne (1960). Following this hypothesis, 

approach or avoidance of novelty would depend on the degree of novelty, i.e. the degree of 

distance/similarity between the perceived stimuli and existing internal representations in the 

brain.   

The learning progress hypothesis 

Berlyne’s concept of intermediate novelty, as well as the related concept of intermediate 

challenge of Csikszentmihalyi, have the advantage of allowing intuitive explanations of many 

behavioral manifestations of curiosity and intrinsic motivation. However, recent 

developments in theories of curiosity, and in particular its computational theories, have 

questioned its applicability as an operant concept capable to generate an actual mechanism for 

curiosity. A first reason is that the concept of “intermediate” appears difficult to define 

precisely, as it implies the use of a relatively arbitrary frame of reference to assess levels of 

novelty/complexity. A second reason is that while novelty or complexity in themselves may 

be the basis of useful exploration heuristics for organisms in some particular contexts, there is 

in general no guarantee that observing a novel or intermediate complexity stimulus provides 

information that can improve the organism’s prediction and control in the world. Indeed, as 

computational theory of learning and exploration has shown, our environment is full of novel 

and complex stimuli of all levels, and among them only a few may convey useful or learnable 

patterns. As curiosity-driven spontaneous exploration may have evolved as a mean to acquire 

information and skills in rapidly changing environments (Barto, 2013), it appears that 

heuristics based on searching for novelty and complexity can be inefficient in large or non-

stationary environments (Schmidhuber, 2001; Oudeyer et al., 2007).  

For these reasons, computational learning theory has explored an alternative mechanism, in 

which learning progress generates intrinsic reward (Schmidhuber, 2001; Oudeyer et al., 

2007), and it was hypothesized that this mechanism could be at play in humans and animals 

(Kaplan and Oudeyer, 2007; Oudeyer and Smith, 2016). This hypothesis proposes that the 

brain, seen as a predictive machine constantly trying to anticipate what will happen next, is 

intrinsically motivated to pursue activities in which predictions are improving, i.e. where 

uncertainty is decreasing and learning is actually happening. This means that the organism 

loses interest in activities that are too easy or too difficult to predict (i.e. where uncertainty is 

low or where uncertainty is high but not reducible), and focuses specifically on learnable 

activities that are just beyond its current predictive capacities. So for example, an infant will 

be more interested in exploring how its arm motor commands can allow her to predict the 

movement of her hand in the visual field (initially difficult but learnable) rather than 

predicting the movement of walls (too easy) or the color of the next car passing through the 

window (novel but not learnable). As shown by the computational studies we discuss below, a 

practical consequence of behaviors driven by the search for learning progress is the targeted 

exploration of activities and stimuli of “intermediate complexity”. Yet, an explicit measure of 

intermediate complexity is not computed by this mechanism: it is an emergent property of 

selecting actions and stimuli that maximize the derivative of errors in prediction.  



 

 

The LP hypothesis posits a positive feedback loop between curiosity and learning 

The learning progress hypothesis posits a new causal link between learning and curiosity. As 

described in the first two sections of the article, previous work in neuroscience and 

psychology considered a unidirectional causal chain: the brain would be motivated to search 

for (intermediate) novelty or complexity, and then when finding it would be in a curiosity 

state that would foster learning and memory retention (see figure 1 (A)). In this view (Stahl 

and Feigenson, 2015; Kang et al., 2009), learning in itself does not have consequences on 

state curiosity and motivation. On the contrary, the learning progress hypothesis proposes that 

experiencing learning in a given activity (rather than just intermediate novelty) triggers an 

intrinsic reward, and thus that learning in itself causally influences state curiosity and intrinsic 

motivation (see figure 1 (B)). Thus, this hypothesis argues that there is a closed self-

reinforcing feedback loop between learning and curiosity-driven intrinsic motivation. 

Here the learner becomes fundamentally active, searching for niches of learning 

progress, in which in turn memory retention is facilitated. As shown by computational 

experiments outlined below, this feedback loop has important consequences on the 

organization of learning experiences on the long term: as learners actively seek for situations 

and activities which maximize learning progress, they will first focus on simple learnable 

activities before shifting to more complex ones (see figure 2), and the activities they select 

shape their knowledge and skills, which will in turn change the potential progress in other 

activities and thus shape their future exploratory trajectories. As a consequence, the learning 

progress hypothesis does not only introduce a causal link between learning and curiosity, but 

also introduces the idea that curiosity may be a key mechanism in shaping developmental 

organization.  Below, we will outline computational experiments that have shown that such an 

active learning mechanisms can self-organize a progression in learning, with automatically 

generated developmental phases that have strong similarities with infant developmental 

trajectories. 
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Figure	   1	  Many studies of curiosity and learning have considered a one directional causal 

relationship between state curiosity and learning (A). The Learning Progress hypothesis 

suggest that learning progress itself, measured as the improvement of prediction errors, can be 

intrinsically rewarding: this introduces a positive feedback loop between state curiosity and 

learning (B). This positive feedback loop in turn introduces a complex learning dynamics self-

organizing learning curriculum with phases of increasing complexity, such as in the 

Playground Experiment (Oudeyer et al., 2007;  see Figures 2 and 3).  	  

 

The LP hypothesis unifies various qualitative theories of curiosity.  

The LP hypothesis is also associated to a mathematical formalism (outlined in the next 

section) that allows to bridge several hypotheses related to curiosity and intrinsic motivation, 

that had been so far conceptually separated (Oudeyer and Kaplan, 2007). Within the learning 

progress hypothesis, the central concept of prediction errors (and the associated measure of 

improvement) applies to multiple kinds of predictions. It applies to predicting the properties 

of external perceptual stimuli (and thus relates to the notion of perceptual curiosity (Berlyne, 

1960), as well as the conceptual relations among symbolic items of knowledge (and this 

relates to the notion of epistemic curiosity, and to the subjective notion of information gap 

proposed by Lowenstein (1994)). Here the maximization of learning progress leads to 

behaviors that were previously understood through Berlyne’s concept of intermediate 

novelty/complexity, and such mechanisms correspond to a class of intrinsic motivation that 

has been called “knowledge-based intrinsic motivation” (Oudeyer and Kaplan, 2007; Mirolli 



and Baldassarre, 2013). It also applies to predicting the consequences of one’s own actions in 

particular situations, or to predicting how well one’s current skills are capable to solve a given 

goal/problem: here the maximization of learning progress, measuring a form of progress in 

competences related to an activity or a goal, can be used to model Csikszentmihalyi’s concept 

of  intermediate challenge in the flow theory as well as related theories of intrinsic motivation 

based on self-measures of competences (White, 1959 ; Csikszentmihalyi, 1991). This second 

form of the LP hypothesis, where learning progress is measured in terms of how much 

competences improve with experience, correspond to a class of intrinsic motivation 

mechanisms that has been called “competence-based intrinsic motivation” (Oudeyer and 

Kaplan, 2007 ; Mirolli and Baldassarre, 2013).  
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Figure	  2	  The LP hypothesis proposes that active spontaneous exploration will favor exploring 

activities which are providing maximum improvement of prediction errors. If one imagines 

four activities with different learning rate profiles (A), then LP-driven exploration will avoid 

activities that are either too easy (4) or too difficult (1) as they do not provide learning 

progress, then first focus on an activity which initially provides maximal learning progress (3), 

before reaching a learning plateau in this activity and shifting to another one (2) which at this 

point in the curriculum provides maximum progress (potentially thanks to skills acquired in 

activity (3)). As a consequence, an ordering of exploration phases forms spontaneously, 

generating a structured developmental trajectory (adapted from Kaplan and Oudeyer, 2007).  

 

 



Computational models: curiosity-driven reinforcement learning  

Computational and robotic models have recently thrived in order to conceptualize more 

precisely theories of curiosity-driven learning and intrinsic motivation, as well as to study the 

associated learning dynamics and make experimental predictions (Baldassarre and Mirolli, 

2013; Gottlieb et al., 2013). A general formal framework that has been used most often to 

model learning and motivational systems is computational reinforcement learning (Sutton and 

Barto, 1998). In reinforcement learning, one considers a set of states S (characterizing the 

state of the world as sensed by sensors as well as the state of internal memory); a set of 

actions A that the organism can make; a reward function R(s,a) that provides a number r(s,a) 

that depends on states and actions and that should be maximized; an action policy P(a|s) 

which determines which actions should be made in each state so as to maximize future 

expected reward; and finally a learning mechanism L that allows to update the action policy 

in order to improve rewards in the future. Many works in computational neuroscience and 

psychology have focused on the details of the learning mechanism, for example to explain 

differences in model-based versus model-free learning (Gershman, in press). However, the 

same framework can be used to model motivational mechanisms, through modeling the 

structure and semantics of the reward function. For example, extrinsic motivational 

mechanisms associated to food/energy search can be modeled through a reward function that 

measures the quantity of food gathered (Arkin, 2005). A motivation for mating can be 

modeled similarly, and as each motivational mechanism is modeled as a real number that 

should be maximized, such numbers can be used as a common motivational currency to make 

tradeoffs among competing motivations (Konidaris and Barto, 2006).  

Similarly, it is possible to use this framework to provide formal models of intrinsic motivation 

and curiosity as formulated by most theories mentioned above, in architecture called 

“intrinsically motivated reinforcement learning” (Singh et al., 2004) and as reviewed in 

(Baldassarre and Mirolli, 2013; Oudeyer and Kaplan, 2007). In this context, an intrinsic 

motivation system that pushes organisms to search for novelty can be formalized for example 

by considering a mechanism which counts how often each state of the environment has 

already been visited, and then using a reward function that is inversely proportional to these 

counts. This corresponds to the concept of exploration bonus studied by Dayan et al. (1996) 

and Sutton (1990). If one considers a model-based RL system that learns to predict which 

states will be observed upon a series of actions, as well as measures of uncertainty of these 

predictions, one can formalize surprise (and automatically derive an associated reward) as 

situations in which the subject makes an unexpected high error in predictions.   

To understand how the learning progress hypothesis can be formally modeled in this 

framework, let us consider the model used in the Playground Experiment (see figure 3 (A)). 

In this experiment, a quadruped “learning” robot (the learner) is placed on an infant play mat 

with a set of nearby objects and is joined by an “adult” robot (the teacher), see Figure 3 (A) 

(Oudeyer and Kaplan, 2006; Kaplan and Oudeyer, 2007b; Oudeyer et al., 2007). On the mat 

and near the learner are objects for discovery: an elephant (which can be bitten or “grasped” 

by the mouth), a hanging toy (which can be “bashed” or pushed with the leg).  The teacher is 

pre-programmed to imitate the sounds made by the learner when the learning robot looks to 



the teacher while vocalizing at the same time. 
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Figure	   3	   (A) The Playground Experiment: a robot explores and learns the contingencies 

between its movement and the effect they produce on surrounding objects. To drive its 

exploration, it uses the active learning architecture described in (B). In this architecture, a 

meta-learning module tracks the evolution of errors in predictions that the robot makes using 

various kinds of movements in various situations. Then, an action selection module selects 

probabilistically actions and situations which have recently provided high improvement of 

predictions (learning progress), using this measure to heuristically expect further learning 

progress in similar situations. Adapted from (Oudeyer et al., 2007).  

 

The learner is equipped with a repertoire of motor primitives parameterized by several 

continuous numbers that control movements of its legs, head and a simulated vocal 

production system. Each motor primitive is a dynamical system controlling various forms of 

actions: (a) turning the head in different directions; (b) opening and closing the mouth while 

crouching with varying strengths and timing; (c) rocking the leg with varying angles and 

speed; (d) vocalizing with varying pitches and lengths. These primitives are parameterized by 

real numbers and can be combined to form a large continuous space of possible actions. 

Similarly, sensory primitives allow the robot to detect visual movement, salient visual 

properties, proprioceptive touch in the mouth, and pitch and length of perceived sounds. For 

the robot, these motor and sensory primitives are initially black boxes and he has no 

knowledge about their semantics, effects or relations.  



The robot learns how to use and tune these primitives to produce various effects on its 

surrounding environment, and exploration is driven by the maximization of learning progress, 

by choosing physical experiences (“experiments”) that improve the quality of predictions of 

the consequences of its actions. As data is collected though this exploration process, the robot 

builds a model of the world dynamics that can be reused later on for new tasks that were not 

known at the time of exploration (for example using model-based reinforcement learning 

mechanisms).  

Figure 3 (B) outlines a computational architecture, called R-IAC (Oudeyer, Kaplan et al. 

2007; Moulin-Frier et al., 2014). A prediction machine (M) learns to predict the consequences 

of actions taken by the robot in given sensory contexts. For example, this module might learn 

to predict which visual movements or proprioceptive perceptions result from using a leg 

motor primitive with certain parameters (this model learning can be done with a neural 

network or any other statistical m`:ùxc nklninference algorithm). Another module (metaM) 

estimates the evolution of errors in prediction of M in various regions of the sensorimotor 

space
2
.  This module estimates how much errors decrease in predicting an action in certain 

situations, for example, in predicting the consequence of a leg movement when this action is 

applied towards a particular area of the environment. These estimates of error reduction are 

used to compute the intrinsic reward from progress in learning. This reward is an internal 

quantity that is proportional to the decrease of prediction errors, and the maximization of this 

quantity is the goal of action selection within a computational reinforcement-learning 

architecture (Kaplan and Oudeyer, 2003; Oudeyer and Kaplan, 2007; Oudeyer et al., 2007). 

Importantly, the action selection system chooses most often to explore activities where the 

estimated reward from learning progress is high. However, this choice is probabilistic, which 

leaves the system open to learning in new areas and open to discovering other activities that 

may also yield progress in learning
3
.  Since the sensorimotor flow does not come pre-

segmented into activities and tasks, a system that seeks to maximize differences in learnability 

is also used to progressively categorize the sensorimotor space into regions. This 

categorization thereby models the incremental creation and refining of cognitive categories 

differentiating activities/tasks.  

In all of the runs of the experiment, one observes the self-organization of structured 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

2 In this instantiation of the LP hypothesis, an internal module metaM monitors how learning 

progresses to generate intrinsic rewards. However, the LP hypothesis in general does not 

require such an internal capacity for measuring learning progress : such information may also 

be provided by the environment, either directly by objects or games children play with, or by 

adults/social peers.  

3 Here, action selection is made within a simplified form of reinforcement learning: learning 

progress is maximized only on the short term, and the environment is configured so that it 

returns to a rest position after each sensorimotor experiment. This corresponds to what is 

called episodic reinforcement learning, and action selection can be handled efficiently in this 

case using multi-armed bandit algorithms (Audibert et al., 2009). Other related computational 

models have considered maximizing forms of LP over the long term through RL planning 

techniques in environments which dynamics is state dependent (Schmidhuber, 1991; Kaplan 

and Oudeyer, 2003) and non-stationary (Lopes et al., 2012).).  



developmental trajectories, where the robot explores objects and actions in a progressively 

more complex stage-like manner while acquiring autonomously diverse affordances and skills 

that can be reused later on and that change the learning progress in more complicated tasks. 

Typically, after a phase of random body babbling, the robot focuses on performing various 

kinds of actions towards objects, and then focuses on some objects with particular actions that 

it discovers are relevant for the object. In the end, the robot is able to acquire sensorimotor 

skills such as how to push or grasp objects, as well as how to perform simple vocal 

interactions with another robot, as a side effect of its general drive to maximize learning 

progress. This typical trajectory can be explained as gradual exploration of new progress 

niches (zones of the sensorimotor space where it progresses in learning new skills), and those 

stages and their ordering can be viewed as a form of attractor in the space of developmental 

trajectories. Yet, one also observes diversity in the developmental trajectories observed in the 

experiment. With the same mechanism and same initial parameters, individual trajectories 

may generate qualitatively different behaviors  or even invert stages.. This is due to the 

stochasticity on the policy, to even small variability in the physical realities and to the fact 

that this developmental dynamic system has several attractors with more or less extended and 

strong domains of attraction (characterized by amplitude of learning progress).  This diversity 

can be seen as an interesting modeling outcome since individual development is not identical 

across different individuals but is always, for each individual, unique in its own ways. This 

kind of approach, then, offers a way to understand individual differences as emergent in 

developmental process itself and makes clear how developmental process might vary across 

contexts, even with an identical learning mechanism. 

How LP-driven curiosity generates developmental trajectories that reproduce infant 

development sequences and can act in synergy with social learning 

Focusing on vocal development, Moulin-Frier et al. conducted experiments where a robot 

explored the control of a realistic model of the vocal tract in interaction with vocal peers 

through a drive to maximize learning progress (Moulin-Frier et al., 2014). This model relied 

on a physical model of the vocal tract, its motor control and the auditory system. It also 

included an additional mechanism allowing the active learner to take into account social 

signals provided by peers. As a simulated caretaker would himself produce vocalizations 

organized around the systematic reuse of certain phonemes, the curiosity-driven learning 

system could decide whether it should try to reproduce these external speech sounds 

(imitation) using its current know-how, or whether it should self-explore other kinds of 

speech sounds. The choice was made hierarchically: first, it decided to imitate or self-explore 

based on how much each strategy provided learning progress in the past. Second, if self-

exploration was selected, it decided which part of the sensorimotor space to explore based on 

how much learning progress could be expected. The experiments showed how such a 

mechanism generated automatically the adaptive transition from vocal self-exploration with 

little influence from the speech environment, to a later stage where vocal exploration becomes 

influenced by vocalizations of peers. Within the initial self-exploration phase, a sequence of 

vocal production stages self-organizes, and shares properties with infant data: the vocal 

learner first discovers how to control phonation, then vocal variations of unarticulated sounds, 

and finally articulated proto-syllables. In this initial phase, imitation is rarely tryied by the 



learner as the sounds produced by caretakers are too complicated to make any progress. But 

as the vocal learner becomes more proficient at producing complex sounds through self-

exploration, the imitating vocalizations of the teacher begin to provide high learning progress, 

resulting in a shift from self-exploration to vocal imitation. This also illustrates how 

intrinsically motivated self-exploration can guide the system to efficiently and autonomously 

acquire basic sensorimotor skills that are instrumental to learn faster other more complicated 

skills.  

Intrinsically motivated exploration scaffolds efficient multitask learning 

Computational models in the literature have shown how various forms of intrinsically 

motivated exploration and learning could guide efficiently the autonomous acquisition of 

repertoires of skills in large and difficult spaces.  

A first reason is that intrinsically motivated exploration can be used as an active learning 

algorithm that learns efficient forward and inverse models of the world dynamics through 

efficient selection of experiences. Indeed, such models can be reused either directly (Baranes 

and Oudeyer, 2013; Oudeyer et al., 2007), or through model-based planning mechanisms 

(Schmidhuber, 1991; Singh and Barto, 2004; Lopes et al., 2012), to solve repertoires of tasks 

that were not specified during exploration (hence without the need for long re-experiencing of 

the world for each new task). For example, Baranes and Oudeyer (2013) have shown how 

intrinsically motivated goal exploration could allow robots to sample sensorimotor spaces by 

actively controlling the complexity of explored sensorimotor goals, and avoiding goals which 

were either too easy or unreachable. This allowed the robots to learn fast repertoires of high-

dimensional continuous action skills to solve distributions of sensorimotor problems such as 

omnidirectional legged locomotion or how to manipulate flexible objects. Lopes et al. (2012) 

showed how intrinsically motivated model-based reinforcement learning, driven by the 

maximization of empirical learning progress, allows efficient learning of world models when 

this dynamics is non-stationary, and how this accelerates the learning of a policy that targets 

to maximize an extrinsic reward (task predefined by experimenters).    

A second reason for the efficiency of intrinsic motivation is that by fostering spontaneous 

exploration of novel skills, and leveraging opportunistically potential synergies among skills, 

it can create learning pathways towards certain skills that would have remained difficult to 

reach if they had been the sole target of the learning system. Indeed, in many contexts, 

learning a single pre-defined skill can be difficult as it amounts to searching (the parameters 

of) a solution with very rare feedback until one is very close to the solution, or with deceptive 

feedback due to the phenomenon of local minima. A strategy to address these issues is to 

direct exploration with intrinsic rewards, leading the system to explore a diversity of skills 

and contingencies which often result in the discovery of new sub-spaces/areas in the problem 

space, or in mutual skill improvement when exploring one goal/skill provides data that can be 

used to improve other goals/skills, such as in goal babbling (Baranes and Oudeyer, 2013; 

Benureau and Oudeyer, 2016) or off-policy reinforcement learning (see the Horde 

architecture, Sutton et al., 2011). For example, Lehman and Stanley (2011) showed that 

searching for pure novelty in the behavioural space a robot to find a reward in a maze more 



efficiently than if it had been searching for behavioural parameters that optimized directly the 

reward. In another model, Forestier and Oudeyer (2016 REF) showed that intrinsically 

motivated exploration of a hierarchy of sensorimotor models allowed a simulated robot to 

scaffold the successive acquisition of object reaching, tool grasping and tool use (and where 

direct search for tool use behaviours was vastly less efficient).     

A third related reason for the efficiency of intrinsically motivated exploration is that it can 

drive the acquisition of macro-actions, or sensorimotor primitives, which can be 

combinatorially reused as building block to accelerate the search for complex solutions in 

structured reinforcement learning problems. For example, Singh et al. (2004) showed how 

intrinsic rewards based on measures of saliency could guide a reinforcement learner to 

progressively learn “options” , which are temporally extended macro-actions, reshaping the 

structure of the search space and finally learning action policies that solve an extrinsic 

(abstract) task that is very difficult to solve through standard RL exploration. Related uses of 

intrinsic motivation with a hierarchical reinforcement learning framework were demonstrated 

in (Bakker and Schmidhuber, 2004; Kulkarni et al., 2016).  

In a related line of research studying the function and origins of intrinsic motivation, Singh et 

al. (2010) have shown through evolutionary computational modelling that given a distribution 

of changing environments and an extrinsic reward that organisms need to maximize, it could 

be more robust for RL agents to represent and use a surrogate reward function that does not 

directly correspond to this extrinsic reward, but rather includes a component of intrinsic 

motivation that pushes the system to explore its environment beyond the direct search for the 

extrinsic reward.  

Applications in educational technologies and video games 

Given the strong causal interactions between curiosity-driven exploration and learning that we 

just reviewed, these topics have attracted the attention of theorists and experimenters on the 

application domain of education. Long before recent controlled experimental results showing 

how intrinsic motivation and curiosity could enhance learning, educational experimenters like 

Montessori (1948) and Froebel (1885) have studied how open-ended learning environments 

could foster individual child development, where learners are active and where the tutor’s role 

is to scaffold challenges of increasing complexity and provide feedback (rather than 

instruction). Such experimental approaches have more recently influenced the development of 

hands on educational practices, such as the pioneering LOGO experiments of Papert (1980), 

where children learn advanced concepts of mathematics, computer science and robotics, and 

now disseminating at large scales in several countries (Resnick et al., 2009; Roy et al., 2015).  

In parallel, philosophers and psychologists like Dewey, Vygotski, Piaget and Bruner 

developed theories of constructivist learning which directly pointed towards the importance of 

fostering curiosity and free play and exploration in the classroom. Recently, the large body of 

research in educational psychology has began to study systematically how states of intrinsic 

motivation can be fostered, or on the contrary weakened, in the classroom, for example when 

the educational context provides strong extrinsic rewards (Deci et al., 2001).  



As educational technologies are now thriving, in particular with the wide spreading of 

Massive Open Online Courses (MOOCs) and educational applications on tablets and 

smartphones, it has become natural to enquire how fundamental understanding of curiosity, 

intrinsic motivation and learning could be leveraged and incorporated in these educational 

tools to increase their efficiency.   

A first line of investigation has been to embed educational training within motivating and 

playful video games. In a pioneer study, Malone (1980) used and refined theories of intrinsic 

motivation as proposed by Berlyne, White and psychologists of the 50-70’s period, to 

evaluate which properties of video games could make them intrinsically motivating, and to 

study how such contexts could be used to distill elements of scholarly knowledge to children. 

In particular, he showed that video games were more intrinsically motivating when including 

clear goals of progressively increasing complexity, when the system provided clear feedback 

on the performance of users, and when outcomes where uncertain to entertain curiosity. For 

example, he showed how arithmetic concepts could be taught in an intrinsically motivating 

scenarized dart video game. As an outcome of their studies, they could generate a set of 

guidelines for the design of education-oriented video games.  

In a similar study, studying the impact of several of the factors identified by Malone, Cordova 

et al. (1996) presented a study of a population of elementary school children using a game 

targeting the acquisition of arithmetic order-of-operation rules, scenarized in a “space quest” 

story.  In this specific experimental context, they showed that embedding personalization in 

the math exercises (based on preferences expressed through a pre-questionnaire) significantly 

improved intrinsic motivation, task engagement and learning efficiency, and that this effect 

was heightened if in addition the software offered personalization of visual displays and a 

variety of exercise levels children could choose from. 

Beyond explicitly including educational elements in video games, it was also shown that 

“pure” entertainment games such as certain types of action games can enhance attentional 

control, cognitive flexibility and learning capabilities by exercising them in an intrinsically 

motivating playful context (Cardoso-Leite and Bavelier, 2014). Within this perspective, 

Merrick and Mahler (2009) suggested that implementing artificial curiosity in non-player 

characters in video games could enhance the interestingness of video games.  

A second line of investigation has considered how formal and computational models of 

curiosity and intrinsic motivation could be applied to Intelligent Tutoring Systems (ITS) 

(Nkambou et al., 2010), as well as Massive Open Online Courses (MOOCS) 

(Liyanagunawardena et al., 2013). ITS, and more recently MOOCs, have targeted the design 

of software systems that could help students acquire new knowledge and skills, using artificial 

intelligence techniques to personalize teaching sequences, or the way teaching material is 

presented, and in particular proposing exercises that match the particular difficulties or talents 

of each individual learner. In this context, several approaches were designed and 

experimented so as to promote intrinsic motivation and learning.  

Clement et al. (2015) have presented and evaluated and ITS system that directly reused 

computational models of curiosity-driven learning based on the learning progress hypothesis 



described above (Oudeyer et al., 2007). This study considered teaching arithmetic 

decomposition of integer and decimal numbers, in a scenarized context of money handling, to 

a population of 7-8 years old children (see figure 4). To design the ITS system, a human 

teacher first provided pedagogical material in the form of exercises grouped along coarsely 

defined levels and coarsely defined types. Then, an algorithm called ZPDES was used to 

automatically personalize the sequence of exercises for each student, and this personalization 

was made incrementally during the course of interaction with each student. This 

personalization was achieved by probabilistically proposing to students exercises that 

maximized learning progress at their current level, i.e. the exercises where their errors 

decrease fastest. In order to identify dynamically these exercises, and shift automatically to 

new ones when learning progress becomes low, the system used a multi-armed bandit 

algorithm that balanced exploring new exercises to assess their potential for learning progress, 

and exploiting exercises that recently lead the student to learning progress. During this 

process, the coarse structure organizing exercises that was provided by a human teacher is 

used to guide the algorithm towards finding fast which exercises provide maximal learning 

progress: the system starts with exercise types that are at the bottom of the difficulty hierarchy, 

and when some of them show a plateau in the learning curve, they are deactivated and new 

exercises upper in the hierarchy are made available to the student (see figure 5). The use of 

learning progress as a measure to drive the selection of exercises had two interacting purposes, 

relying on the bidirectional interaction described above. First, it targeted to propose exercises 

that could stimulate the intrinsic motivation of students by dynamically and continuously 

proposing them challenges that were neither too difficult nor too easy. Second, by doing this 

using learning progress, it targeted to generate exercise sequences that are highly efficient for 

maximizing the average scores over all types of exercises at the end of the training session. 

Indeed, Lopes and Oudeyer (2012) showed in a theoretical study that when faced with the 

problem of strategically choosing which topic/exercise type to work on, selecting 

topics/exercises that maximize learning progress is quasi-optimal for important classes of 

learner models. Experiments with 400 children from 11 schools were performed, and the 

impact of this algorithm selecting exercises that maximize learning progress was compared to 

the impact of a sequence of exercises hand-defined by an expert teacher (that included 

sophisticated branching structures based on the errors-repair strategies the teacher could 

imagine). Results showed that the ZPDES algorithm, maximizing learning progress, allowed 

students of all levels to reach higher levels of exercises. Also, an analysis of the degree of 

personalization showed that ZPDES proposed a higher diversity of exercises earlier in the 

training sessions. Finally, a pre- and post- test comparison showed that students who were 

trained by ZPDES progressed better than students who used a hand-defined teaching sequence.  
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Figure	  4	  Educational game used in (Clement et al., 2015): a scenario where elementary school 

children have to learn to manipulate money is used to teach them the decomposition of integer 

and decimal numbers. Four principal regions are defined in the graphical interface. The first is 

the wallet location where users can pick and drag the money items and drop them on the 

repository location to compose the correct price. The object and the price are present in the 

object location. Four different types of exercises exist: M (customer/one object), R 

(merchant/one object), MM (customer/two objects), RM (merchant/two objects). The ITS 

system then dynamically proposes to students the exercises in which they are currently 

making maximal learning progress, targeting to maximize intrinsic motivation and learning 

efficiency.  
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Figure	  5	  Example of the evolution of the zone-of-proximal development based on the empirical 

results of the student. The ZPD is the set of all activities that can be selected by the algorithm. 

The expert defines a set of pre-conditions between some of the activities (A1 → A2 → 

A3 . . .), and activities that are qualitatively equal (A == B). Upon successfully solving A1 the 

ZPD is increased to include A3. When A2 does not achieve any progress, the ZPD is enlarged 

to include another exercise type C, not necessarily of higher or lower difficulty, e.g. using a 

different modality, and A3 is temporarily removed from the ZPD. (Adapted from Clement et 

al., 2015).  

 

Several related ITS systems were developed and experimented. For example, Beuls (2013) 

described a system targeting the acquisition of Spanish verb conjugation, where the ITS 

attempts to propose exercises that are just above the current capabilities of the learner. 

Recently, a variation of this system was designed to foster the learning of musical 

counterpoint (Beuls and Loekx, 2015). In another earlier study, Pachet (2004) presented a 

computer system targeting to help children discover and learn how to play musical 

instruments, but also capable to support creativity in experienced musicians, through fostering 

the experience of Flow (Csikszenthmihalyi, 1991). This system, called the Continuator 

(Pachet, 2004), continuously learnt the style of the player (be it a child beginner or expert) 

and used automatic improvisation algorithm to respond to the user’s musical phrases with 

musical phrases of the same style and complexity, but different from those actually played by 

users. Pachet observed that both children and expert musicians most often experience an 

“Eureka moment”. Their interest and attention appeared to be strongly attracted by playing 



with the system, leading children to try and discover different modes of play and to increase 

the complexity of what they could do. Expert musicians also reported that the system allowed 

them to discover novel musical ideas and to support creation interactively. 

Discussion: convergences, open questions and educational design 

Converging research strands in psychology, neuroscience and computational learning theory 

indicate that curiosity and learning are strongly connected along several dimensions, and that 

these connections have wide implications for education.  

As often informally observed by many education practioners, recently developed 

experimental protocols showed that experiencing situations with novelty, complexity and 

prediction errors fostered memory retention. Furthermore, several lines of evidence showed 

that the brain is equipped with neural circuits which consider information as an intrinsic 

reward, and thus actively searches for these situations featuring novelty and/or prediction 

errors.  

At the same time, there are several open scientific questions. One of them is to characterize 

precisely which informational features are intrinsically rewarding. As mathematical 

formalization shows, novelty, complexity and prediction errors can be computed in many 

different ways, and then used potentially in equally different ways to determine intrinsic 

reward in curiosity-driven exploration. For example, some hypotheses approach curiosity as a 

mechanism maximizing surprise (Itti and Baldi, 2009), or intermediate complexity (Kidd et 

al., 2012), or learning progress (Oudeyer et al., 2007). While on some situations these formal 

variations may be equivalent, they can also generate vastly different learning dynamics. For 

example, the LP hypothesis introduces a positive feedback loop between learning and state 

curiosity, and in turn this involves deep consequences on the long-term formation of learning 

and developmental trajectories (Oudeyer and Smith, 2016). A related question is whether the 

brain includes a unified mechanism for spontaneous exploration, or whether it combines 

several of these heuristics (and how this combination happens). Designing experimental 

protocols to disentangle these various hypotheses is the subject of active current research 

(Baranes et al., 2014; Medder and Nelson, 2012; Taffoni et al., 2014; Markant et al., 2015).   

However, even if these questions are still unresolved, existing results suggest several 

guidelines for educational practice and the design of educational technologies. First, they 

highlight the importance of providing students with learning materials that are informationally 

engaging (surprising or with the right level of complexity/learnability) in order to foster 

memory retention. Second, they suggest the importance of personalization, active learning 

and active teaching. Indeed, features like (intermediate) novelty or learning progress are 

fundamentally subjective in the sense that they are a measure of the relation between a 

particular educational material and the state of knowledge of each particular student at a given 

time of its learning trajectory. As a consequence, what triggers curiosity and learning will be 

different for different students. Human or computational teachers can address this issue by 

tracking the errors and behaviors of each student in order to present sequences of items that 

are personalized to maximize their experience of features associated to states of curiosity and 

motivation. Learners have also a fundamental capability that should be leveraged: as their 



brain is intrinsically rewarded by features like novelty or learning progress, they will 

spontaneously and actively search for these features and select adequate learning materials if 

the environment/teacher provides sufficient choices. While most existing studies have focused 

on either active learning or active teaching, the study of the dynamic interaction between 

active learners and teachers is still a largely open question that should be addressed to 

understand how this dynamics could scaffold mutual guidance towards efficient curiosity-

driven learning.  
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