
Intrinsic neural excitability induces time-dependent
overlap of memory engrams

Geoffroy Delamare, Douglas Feitosa Tomé, Claudia Clopath
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Abstract
Memories are thought to be stored in neural ensembles known as engrams that are specifically

reactivated during memory recall. Recent studies have found that memory engrams of two events that
happened close in time tend to overlap in the hippocampus and the amygdala, and these overlaps have
been shown to support memory linking. It has been hypothesised that engram overlaps arise from
the mechanisms that regulate memory allocation itself, involving neural excitability, but the exact
process remains unclear. Indeed, most theoretical studies focus on synaptic plasticity and little is
known about the role of intrinsic plasticity, which could be mediated by neural excitability and serve
as a complementary mechanism for forming memory engrams. Here, we developed a rate-based
recurrent neural network that includes both synaptic plasticity and neural excitability. We obtained
structural and functional overlap of memory engrams for contexts that are presented close in time,
consistent with experimental studies. Moreover, we showed that enhancing the initial excitability of
a subset of neurons just before presenting a context biases the memory allocation to these neurons.
We then explored the role of inhibition as a way of controlling competition among neurons from two
ensembles. This work suggests mechanisms underlying the role of intrinsic excitability in memory
allocation and linking, and yields predictions regarding the dynamics of memory engrams.

Introduction

Neural circuits have the ability to form and retain memories that last from hours to years. In particular,
pioneering anatomical studies (Scoville & Milner, 1957) have suggested that such circuits are located in
the hippocampus, although they had long remained unobserved. Over the past decades, technological
advances such as neural imaging and optogenetics allowed for the discovery of engram cells in multiple
brain regions as the neural substrate for memory storage and retrieval (Josselyn & Tonegawa, 2020).
They are defined as a subpopulation of neurons that is initially activated during presentation of a stim-
ulus, followed by transient physical and/or chemical changes that lead to its specific reactivation during
memory recall (Josselyn & Tonegawa, 2020). Engram cells have been observed in the hippocampus (Liu
et al., 2012), in the amygdala (Rashid et al., 2016; Morrison et al., 2016) and the neocortex (Kitamura
et al., 2017; Tonegawa et al., 2015). These studies have shed lights on the ability of neural populations to
store and retrieve memories but the exact mechanisms responsible for the formation of memory engrams
are not yet fully clear.

The mechanistic understanding of the formation and long-term stability of memory engrams has long
been dominated by Hebbian learning (Hebb, 1949). Indeed, most computational models have focused on
synaptic mechanisms, such as long-term potentiation (LTP) or depression (LTD) (Bliss & Collingridge,
1993; Josselyn & Tonegawa, 2020), that have been able to provide insight into the formation and stability
of neural assemblies (Zenke et al., 2015; Litwin-Kumar & Doiron, 2014). As a result, the contribution of
other important mechanisms, like intrinsic excitability (Titley et al., 2017), has remained underexplored.
Indeed, previous experimental works have shown that neurons with high excitability are preferentially
allocated to memory engrams (Silva et al., 2009; Han et al., 2007; Zhou et al., 2009). Interestingly,
learning is known to transiently increase neural excitability, reducing the afterhyperpolarization of neu-
rons over several hours (Thompson et al., 1996; Oh et al., 2003). This transient increase is likely due
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to the learning-induced expression of the transcription factor CREB (Rashid et al., 2016; Silva et al.,
2009; Han et al., 2007), which is known to play a role in regulating neural excitability (Dong et al.,
2006). As a result, time-varying excitability may account for overlapping neural ensembles encoding
memories of events that are temporally linked (Sehgal et al., 2018), namely events spaced by a short
temporal delay, as observed in the lateral amygdala (Rashid et al., 2016), the hippocampal dorsal CA1
(Cai et al., 2016; Shen et al., 2022), and the retrosplenial cortex (Sehgal et al., 2021). Previous theo-
retical works have described how the dynamics of plasticity-related proteins and excitability can lead to
co-allocation of memories at the dendritic level (Kastellakis et al., 2016; Sehgal et al., 2021; Chowdhury
et al., 2021). Attractor networks (Amit, 1989) have been previously used to describe the recurrent net-
work properties of overlapping memory engrams (Gastaldi et al., 2021) but without taking excitability
into account. Here, we developed a computational model that describes the formation of overlapping
memory engrams, combining synaptic plasticity and activity-dependent intrinsic excitability. By focus-
ing on the recurrent neural network dynamics and its link with behavior, we show that our model is able
to explain - at the mechanistic level - experimental findings regarding overlapping neural ensembles and
memory linking. Moreover, we uncover the potential mechanisms allowing neurons to compete for al-
location to memory engrams, as observed experimentally. Our results suggest that the temporal linking
of memory engrams arises from co-activation of different neural ensembles, mediated by the interaction
of time-varying excitability and synaptic plasticity. Our model makes testable predictions about how the
balance among inhibition, feed-forward inputs and excitability is crucial for determining the extent of
overlap among engrams of temporally close events.

Results

Formation of a single memory engram in a recurrent network with excitability

In order to study the effect of excitability in memory allocation and linking, we built a rate-based model
with feed-forward and recurrent connections, equipped with excitability and Hebbian plasticity. Ex-
citability of each neuron i is modelled as a time-varying threshold εi of the input-output function (Meth-
ods, Eq. 1). This excitability is initially sampled from a random distribution (Methods) and changes
to a higher value when the neuron’s firing rate reaches a threshold θ before decaying to its initial value
(Methods, Eq. 4). Feed-forward inputs are defined as a single layer divided in three subpopulations
corresponding to different contexts. Feed-forward weights are set as a diagonal block structure to define
three receptive fields (Methods, Fig. 1.a, Fig. S1), such that presenting a context increases the input
current to a subpopulation of neurons in the main region. Recurrent connections are assumed to be all-
to-all and plastic, according to a Hebbian learning rule (Methods, Eq. 2), and initialised at 0. We then
stimulated the network by presenting different contexts (training phase, Methods).

We first observed that, after presenting the first context, the firing rates of neurons responding pref-
erentially to this context (Fig. 1.b 0 to 3s) are above the ”active” threshold θ , which we defined as the
threshold above which neurons are classified as active. This was not the case for the other neurons in the
network (Fig. 1.b, left). Analysing the recurrent weights matrix revealed that learning led to the forma-
tion of an assembly of neurons strongly connected to each other (Fig. 1c). The weights between neurons
outside the assembly, however, have not significantly changed from their initial value equal to zero. We
then sought to test the ability of the network to perform pattern completion. To this end, we stimulated
the network with a partial cue and measured memory retrieval. We observed that stimulating 4 out of the
7 neurons composing the assembly, namely those that were tagged as active during training (Methods),
is enough to activate all the neurons in the assembly (Fig. 1.d, right). This result shows that stimulating
a subset of neurons of the assembly is sufficient to activate other neurons in the same assembly through
strong intra-assembly connections.
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Figure 1: Encoding a single memory engram in a recurrent network equipped with intrinsic neural
excitability. a) Diagram of the network architecture. Neurons in the input layer (left) project to the network
with feed-forward connections WFF (right). The feed-forward weights are defined such that neurons in the
main layer have receptive fields (only two are shown here, red and blue neurons). b) Firing rates of all the
neurons across time during training (left) and recall (right). Neurons responding preferentially to the context
are shown in red while the other neurons are shown in black and do not respond to the stimulus. Black
bars show presentations of the stimulus to the network. The dashed line is the ”active” threshold, i.e. the
threshold above which neurons are classified as active. c) Recurrent weights matrix after training. The block
structure shows a neural assembly with stronger connections between neurons responding to the red context
(0 to 15). d) Firing rate of each neuron responding to preferentially to the first context during training (left)
and recall (right). Black arrows indicate 7 neurons that were tagged as ”active” during training and that were
reactivated during recall. During the recall phase, 4 of these 7 neurons (black stars) were stimulated.

Intrinsic neural excitability induces overlap among memory engrams of temporally close
events

Next, we investigated the effect of presenting a second context to the network either 6h or 24h after
the first one (Fig. 2.a, Methods), inspired by previous experiments (Rashid et al., 2016). We designed
our model in such a way that, after learning, excitability of neurons taking part in the newly formed
assembly is increased, before slowly decaying to their baseline level (Methods, Eq. 4). Specifically,
there is a transient increase in excitability after stimulating the network by the first context (Fig. 2.b,
red triangle) and the second context (Fig. 2.b, blue triangle). We then measured memory recall for both
contexts successively (Fig. 2.a). Presenting a second context after a 24h delay led to the formation of
a second neural assembly in the recurrent weights matrix, distinct from the first one (Fig. 2.c, top, Fig.
S2, a). This second assembly is composed of neurons that are responsive to only the second context.
As in the previous section, neurons that are part of both assemblies are reactivated independently during
memory recall (Fig. 2.d, top left and right). Interestingly, we found that if the second context is presented
after a 6h delay, some off-diagonal weights are also reinforced for neurons responding preferentially to
the second context (Fig. 2.c, bottom, Fig. S2, b). This suggests that the two memories are encoded
by overlapping neural representations in the case where the contexts are presented 6h apart but not 24h
apart. Indeed, when recalling the second memory, we observed a co-activation of neurons that take part
in the first assembly in the case of a 6h delay (Fig. 2.d, bottom left and right). We can therefore quantify
the overlap between the two assemblies, namely the number of neurons that were active during recall of
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Figure 2: Training-induced increase in excitability induces overlap among memory engrams of tem-
porally close events. a) Simulation protocol for studying the effect of forming two memories, spaced by
different temporal delays. During the training phase, two contexts are presented 6h or 24h apart. After 24h,
both contexts are recalled, separated by 25 min. b) Time course of excitability for each neuron of the network.
Whenever the firing rate of a neuron crosses the active threshold, its excitability moves to a higher value (red
and blue triangles corresponding to training on the first and second contexts, respectively), before decreasing
to their initial value on a time scale of 24h (Methods). Red and blue traces correspond to neurons responding
preferentially to the first and second contexts, respectively. c) Recurrent weights matrix immediately after
training, in the case where the contexts are presented 24h apart (top) and 6h apart (bottom). d) Firing rates
of individual neurons during recall of the first context (left) and the second context (right), in the case where
the events are separated by 24h (top) and 6h (bottom). Neurons 1 to 15 respond preferentially to the first
context (red) and neurons 16 to 30 respond preferentially to the second context (blue).

both contexts, and found that it is higher in the case where the events were separated by 6h relative to
24h (Fig. 6, S6).

Linking memories at the behavioral level in a fear conditioning simulation

We then asked whether this structural overlap among memory engrams could lead to memory linking.
To that end, we modelled a fear conditioning experiment (Cai et al., 2016). We introduced freezing as
an ideal-observer, namely a read-out value that is proportional to the sum of the neurons’ firing rate,
integrated over the duration of the recall stimulus (Methods, Eq. 5). The unconditioned stimulus (US)
was introduced as a multiplicative term in the Hebbian learning rule (Methods, Eq. 2) such that the
recurrent weights are preferentially increased when the US is applied.

We presented three distinct contexts to the network, separated by 7 days and 5 hours (Fig. 3.a). In
order to test memory linking, we presented the last context a second time, now paired with the US (Fig.
3.a, in blue) and measured the fear response in each of the three contexts. We observed that freezing
was high when presenting either the blue context, which was paired with the US, or the yellow context,
which was not paired with the US but was initially separated by 5h relative to the shocked context (Fig.
3.b). Conversely, presenting the red context, delayed by 7 days, elicited a freezing level comparable to
the control case when no US was applied (Fig. 3.b). Our model was then able to show that two memories
encoded close in time tend to be linked in such a way that recalling either memory can lead to a similar
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behavioral output, as shown experimentally (Cai et al., 2016; Shen et al., 2022).
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Figure 3: Memory linking in a fear conditioning simulation. a) Simulation protocol of fear conditioning.
Three contexts are used and are delayed by either 7 days (red and yellow) or 5 hours (yellow and blue).
Shock is then applied 2 days later in the blue context by pairing the context with an unconditioned stimulus
(Methods). Memories are then recalled independently for each of the three contexts. b) Fear read-out upon
recalling the three memories, when shock is applied (left) or not (right). n = 10 simulations and data are
shown as mean ± s.e.m.

Manipulating initial excitability biases neural allocation of memories

Given that excitability is a key mechanism for linking memory engrams, we then asked to what extent
excitability could also play a role in biasing memory allocation. To that end, and inspired by previous
experiments (Rashid et al., 2016), we increased the initial excitability of a subset of the neurons that
respond preferentially to the first context (ε+, Fig. 4.a, Methods) during training of the first context.
We then inhibited this subpopulation during memory recall (i+, Fig. 4.c, Methods) and measured the
strength of memory recall (Freezing). We found that inhibiting the subpopulation whose excitability
was enhanced reduced freezing during memory recall relative to the control case without manipulation
of excitability (Fig. 4.d and Fig. S4.d). This suggests that neurons with enhanced excitability are
preferentially allocated to memory engrams (Fig. S4.c, left).

Next, we presented two different contexts to the network,separated by 6h or 24h, and tested how
increasing excitability to a subset of neurons during formation of the first memory could bias the overlap
between the two memory engrams. We inhibited the subpopulation that received enhanced excitability
during recall of the second context and we measured the fear response to the second context (Fig. 4.b
and Fig. S4.b). In the case where the events were separated by 6h, inhibiting the subpopulation resulted
in a reduction of freezing as compared to the case where the events were delayed by 24h (Fig. 4.e and
Fig. S4.e). Given that the subpopulation ε+ is composed of neurons responding preferentially to the
first context, this suggests that this subpopulation preferentially took part in the overlap between the two
memory engrams (Fig. S4.c, right).

Inhibition-induced competition among neurons crucially regulate memory allocation for
temporally close events

Finally, we sought to evaluate how much neurons compete for memory allocation. To that end, we
repeated the same protocol as in the previous section, but inhibiting the subpopulation (i+) during pre-
sentation of the second context, instead of during recall (Fig. 5.a). We observed that the formation of
the second memory was impaired when the contexts were presented 6h apart compared to the 24h delay
(Fig. 5.b, solid lines). Note that this is the case whether or not the subpopulation (ε+) is inhibited (i+)
during recall (Fig. S5.a-b, solid lines).
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Figure 4: Neurons with enhanced excitability are preferentially allocated to memory engrams and
overlapping ensembles. a) Protocol for biasing memory allocation to a subpopulation of neurons. Excitability
of a subset of neurons is enhanced during training (ε+, top). During recall, this subpopulation is blocked (i+,
Methods). In the control case, excitability is not manipulated. b) Protocol for biasing the overlap to a
subset of neurons. Again, excitability is enhanced (ε+) for a subset of neurons during presentation of the
first context (red). Then, a second context is presented (blue) after 6h or 24h, and the fear response to
the second context is measured while blocking the subpopulation that received enhanced excitability (i+). c)
Spatial representation of the protocol: a subset of Nε+ neurons receives an enhanced excitability ε+, that is
added to their initial excitability. During inhibition, Ni+ neurons from this subset are inhibited, receiving a
negative current i+ (Methods). d) Fear response to the context while blocking the subset of neurons, in the
case where excitability is enhanced (ε+) or not (control). e) Fear response when recalling the second memory
in b), when the two contexts are separated by either 6h or 24h. For all simulations, n = 50 simulations and
data are shown as mean ± s.e.m.
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Figure 5: Neurons compete for allocation to memory engrams. a) Same protocol as Fig. 4.b but with
the inhibition of the subset (i+) applied during presentation of the second context. b) Fear measurement when
recalling the second memory when the events are separated by either 6h or 24h. The dashed line corresponds
to the case where global inhibition I1 is reduced (Methods). For all simulations, n = 50 simulations and data
are shown as mean ± s.e.m. (9 trials were excluded, Methods).
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Figure 6: Predictions regarding the overlap among memory engrams. a) Protocol for forming overlap
among memory engrams. During training, two contexts were presented, separated by a given temporal delay.
The recall protocol allows for measuring the amount of overlap between engrams associated to the first
context (red) and the second context (blue). b) Overlap among engrams against the temporal delay between
the contexts. For each temporal delay, n = 20 simulations (3 were excluded, Methods). Results are shown as
mean ± s.e.m. c) Overlap obtained for a 6h delay in the control case, the case where inhibition was increased
I+0 and the case where the excitability decay time was decreased τ−ε . For the control case, n = 50 simulations
(5 were excluded, Methods) and for I+0 and τ−ε , n = 20 simulations. Data are shown as mean ± s.e.m.

We then hypothesised that this memory impairment was driven by inhibition. We repeated the simu-
lation as above while reducing the amount of inhibition in the network (Methods) during presentation of
the second context, as inspired by previous experiments (Rashid et al., 2016). We observed that freezing
was less impaired by inhibition of the subpopulation (i+) when the network inhibition was reduced (Fig.
5.b, dashed lines). Indeed, freezing in response to the second context increased more for a delay of 6h
compared to 24h, relative to the case with baseline inhibition (Fig. 5.b and Fig. S5.b, dashed lines).

The balance among inhibition, feed-forward inputs and excitability is crucial for forming
overlaps

Overall, we found that excitability can induce overlap between memory engrams. This overlap is depen-
dent on the temporal delay between the two contexts in a manner consistent with experimental findings
in the lateral amygdala (Rashid et al., 2016) and in the hippocampal dorsal CA1 (Cai et al., 2016). Our
result predict that the engram overlap arises from reactivation of the first ensemble when forming the
second memory (Fig. S2.b). Indeed, co-activation of neurons encoding the first memory (red traces)
along with neurons responding preferentially to the second context (blue traces) lead to strengthening of
the weights between these two ensembles, due to Hebbian plasticity (Fig. 2.c, Fig. S2.b). We varied the
temporal delay between the two contexts and found that the amount of overlap decreases when this delay
increases.

We also predict that increasing the level of inhibition I0 leads to a decrease in the overlap between
the two ensembles. Indeed, if the two events are separated by 6h, increasing I0 leads to a decrease in
the overlap as compared to the control case (Fig. 6.c, I+0 ). We found that decreasing the excitability
decay timescale τε also leads to a decrease in the overlap (Fig. 6.c, τ−

ε ). Indeed, the excitability increase
following learning needs to be above a threshold otherwise the first ensemble cannot be reactivated even
if the second context is presented after 6h (Fig. 6.e, Fig. S6.h). Finally, we also predict that the network
can only form overlapping memory engrams if the feed-forward weights that do not form receptive fields
(W FF

non RF) are within a defined range (Fig. S6.g). If these weights are too low, neurons that are not
preferentially activated by the second context cannot be reactivated when presenting this context after
6h. On the other hand, if they are too high, the ensembles overlap independently of the temporal delay
between the two contexts. In that case, we even observed an overlap with the novel context (Fig. S6.g,
yellow line).
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Discussion

Learning a single memory

We first showed that our network is able to form memories when stimulated by a feed-forward input. We
attributed this formation to synaptic plasticity, independently from the dynamics of neural excitability.
Indeed, the time scale of excitability is much slower than the time scale of Hebbian plasticity in our
model, suggesting that the initial activation of the neurons by feed-forward inputs leads to strengthening
of the synaptic weights through Hebbian learning. The structure of the neural assembly holding the
formed memory is similar to previous theoretical works that have used attractor networks (Gastaldi et
al., 2021; Amit, 1989). These neural assemblies are formed during the learning phase and are reactivated
during memory recall. Importantly, memories can be recalled even when stimulated by a partial cue,
suggesting that the neural activity is driven by recurrent connections. In particular, the structural change
that leads to the formation of neural assemblies leads to the formation of a memory, as suggested in
previous definitions of engram cells (Josselyn & Tonegawa, 2020).

The ability of the network to perform pattern completion is complemented by its ability to perform
pattern separation. However, we did not evaluate pattern separation in our model. This would be inter-
esting in particular because a recent study has shown that increased neural excitability in dendate gyrus
improves pattern completion and separation (Pignatelli et al., 2019). The role of the recall-induced in-
crease in excitability could explain this improvement. This could be directly tested in our model, for
example by presenting a conflicting cue to the network and measuring pattern separation after recall of
the memory.

Finally, our model does not take into account the evolution of memory engrams across time. Indeed,
when the network is not stimulated, the recurrent weights are kept static. In this framework, the delay
between the training phase and the recall phase has no impact on the recurrent weights.

Overlap between memory engrams of temporally close events

Here, we built a model that is able to reproduce the overlap among memory engrams of events that are
temporally linked. These overlaps have been observed in the amygdala (Rashid et al., 2016), the hip-
pocampus (Cai et al., 2016) and the retrosplenial cortex (Sehgal et al., 2021) while it has been reported
that these three regions are involved in a memory consolidation process known as systems consolidation
(Tonegawa et al., 2018; Kitamura et al., 2017). However, it remains unclear what information is trans-
ferred from one region to another and investigating a potential transfer of overlap between brain regions
would help understand how temporal memory linking evolves over the course of systems consolidation.

Structural overlap of memory engrams induces memory linking

After showing that memories of temporally close events are structurally linked in overlapping neural
ensembles, we showed that this overlapping structure can induce memory linking. In line with recent
experimental studies (Cai et al., 2016; Yokose et al., 2017), we observed in our model that this overlap
supports memory linking as the fear associated with one context can be transferred to another context
(Fig. 3, Fig. S3).

We also note that this memory linking is a result of the short temporal delay between contexts. In-
deed, in contrast to previous studies (Gastaldi et al., 2021; de Sousa et al., 2021), the overlap between two
memory engrams is independent from the conceptual relation between the contexts in question, which
we did not consider here. However, it is possible that this overlap supports the formation of mnemonic
structures, as they have been observed in the hippocampus for instance (Barron et al., 2020; Deuker et
al., 2016). Further work could be done to investigate the importance of overlapping memory engrams for
more complex cognitive processes such as inferential reasoning (Barron et al., 2020; Zeithamova et al.,
2012).
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Manipulating excitability biases neural allocation of memories

In our model, memory allocation is determined by two main factors. On the one hand, engrams are
preferentially allocated to neurons that receive increased feed-forward inputs, as defined in the feed-
forward weights (Fig. 1). On the other hand, we showed that memory allocation is also biased towards
neurons with high excitability (Fig. 4), consistent with previous studies (Zhou et al., 2009; Rashid et al.,
2016). However, for the sake of simplicity, we did not explicitly probe the relative importance of the feed-
forward weights compared to intrinsic excitability. To that end, it would be necessary to introduce some
variability in the structure of the receptive fields, and subsequently investigate how neuronal memory
allocation is impacted by feed-forward inputs versus excitability dynamics.

Here, we considered that excitability is mainly governed by the transcription factor CREB. We mod-
elled its dynamics by increasing excitability instantaneously after learning and then allowing it to decay
over a time scale of a few hours, as motivated by several experimental studies (Moyer et al., 1996; Oh
et al., 2003; Thompson et al., 1996; Kitagawa et al., 2017). Although the results might be similar, it is
important to note that these dynamics are conceptualized and that other mechanisms that are not consid-
ered here are also known to regulate neural excitability. For instance, internalisation of Kir2.1 channel
increases neural excitability during memory recall (Pignatelli et al., 2019) while the expression of the
C-C chemokine receptor type 5 (CCR5) is known to decrease excitability (Shen et al., 2022; Zhou et al.,
2016). Adult-born neurons are also known to be more excitable than their counterparts (Silva et al.,
2009). Finally, memory allocation may also be influenced by other mechanisms beyond the scope of
the present study such as synaptic tagging and spine clustering (Rogerson et al., 2014; Kastellakis et al.,
2016). We also showed that artificially increasing excitability in an ensemble of neurons could also bias
co-allocation of this ensemble to further memories as shown in previous experimental findings (Rashid
et al., 2016). This result arose naturally in our model because neurons with enhanced excitability are
preferentially allocated to the first memory, and will then overlap with the second engram (Fig. S4.c).

Role of inhibition in memory allocation and linking

Finally, we showed that neurons can compete for memory allocation and that the outcome of this compe-
tition is determined by both the initial excitability of neurons and the amount of inhibition in the network.
We first showed that blocking neurons which received enhanced excitability during presentation of the
first context impaired learning of a second context presented shortly after, suggesting that these neurons
have a competitive advantage over the others for memory allocation. Secondly, we showed that reducing
inhibition restored the ability of the network to learn the second memory, suggesting that competition is
driven by inhibition.

In our model, neurons with a higher initial excitability are favoured for memory allocation and in-
hibit the remaining neurons, preventing them from taking part in a memory engram. This process has
been previously shown experimentally (Rashid et al., 2016; Han et al., 2007) and this study provides a
computational model that sheds light on the underlying competitive mechanism. Finally, we use a homo-
geneous global inhibition model, but further studies could explore the effect of populations of different
inhibitory cell types on engram overlap and memory linking.

Conclusion

In summary, we have built a recurrent neural network model that can reproduce the experimentally-
observed neuronal overlap between temporally-linked memory engrams by combining both synaptic
plasticity and neural excitability. Our results suggest that engram overlaps are crucially determined by
the balance among inhibition, feed-forward inputs and excitability.
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Methods

Rate model

Our rate-based model consists of a single recurrent neural network of N neurons (with firing rate ri,
1≤ i≤N) which receives inputs from an external region of Nin neurons (with firing rate rin

i , 1≤ i≤Nin).
The weights between the input region and the network are given by the matrix W FF (Fig. S1). Recurrent
connections are given by the weight matrix W . Inhibition is introduced as I = I0 + I1 ∑

N
j=1 r j, where

I0 sets a baseline inhibition level and I1 scales an inhibition term proportional to the sum of the firing
rates of the N neurons. Finally, excitability is added as a time-varying threshold εi(t) of the input-output
function. The rate dynamics of a neuron i is therefore given by:

τr
dri

dt
+ ri = ReLU

(
N

∑
j=1

Wi jr j +
Nin

∑
j=1

W FF
i j rin

j − I + εi(t)

)
(1)

where τr is the decay time of the rates and ReLU is the rectified linear activation function. In Fig. 5 and
Fig. S5, the dashed lines correspond to the case where inhibition is reduced, i.e. I1 is set to a lower value
I−1 (Table of Parameters).

Weights dynamics

The feed-forward weights W FF are static and define three receptive fields (RF) that model three different
contexts (Fig. S1). Neurons 1 to 15 respond preferentially to the first context, neurons 16 to 30 to the
second context, and neurons 31 to 45 to the third context. All-to-all recurrent connections W are plastic
and the weights Wi j between each presynaptic neuron i and postsynaptic neuron j follow a Hebbian rule
given by:

τW
dWi j

dt
= (1+US(t))∗ tanh(ri ∗ (r j − r0

j (t))) (2)

where τW is the learning time constant and US(t) is the unconditioned stimulus (US) which is equal
to US+ when US is applied (synchronously with stimulation of the context) and 0 otherwise. r0

j is the
temporal mean over a time window δ of the firing rate of neuron j, given by:

r0
j (t) =

1
δ

∫ t

t−δ

r j(t’)dt’ (3)

An upper cap Wmax and a lower cap Wmin are applied to the recurrent weights W to prevent them from
being negative or too high.

Intrinsic neural excitability

Intrinsic neural excitability follows dynamics that have been previously hypothesised to be due to the
increase in the CREB transcription factor following learning (Silva et al., 2009). Each neuron’s initial
excitability ε0

i is sampled from a half-normal distribution of mean 0 and standard deviation 0.5. If the
firing rate of a given neuron i reaches a set active threshold θ , its excitability εi moves from its initial
value ε0

i to a higher value E before decaying to ε0
i with a time scale τε :

τε

dεi

dt
+ εi = ε

0
i (4)

Note that we did not consider any increase in excitability following recall.
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Stimulation protocol

During training, either the first, second or last third of the Nin neurons from the input region are activated,
namely their firing rates are set to a fixed value rCS. This activation is repeated Nstim times for a duration
∆T , with an interstimulus delay ∆S. During the recall period, one of the three contexts is presented for
a duration ∆T . During training in all figures (except Fig. 3 and Fig. S3) shock is applied synchronously
with the context, namely the value US in the learning rule (Eq. 2) is set to a non-zero value US+. In Fig.
3 and Fig. S3, shock is applied during the last presentation of the blue context (when specified).

During the simulations where excitability is manipulated (Fig. 4, 5, Fig. S4 and Fig. S5), the first
Nε+ neurons received an enhanced excitability ε increase , that is added to their initial excitability ε0

i during
presentation of the first context. Then, when inhibition is applied (i+), the first Ni+ neurons receive an
external negative current i.

Behavioral read-out

We introduced a read-out variable in order to compare it with the freezing levels measured in experiments.
To that end, we modeled freezing using an ideal observer defined as:

F = ∑
i∈Ω

∫ tr+∆T ′

tr
ri(t)dt (5)

where tr is the onset of the recall stimulation and ∆T ′ = 100 ms is the integration time, corresponding to
the temporal window during which the neuron is active. Ω denotes the ensemble of neurons belonging
to the engram, namely the set of neurons crossing the active threshold θ during the recall time window.

The engram overlap (Fig. 6 and S6) is computed as the number of neurons responding to both recall
of the first context and another context (either the same context, a novel context or a context that was
presented with a 6h or 24h delay) divided by the number of neurons responding to the first context.

Exclusion criteria

During some simulations, the firing rates of some neurons increased and reached non-realistic values.
We defined a threshold of 100 Hz and decided to exclude any trials where the firing rate of any neuron
reached 100 Hz at any time point. Around 10% of the trials were typically excluded.

Integration

Integration was done using Euler’s method on Python. A time step of 0.5 ms was used during and 3 s
after training sessions, and during and 300 ms after recall sessions. Between training and recall, a time
step of 20 s was used.

Table of parameters

An initial set of parameters was used in most of the figures except in Fig. 3 and Fig. S3. This initial
configuration was chosen to match previous experimental results in the amygdala (Rashid et al., 2016).
In Fig. 3, a second set of parameters was used to match engrams overlap measures observed in the dorsal
CA1 (Cai et al., 2016).
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Parameter Description Fig. 1, 2, 4,
5, S1, S2, S3,
S5, S6

Fig. 3, S1, S4

N Number of neurons in the main region 60
Nin Number of neurons in the input layer 30
τε Excitability decay time constant 24 h
E Excitability jump 3.5 4
τr Rate decay time constant 15 ms
θ Active threshold 6 Hz 4 Hz
I0 Inhibition baseline 6
I1 Inhibition multiplicative factor 0.9
I-
1 Reduced inhibition multiplicative factor 0.88

∆T Stimulation duration 40 ms
Nstim Number of stimulation per training sessions 20 15
∆S Interstimulus delay 150 ms
W FF

RF Feed-forward weights corresponding to the RF neurons 0.3
W FF

non RF Feed-forward weights corresponding to the non RF neurons 0.2
τw Hebbian rule time constant 750 ms 500 ms
Wmax Upper cap for plastic recurrent weights 1
Wmin Lower cap for plastic recurrent weights 0
US+ Unconditioned stimulus strength 1 0.5
rCS Firing rate of the neurons from the input layer when acti-

vated
4 Hz

δ Averaging time of firing rates 15 s
Nε+ Number of neurons that receive enhanced excitability 8 -
ε increased Increase in excitability 5 -
Ni+ Number of neurons that are inhibited 6 -
i Inhibition strength 0.5 -
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Figure S1: Feed-forward weights matrix. Three receptive fields are defined by strong weights in a block-
diagonal structure. When presenting the first context for example, the first 10 neurons of the input region are
activated which in turn stimulate preferentially the first 15 neurons in the main region.
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Figure S2: Firing rates of all the neurons as a function of time during presentation of the second
context. a) Time course of the firing rate of all the neurons during presentation of the second context, when
presented 24h after the first context (same protocol as Fig. 2). b) Same as a) when the second context is
presented 6h after the first one. Blue and red traces correspond to neurons responding preferentially to the
first and second context, respectively. The dashed line corresponds to the active threshold and the black bars
to the stimulation.
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Figure S3: Network dynamics leading to memory linking. a) Firing rates of all the neurons across time
during training in the fear conditioning protocol depicted in Fig. 3a. Each color represents a population of
neurons that receives high input current when one of the contexts is presented. The first, second and third
panels correspond, respectively, to the presentation of the first, second and third contexts, with a delay of 7
days (between the first and the second one) and 5 hours (between the second and the third one). Shock is
applied during the second presentation of the third context, 2 days after the presentation of the third context
(rightmost panel). The dashed line corresponds to the active threshold and the black bars to the stimulation.
b) Corresponding recurrent weights matrices after presentation of each of the three contexts (first three panels)
and after the second presentation of the third context paired with the shock (rightmost panel). c), d) and e)
Firing rate of the neurons during recall of the first, second and third memory, respectively, 2 days after the
shock. The dashed line corresponds to the active threshold and the black bars to the stimulation.
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Figure S4: Extended manipulations to bias memory engrams allocation. a-b) Same as Fig. 4a and
Fig. 4b where a subset of neurons receives enhanced excitability (ε+) or not and is either inhibited (i+) or not
(control) during recall. c) Recurrent weight matrix after presentation of the first context (left) and the second
context (right) for a 6h delay. d-e) Same as Fig. 4d and Fig. 4e, when the subset is either inhibited (i+) or
not (control) during recall. For each conditions, n = 50 simulations and data are shown as mean ± s.e.m.
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Figure S5: Extended manipulations to highlight competitive mechanisms. a) Same as Fig. 5a, when
the subset either inhibited (i+) or not (control) during recall. b) Fear read-out upon presentation of the
second context. Global inhibition I1 is either at baseline (I1 = 0.9, solid line) or reduced (I1 = 0.88, dashed
line) during presentation of the second context. For each conditions, n = 50 simulations (9 were excluded,
Methods) and data are shown as mean ± s.e.m.
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Figure S6: Model sensitivity analysis. a) Protocol for forming overlap among memory engrams. After
training, the recall protocol allows for measuring the amount of overlap between engrams of the first context
(red) and either the same context (top row, red), a novel context (middle row, yellow) or a second context
(bottom row, blue), presented 6h or 24h after the first one. b) Overlap among engrams for the four cases in
a): control case in red, novel context in yellow, 6h and 24h delays in blue. Here, the first set of parameters has
been used (Methods). n = 50 simulations (5 were excluded, Methods) and data are shown as mean ± s.e.m.
c-h) Overlap in each of the four cases in a) as a function of the main parameters of the model (Methods, Table
of parameters). The blue dashed line corresponds to the 6h delay and the blue solid line to the 24h delay.
Each grey line corresponds to the parameter that has been selected for the simulations in the main figures.
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