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1 Introduction

One of the annoying technicalities of string theory is the presence of co-cycles in the phys-

ical vertex operators. In the standard account, these co-cycles are required in order to

maintain locality on the worldsheet, i.e., to obtain mutual locality of physical vertex in-

sertions. For example, they appear in standard discussions [1] of compactified strings,

and rapidly lead to both technical and conceptual issues. In this paper, we re-analyze

these issues carefully, and show that the space of string zero modes surprisingly is best

interpreted as non-commutative, with the scale of non-commutativity set by α′. A by-

product of this realization is that the operator algebra becomes straightforward (albeit

with a non-commutative product), with no need for co-cycles. This is not inconsistent

with our usual notion of space-time in decompactification limits, but it does significantly

impact the interpretation of compactifications in terms of local effective field theories. This

is a central ingredient that has been overlooked in any of the attempts at duality symmet-

ric formulations of string theory. Indeed, in a follow-up paper we will show that one can

obtain a simple understanding of exotic backgrounds such as asymmetric orbifolds [2] and

T-folds [3].

Much of the usual space-time interpretation that we use in string theory is built in from

the beginning. Its origins, for example, as an S-matrix theory in Minkowski space-time is

emblematic of its interpretation in terms of a collection of particle states propagating in a

fixed space-time background. We typically view other solutions of string theory in a similar

way, with a well-defined distinction between what is big and what is small. Each such case

can be viewed as a classical or semi-classical approximation to a deeper quantum theory in

which the notion of a given space-time is not built in from the beginning, but is an emergent

property of a given classical limit. It is natural to ask under what circumstances a local
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effective field theory is obtained. Of course, we know many such instances, and we also

know many examples where this does not occur, such as cases where non-commutative field

theories are thought to emerge. Perhaps the avatar for the absence of a fixed space-time

picture is given by duality-symmetric formulations (of which double field theories [4] and

our own metastring theory [5–10], are examples). We are in fact working towards a new

notion of quantum space-time, in which non-commutativity plays a central role, much as it

does in ordinary quantum mechanics. In the present paper then, we uncover an important

step towards such an understanding of quantum space-time.

2 Classical structure of compact string

To begin, we review various details of the free bosonic string. The majority of this material

is standard fare, and we use this section to set-up our conventions, following closely the

notation in ref. [1]. The reader familiar with these details might wish to skip this overview

and jump to equation (3.30).

What we are interested in is the canonical analysis of the string in which translational

monodromy (winding) is allowed

X(τ, σ + 2π) = X(τ, σ) + 2πα′p̃, α′p̃ ∈ Γ̃, (2.1)

while paying particularly close attention to the zero modes. In order to describe these

boundary conditions, we have introduced a lattice1 Γ̃. Of course Γ̃ represents the lattice

of winding modes due to the fact that we are describing strings propagating on a compact

geometry, T = Rd/Γ̃. It is then often assumed that the structure of vertex operators and

the effective description of the string in terms of field theory inherits the naive geometrical

structure of the string and that the string compactification implies an effective Kaluza-Klein

description involving the same compact geometry. Our work will show that this traditional

point of view can be misleading and that is not a generic message of string theory.

We emphasize that such an interpretation relies heavily on an assumed structure for

the zero modes of the string, namely that they can be thought of as coordinates on T ,

along with their conjugate variables. This is of course precisely what is relevant in the

non-compact case, the zero modes generating a Heisenberg algebra associated with the

non-compact space-time. We are interested here in a careful analysis of the compact case,

with generic periodic Γ̃. As is well known, when we turn on ~ another lattice appears, the

lattice of momenta Γ, dual to the winding lattice, Γ = Γ̃∗. Since our goal is to understand

the geometry behind the presence of these two lattices it is interesting to note that one is

quantized classically and the other one quantum mechanically and it will be useful to unify

these two lattices into one denoted as Λ ≡ Γ ⊕ Γ̃. The duality pairing between Γ and Γ̃

equips Λ with a canonical metric that will play a key role in our story.

1A lattice is an abelian group equipped with a metric. This includes non-compact directions if we take

the distance between two points of the lattice to zero. In our presentation we always think of non-compact

directions as being decompactified.
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Let us first review the usual classical solutions, again essentially to set notation. We

work on a cylindrical worldsheet, which we think of as cut along σ = 0 and unrolled,2 and

the general classical solutions can then be written

X(τ, σ) = XR(τ + σ) +XL(τ − σ), (2.2)

with3

XL(τ − σ) = xL +
α′

2
pL(τ − σ) + iλ

∞∑
m=−∞

1

m
αme

−im(τ−σ) (2.3)

XR(τ + σ) = xR +
α′

2
pR(τ + σ) + iλ

∞∑
m=−∞

1

m
α̃me

−im(τ+σ), (2.4)

where we have introduced the string length scale

λ ≡
√

~α′
2
, (2.5)

with α′ the “string slope” which has dimensions of length over energy. We see that the

lattice vectors are given by p̃ = pR−pL
2 . Similarly, we define p = pR+pL

2 . The zero modes

(p, p̃) can be extracted via

p =
1

2πα′

∫ 2π

0
dσ ∂τX, p̃ =

1

2πα′

∫ 2π

0
dσ ∂σX. (2.6)

Thus, we have the familiar situation of the zero mode sector being coordinatized by

(xL, pL, xR, pR), all independent. We will be interested in the structure of physical (vertex)

operators and their algebra, as well as the symplectic structure of the theory. Typically in

the literature, it is taken as self-evident that (xL, pL) and (xR, pR) generate two commut-

ing Heisenberg algebras when the theory is quantized. We will discuss this carefully in a

separate section in a detailed analysis of the symplectic structure, but now we will need a

somewhat weaker assumption that (pL, pR) commute, which as we will see, is borne out by

the symplectic analysis.

Given that XL(τ − σ) and XR(τ + σ) are independent of one another, it is natural to

also introduce

X̃(τ, σ) = XR(τ + σ)−XL(τ − σ), (2.7)

which is such that ∂σX̃ = ∂τX, and the corresponding classical solution may be written as4

X(τ, σ) = x+ α′(pτ + p̃σ) +Q−(τ − σ) +Q+(τ + σ) (2.9)

X̃(τ, σ) = x̃+ α′(p̃τ + pσ)−Q−(τ − σ) +Q+(τ + σ), (2.10)

2Implicit here is the independence on where we cut open the cylinder. This will become an issue to

be checked in the course of the construction of the symplectic structure, which we present in a separate

section.
3The Euclidean continuation, as in [1], is that left-movers are holomorphic (τ − σ → −i ln z) and right-

movers anti-holomorphic, τ + σ → −i ln z̄.
4Here, we have defined

Q̂−(τ − σ) = iλ

∞∑
m=−∞

1

m
α̂me

−im(τ−σ), Q̂+(τ + σ) = iλ

∞∑
m=−∞

1

m
ˆ̃αme

−im(τ+σ). (2.8)
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where x = xR + xL and x̃ = xR − xL. We regard X(τ, σ), X̃(τ, σ) as a reorganization

of XL(τ − σ), XR(τ + σ). In particular, the zero modes (x, x̃, p, p̃) should be considered

independent, being linear combinations of (xL, pL, xR, pR).

The field X̃(τ, σ) has a well-known significance in the limit when the radius of com-

pactification is sent to zero. In this limit, the (x, p) zero modes decouple, and X̃(τ, σ) is the

field that the string couples to, with x̃ coordinatizing the (T-dual) non-compact geometry.

The momentum p plays the role of the translational monodromy of X̃(τ, σ), i.e.,

X̃(τ, σ + 2π) = X̃(τ, σ) + 2πα′p. (2.11)

It should be clear then that what we mean by the space-time that the string “sees” should

not be taken to be given by X(τ, σ). The meaning of X(τ, σ) will change in different limits.

This is the essence of T-duality. The field X(τ, σ) has a space-time interpretation in the

original Polyakov path integral only in the limit of large radius.

Furthermore, we note that

dX = ∗dX̃, i.e. ∂τX = ∂σX̃, ∂σX = ∂τ X̃, (2.12)

and so T-duality, which interchanges X and X̃, is associated with Hodge duality on the

worldsheet, as far as the currents are concerned. The momentum field conjugate to X(τ, σ)

is of course the momentum density P (τ, σ) = 1
2πα′∂τX(τ, σ). Similarly, it is convenient to

introduce the winding density P̃ (τ, σ) = 1
2πα′∂τ X̃(τ, σ).

Our intention in this discussion is to highlight the zero modes. Of course, it is often

assumed that the zero mode x plays a preferred role, being interpreted as a coordinate in

the target space, while x̃ is immaterial as it does not appear in the action. In fact, neither

x nor x̃ appear in the abelian currents dX and the string action density. However, they

do enter the theory in the vertex operator algebra, and so we are led to study them more

carefully. In the present context both (xL, xR) (equivalently (x, x̃)) do appear in vertex

operators, and we will take pains to treat them with care. It is implicit in this analysis

that (xL, xR) (equivalently (x, x̃)) are independent; it is only in the R→∞ (R→ 0) limit

that a projection p̃→ 0 (p→ 0) on the spectrum is induced, at which point x̃ (x) decouples.

3 The vertex algebra and mutual locality

As we mentioned earlier, it is often assumed [1] from the outset that the zero modes satisfy

Heisenberg algebras

[x̂, p̂] = i~ = [ˆ̃x, ˆ̃p], (3.1)

(equivalently, [x̂L, p̂L] = i~ = [x̂R, p̂R].) We will argue below that there is an important

subtlety here, related to the commutativity of x̂L, x̂R, that has been overlooked. To get

there, we begin by considering local vertex operators and the requirement of mutual locality.
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It is convenient to revert to Euclidean methods, rewriting5

X̂L(z) = x̂L(z) + iλ
∞∑

m=−∞

′ 1

m
α̂mz

−m, X̂R(z̄) = x̂R(z̄) + iλ
∞∑

m=−∞

′ 1

m
ˆ̃αmz̄

−m, (3.3)

where the prime in the sum means that we omit m = 0. Also we introduced the zero modes

functionals

x̂L(z) := x̂L − i
α′

2
p̂L ln z, x̂R(z̄) := x̂R − i

α′

2
p̂R ln z̄. (3.4)

Now we are interested in physical vertex operators that have well-defined conformal

properties. For simplicity, we concentrate on the tachyon operators6

ŴK(z, z̄) =: eikL·X̂L(z)+ikR·X̂R(z̄) : ĈK, (3.5)

where hat is used to denote operators, K stands for the pair (kL, kR) (or equivalently (k̃, k))

and the double dots denote a normal ordering prescription that extends to the zero modes.

Implicit in this is the assumption that ˆ̃p and p̂ commute, and thus we choose to label

operators by their eigenvalues ~(k̃, k), where the wavelength vectors k and k̃ have units

of 1/length.

As noted in [1], we must take care of the branch cuts in the logarithms appearing

in (3.3), and in particular, of their effect on the commutation properties of the vertex

operators, since X̂L and X̂R are not themselves well-defined operators. Correspondingly,

we have included an operatorial co-cycle factor ĈK in the vertex operators. This factor

is independent of (z, z̄) and is assumed to be a function of (p̂L, p̂R), in other words ĈK =

CK(p̂L, p̂R). As we are going to see, mutual locality drastically constrains the form of

this operator.

The short-distance singularities at finite separation are of the form

XL(z1)XL(z2) ∼ −λ2 ln z12, XR(z̄1)XR(z̄2) ∼ −λ2 ln z̄12, XL(z1)XR(z̄2) ∼ 0. (3.6)

We will separate the zero-modes from the oscillator parts, and so we write

ŴK(z, z̄) = ÛK(z, z̄)V̂K(z, z̄) = ÛK(z, z̄)V̂kL(z)V̂kR(z̄), (3.7)

where UK(z, z̄) contains the zero-modes, and VK the normal ordered oscillators

V̂kL(z) = Ê†−kL(z) ÊkL(z), V̂kR(z̄) = ˆ̄E†−kR(z̄) ˆ̄EkR(z̄). (3.8)

Here we have introduced7

ÊkL(z) := e−λ
∑∞
m=1

1
m
kL·α̂mz−m , Ê†−kL(z) := eλ

∑∞
m=1

1
m
kL·α̂−mzm , (3.9)

5We will see that the oscillators satisfy the usual commutation relations,

[α̂an, α̂
b
m] = nhabδn+m, α̂†n = α̂−n, (3.2)

and similarly for α̃, where h is the space-time Lorentz metric.
6As is standard, :: refers to the usual oscillator normal ordering. This removes, for example, overall

factors in eq. (3.8).
7The dagger operation is the BPZ conjugation [Φ(z, z̄)]† = Φ†(z−1, z̄−1), which is consistent with the

Lorentzian definition (z, z̄)→ (ei(τ−σ), ei(τ+σ)) and α†n = α−n. The definition implies that VkL are unitary

operators.
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and, similarly for the right-movers. We also define the zero mode operator

ÛK(z, z̄) := ÛK z
α′
2
kL·p̂L z̄

α′
2
kR·p̂R . (3.10)

We will discuss its detailed form later, but for now ÛK can be considered as an expo-

nential operator depending on the zero modes x̂L,R

ÛK = eikL·x̂L+ikR·x̂R CK(p̂L, p̂R). (3.11)

ÛK needs to satisfy two properties. First, the product of two such operators needs to close.

We therefore suppose that products may involve a co-cycle factor εK,K′ ∈ C∗

ÛKÛK′ = εK,K′ÛK+K′ , (3.12)

and the associativity of the product implies that the cocycles must satisfy

εK,LεK+L,M = εL,MεK,L+M. (3.13)

Second, ÛK will have non-trivial commutation with functions of p̂L,R and in particular we

will need

z
α′
2
kL·p̂L z̄

α′
2
kR·p̂RÛK′ = zλ

2kL·k′L z̄λ
2kR·k′R ÛK′ z

α′
2
kL·p̂L z̄

α′
2
kR·p̂R , (3.14)

which follows from eq. (3.1). Now we compute

ŴK(z1, z̄1)ŴK′(z2, z̄2) = ÛKz
α′
2
kL·p̂L

1 z̄
α′
2
kR·p̂R

1 ÛK′z
α′
2
k′L·p̂L

2 z̄
α′
2
k′R·p̂R

2 (3.15)

×Ê†−kL(z1) ÊkL(z1)Ê†−k′L
(z2) Êk′L(z2)

×Ê†−kR(z̄1) ÊkR(z̄1)Ê†−k′R
(z̄2) Êk′R(z̄2).

We will perform re-orderings on the right-hand side so that it can be written in terms of

expressions involving K + K′. We note that

ÊkL(z1)Ê†−k′L
(z2) = e

−λ2kL·k′L
∑∞
n=1

1
n

(
z2
z1

)n
Ê†−k′L

(z2)ÊkL(z1) (3.16)

=

(
1− z2

z1

)λ2kL·k′L
Ê†−k′L

(z2)ÊkL(z1), (3.17)

the sum converging uniformly within the disc |z2| < |z1|. Putting everything together,

we find

ŴK(z1, z̄1)ŴK′(z2, z̄2) = z
λ2kL·k′L
12 z̄

λ2kR·k′R
12 εK,K′ ÛK+K′ : V̂K(z1, z̄1)V̂K′(z2, z̄2) :, (3.18)

where z12 = z1 − z2. Again, this is valid for the time-ordering |z2| < |z1|. For the exterior

of the disk, |z1| < |z2|, the sums converge for the opposite operator ordering

ŴK′(z2, z̄2)ŴK(z1, z̄1) = z
λ2kL·k′L
21 z̄

λ2kR·k′R
21 εK′,K ÛK+K′ : V̂K(z1, z̄1)V̂K′(z2, z̄2) : . (3.19)

– 6 –
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Equations (3.18), (3.19) lead to the radial ordered correlation function and also to the

operator product expansion. Indeed, the normal-ordered product may be expanded to a

series of local operators, weighted by integer powers of z12 and z̄12, and thus a given term

in the series will scale (in the case of (3.18)) as z
λ2kL·k′L+m
12 z̄

λ2kR·k′R+n
12 , for m,n ∈ Z.

Mutual locality is the requirement that operators commute at space-like separation.

We can investigate this by comparing the limits of (3.18) and (3.19) as |z1| → |z2| (for

some spatial separation σ12 = σ1 − σ2). It is most straightforward to go back and write

the expression in terms of the summation appearing in (3.16). Then one finds in the limit

ŴK(|z|, σ1)ŴK′(|z|, σ2)=
εK,K′

εK′,K

(
eiσ12+

∑
n 6=0

1
n
einσ12

)λ2(kL·k′L−kR·k
′
R)
ŴK′(|z|, σ2)ŴK(|z|, σ1).

(3.20)

We write this result in the more compact form

ŴK(|z|, σ1)ŴK′(|z|, σ2) =
εK,K′

εK′,K
e−i2η(λK,λK′)θ(σ12) ŴK′(|z|, σ2)ŴK(|z|, σ1), (3.21)

where we recognize θ(σ) as the staircase distribution

θ(σ) = σ − i
∑
n 6=0

einσ

n
. (3.22)

This distribution satisfies three key properties: its derivative is proportional to the Dirac

distribution, θ′(σ) = 2πδ(σ), it is quasi-periodic with period 2π, θ(σ+ 2πn) = θ(σ) + 2πn,

and it is odd, θ(−σ) = −θ(σ). In particular this implies that θ(σ) is valued in πZ for

σ ∈ R\Z. We have also introduced a bilinear form η in order to write the result in a

compact form8

η(K,K′) :=
1

2
(kR · k′R − kL · k′L) = (k · k̃′ + k̃ · k′). (3.24)

We can now infer two important conclusions from the vertex operator algebra (3.21). First,

if one demands that the string is closed we have to impose that the vertex operator is 2π

periodic along σ, that is, ŴK(|z|, σ + 2π) = ŴK(|z|, σ). Since θ is quasi-periodic with

quasi-period 2π, this condition is consistent with the vertex operator algebra if and only if

2η(λK, λK′) is integer-valued. This means that the lattice (Λ, 2η) of momenta λK, equipped

with the norm 2η, must be an integer lattice.9 Since the staircase distribution is valued in

πZ this implies that the σ-dependent phase factor is in fact independent of σ

e−2iη(λK,λK′)θ(σ12) = (−1)2η(λK,λK′). (3.26)

8k = 1
2
(kR + kL) and k̃ = 1

2
(kR − kL) have units of 1/length. Explicitly

KA =

(
k̃a

ka

)
, ηAB =

(
0 1

1 0

)
, (3.23)

and λK form a lattice, where λ2 = ~α′/2.
9Parameterizing as usual in terms of momentum and winding integers n,w, we get

k =
n

R
, k̃ =

Rw

2λ2
. (3.25)

Indeed, we have 2η(λK, λK′) = nw′ + wn′ ∈ Z.

– 7 –
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Demanding that this vertex operator be 2π-periodic is not enough. We also need to impose

mutual locality, the condition that vertex operators which are space-like separated on the

world-sheet commute with each other.10 The mutual locality of vertex operators with

the same momenta requires the phase factor (3.26) to be trivial for identical momenta,

that is, it requires 2η(λK, λK) to be an even integer. In other words, the lattice is such

that the scalar products η(λK, λK) ∈ Z are all integers, and this in turn implies11 that

η(λK, λK′) ∈ Z/2. Therefore, the closed string boundary condition and the imposition of

mutual locality of identical vertex operators demands that the lattice (Λ, 2η) is an even

self-dual lattice [1, 11, 12]. This requirement means that we must have

η(λK, λK) = 2λ2(k · k̃) ∈ Z. (3.28)

This condition can be equivalently stated as the demand that (k, 0) and (0, k̃) are elements

of the lattice Λ if K = (k, k̃) is, which means that Λ decomposes as a direct sum of two

sublattices which are Lagrangian with respect to η and dual to each other: Λ = Γ ⊕ Γ̃

with Γ∗ = Γ̃. Usually, this restriction on Λ comes from the demand of modular invariance.

Here we see that it appears more naturally as the demand of mutual locality. Note that

with our conventions (see also [1]) the Virasoro zero-mode generators are given by L0 =

α′(p̂− ˆ̃p)2/4 + NL + 1, and L̄0 = α′(p̂+ ˆ̃p)2/4 + NR + 1, where NL + 1 (resp. NR + 1) is

the number of left (resp. right) oscillators. The on-shell equations (L0, L̄0) = (1, 1) for the

string states can therefore be written in terms of the wave vectors as

λ2(k2 + k̃2) +NL +NR = 0, NL −NR = 2λ2(k · k̃). (3.29)

The second condition, called level matching, is consistent with the condition (3.28) coming

from mutual locality.

We can finally impose mutual locality of vertex operators carrying different momenta K
and K′. This implies a condition on the cocycle factors that were defined in equation (3.12):

εK,K′

εK′,K
= e2πiη(λK,λK′), (3.30)

where given the above discussion, we have e2πiη(λK,λK′) = ±1. A solution to this equation

is given by

εK,K′ = e2πiλ2k̃·k′ . (3.31)

With this definition we can evaluate the l.h.s. of (3.30), which is skew-symmetric in (K,K′)
while the r.h.s. is symmetric. The difference between the two is a factor e4πiλ2k·k̃′ which is

equal to 1 by the condition (3.28). We note that (3.31) automatically satisfies (3.13), as

would the exponential of any bilinear form. This is not without ambiguity, as it could be

10This is usually called local causality in the Lorentzian context. Since we are dealing with the Wick

rotated theory it appears as mutual locality.
11Since

η(λK, λK′) =
1

2

(
η(λ(K + K′), λ(K + K′))− η(λK, λK)− η(λK′, λK′)

)
. (3.27)
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multiplied by any expression sK,K′ ∈ Z2 symmetric under the interchange K ↔ K′, which

satisfies the cocycle condition (3.13). A change of normalization UK → αKUK modifies the

cocycle by the multiplication of a symmetric cocycle δαK,K′ =
αK+K′
αKαK′

. It turns out that

any closed symmetric Z2 cocycle is a coboundary.12 We can therefore always make the

choice (3.31) by choosing the normalization of ÛK appropriately. From now on we assume

that this is done. In this case the only ambiguity left is a choice of normalization αK such

that δα = 1, so that αK = eiη(K,O) is a linear functional.

Note that εK,K′ can be written in a covariant form by introducing an antisymmetric

form ω

ω(K,K′) := (k · k̃′ − k̃ · k′) =
1

2
(kL · k′R − kR · k′L), (3.32)

whereby the choice (3.31) becomes

εK,K′ = eiπ(η−ω)(λK,λK′). (3.33)

This is an important result. Recall that this phase appears in the product of zero mode

operators

ÛKÛK′ = εK,K′ÛK+K′ , (3.34)

which corresponds to an instance of the Heisenberg group generated by (x̂, ˆ̃x). To proceed

further, we consider representations of ÛK satisfying this algebra.

Up to now we have used the commutation relations of (x̂, ˆ̃x) with (p̂, ˆ̃p) and we have

remained agnostic about the commutations of x̂ with ˆ̃x defined as the zero mode of the

string. We now want to know what commutation relations are admissible for (x̂, ˆ̃x). In order

to analyze this issue we introduce commuting variables (q̂, ˆ̃q) which stand as placeholders

for (x̂, ˆ̃x). We now investigate whether these can be identified with the string zero modes.

To begin, suppose we take

ÛK = eikL·q̂L+ikR·q̂RĈK = eik̃·
ˆ̃q+ik·q̂ĈK. (3.35)

To proceed we need to make some assumptions about the commutation relations of q̂ and
ˆ̃q. In order to recover the usual framework when the theory is decompactified, we need to

have [q̂a, q̂b] = 0 and by duality [ˆ̃qa, ˆ̃qb] = 0. Suppose that we also make the assumption that

[q̂, ˆ̃q] = 0 = [q̂L, q̂R] . (3.36)

Let us recall that we have established that ĈK depends only on the operators (p̂L, p̂R) in

order to get (3.14), which follows from (3.1). Under these assumptions, and in order to get

the commutation relations (3.34), ĈK has to be an operator, which up to a constant factor

is given by

ĈK = eiπα
′k̃·p̂, (3.37)

12This question can be phrased as the vanishing of the symmetric group cohomology H2
S(Λ,Z2) [13].
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from which it follows that

ÛK = eik·q̂ eik̃·(
ˆ̃q+πα′p̂). (3.38)

This is the result obtained, for example, in [1] and written in terms of the dual coordinates.

The choice of the cocycle made in (3.31) insures that in the non-compact case, when k̃ = 0,

no modification of the wave operator arises. It seems very natural that the zero modes

satisfy (3.36), as this is in keeping with an interpretation in terms of commutative geometry,

so that they (or more precisely q = qL + qR) represent coordinates on ordinary classical

space-time. The downside is that cocycles appear in the algebra of physical operators. So

the zero mode operator algebra is not just the algebra generated by q and q̃ but q and

q̃ + πα′p, a combination that depends on the choice of an O(d, d) frame, as we will see in

what follows.

In the following section, we will provide evidence for the following re-interpretation.

We will argue that up to a normalization one should take

ÛK = eik·x̂eik̃·
ˆ̃x, (3.39)

where x = xR + xL and x̃ = xR − xL are the zero mode operators appearing above in the

mode expansion (2.9), (2.10). A detailed analysis of the symplectic structure13 of the zero

modes indicates that the operator that is canonically conjugate to ˆ̃p is not ˆ̃x, but instead
ˆ̃q := ˆ̃x−πα′p̂. It is this operator, rather than ˆ̃x, that commutes with x̂. In other words, the

commutative placeholders that we used in the previous section (also used in [1]) to label

vertex operators are not the string zero modes. In fact, the symplectic structure implies

that the zero modes satisfy

[x̂, ˆ̃x] = 2πiλ2. (3.40)

Remarkably, this commutation relation is consistent with a trivial co-cycle as in the rep-

resentation (3.39). Also this shows that the zero mode operator algebra is now just the

algebra generated by x̂ and ˆ̃x with no extra input.

Thus in the case where the double coordinates satisfy (3.40), the vertex operators

contain no cocycle factors, but form a non-commutative subgroup of the Weyl group on

the double space P coordinatized by (x, x̃). This means that we have to interpret the string

zero modes as coordinates in a non-commutative space-time. Note that eq. (3.40) does not

depend on the compactification radius, but only on the string length λ. Thus there is an

α′ effect present in the physics of the zero modes that is essentially implied by worldsheet

locality. We will discuss in a separate paper what might be the fate of the usual low energy

limit α′ → 0 associated with effective field theories.

To summarize, the zero mode operators appearing in physical vertex operators may be

written as in (3.39). Note that in writing it this way, we have chosen an operator ordering,

13We remind the reader that such an analysis is required to deduce Poisson brackets in the classical

theory and commutation relations in the quantum theory. The result that we are claiming here is the one

consistent with locality and causality of the worldsheet theory, as we will explain in the following.
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or equivalently we have made a choice of a pure (non-operatorial) phase. In the double

space notation, XA(τ, σ) = (Xµ(τ, σ), X̃µ(τ, σ)), this can be written covariantly as

ÛK = e−i
π
2
η(λK,λK)eiη(K,X̂) = e−iπλ

2(k·k̃)ei(k̃·
ˆ̃x+k·x̂). (3.41)

4 The symplectic structure of the zero modes

In this section, we will derive the string symplectic structure. We began with the tra-

ditional presentation of the zero mode sector of the compactified string, presented either

as (xL, pL;xR, pR) or equivalently as (x, p; x̃, p̃). Usually, these are interpreted as Darboux

coordinates on a 4D-dimensional phase space, on which the symplectic form has been block

off-diagonalized. That is, the zero modes form two commuting Heisenberg algebras. This

interpretation would be perfectly fine if we were interested only in polynomials of these

variables. However, of course we are not: we are interested in operators containing expo-

nentials of the zero modes, as we have discussed above. Indeed, it is precisely in the usual

context of compactification that we are interested in operators that are well-defined on

tori. It is the algebra of these exponential operators that is important, and not the algebra

of Xs, which are not single-valued.

In this section, we will consider carefully the symplectic structure of the classical

Polyakov string.14 A systematic way to study the symplectic structure is to vary the clas-

sical action, and evaluating this on-shell, to extract the symplectic 1-form. We will consider

a cylindrical worldsheet, cut open along σ = 0 to a rectangular region, coordinatized by

σ ∈ [0, 2π], τ ∈ [τ0, τ1]. It is important to recall that the dual field X̃ is defined by the iden-

tity ∂τX := ∂σX̃. The dynamics of the dual field can then simply be given by ∂τ X̃=̂∂σX,

where hatted equalities mean that they are taken on-shell. It is obvious that these two

equations imply the usual dynamics for the string field X. The action is

S =
1

4πα′

∫
d2σ

[
(∂τX)2 − (∂σX)2

]
. (4.1)

Here the integral
∫
d2σ is over the domain

∫ τ1
τ0

dτ
∫ 2π

0 dσ. Note that, in principle, this can

be generalized to include additional terms integrated over boundaries of the worldsheet.

Varying (4.1), we find

δS =
1

2πα′

∫
d2σ
[
∂τ (δX · ∂τX)− ∂σ(δX · ∂σX)− δX · (∂2

τ − ∂2
σ)X

]
=̂

1

2πα′

∫ 2π

0
dσ
(
δX · ∂τX

)∣∣∣τ1
τ0
− 1

2πα′

∫ τ1

τ0

dτ
(
δX(τ, 2π)− δX(τ, 0)

)
· ∂σX(τ, 0).

=̂
1

2πα′

∫ 2π

0
dσ
(
δX · ∂τX

)∣∣∣τ1
τ0
− 1

2πα′

∫ τ1

τ0

dτ
(
δX(τ, 2π)− δX(τ, 0)

)
· ∂τ X̃(τ, 0).

(4.2)

In the second line we have used the bulk equation of motion in the form �X = 0 while in

the third line we have used them on the boundary in the form ∂τ X̃ = ∂σX. Notice that

14We are not aware of the foregoing analysis appearing in the existing literature. However, the result

seems to have been guessed in ref. [14] (and apparently not subsequently mentioned).
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there is a term integrated along the cut in the worldsheet (which we have placed at σ = 0)

in addition to the usual term integrated over the space-like boundaries. This extra term

appears precisely because in the present context, the fields (X, X̃), and their variations,

are not single-valued on the worldsheet (although the current dX and the dual current dX̃

are single-valued).

Now, we define the charges

pC =
1

2πα′

∫
C
∗dX=̂

1

2πα′

∫
C
dX̃, p̃C =

1

2πα′

∫
C
dX, (4.3)

where C is a cut on the surface. The equation of motion implies that (pC , p̃C) depend only

on the homology class of C. In the coordinates we are using here and for a spacelike cut,

we have

p =
1

2πα′

∫ 2π

0
dσ ∂τX, p̃ =

1

2πα′

∫ 2π

0
dσ ∂σX. (4.4)

We note that p is conserved by virtue of the equation of motion and the periodicity of

∂σX, while p̃ is conserved simply because of the periodicity of ∂τX. The last equality can

be used to evaluate the last term in (4.2)

δp̃ =
1

2πα′

∫ 2π

0
dσ ∂σδX =

1

2πα′

(
δX(τ, 2π)− δX(τ, 0)

)
. (4.5)

This allows us to write the on-shell variation as

δS =̂

[
1

2πα′

∫ 2π

0
dσ δX · ∂τX

]τ1
τ0

−
∫ τ1

τ0

dτ δp̃ · ∂τ X̃(τ, 0) (4.6)

=

[
1

2πα′

∫ 2π

0
dσ δX · ∂τX − δp̃ · X̃(τ, 0)

]τ1
τ0

. (4.7)

We refer to the second term here as the ‘corner term’. From the variation of the action, we

deduce the canonical symplectic 1-form Θ(τ) defined on a spatial slice of the worldsheet at

time τ

Θ(τ) = −δp̃ · X̃(τ, 0) +
1

2πα′

∫ 2π

0
dσ δX(τ, σ)·∂τX(τ, σ). (4.8)

Let us remark on the presence of the corner term, which is essential for two reasons.

First, it is responsible for ensuring diffeomorphism invariance: one can check that the

corner term removes any dependence on the location of the cut. This can be seen by

considering the symplectic potential along a cut placed at σ0. This is given by

Θ(τ) = −δp̃ · X̃(τ, σ0) +
1

2πα′

∫ σ0+2π

σ0

dσ δX(τ, σ)·∂σX̃(τ, σ), (4.9)

where we have used the definition of X̃ via ∂τX = ∂σX̃, in order to write the potential in a

convenient form. Taking the derivative of this expression with respect to σ0, we can estab-

lish that it is indeed independent of σ0. Without the corner term, the re-parametrization
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invariance of the worldsheet would be lost at the level of the symplectic potential. The

mechanism of having in a gauge theory new degrees of freedom (edge modes) appearing

at the boundaries of regions in which the theory is defined in order to restore covariance

has been described in general terms in [15] and applied to gravity and Yang-Mills theory.

Here we see that the same mechanism is at play, the subtlety being that even if the string

is closed for the fields dX, it possesses boundaries for the field X and the restoration of

covariance requires the introduction of the zero mode for X̃.

Second, the corner term contribution to the symplectic structure is responsible for

making (x̃, p̃) dynamical. Indeed, using the mode expansions (2.9), (2.10) we derive

1

2πα′

∫ 2π

0
dσ δX ·∂τX

=
1

2πα′

∫ 2π

0
dσ
(
δx(τ) + α′σδp̃+ δQ+(τ + σ) + δQ−(τ − σ)

)
×
(
α′p+ ∂τQ+(τ + σ) + ∂τQ−(τ − σ)

)
(4.10)

= δx(τ)·p+ δp̃ ·
(
πα′p+Q+(τ)−Q−(τ)

)
+

1

2πα′

∫ 2π

0
dσ
(
δQ−(τ − σ) · ∂τQ−(τ − σ) + δQ+(τ + σ) · ∂τQ+(τ + σ)

)
− 1

2πα′
δ
(∫ 2π

0
dσ Q+(τ + σ) · ∂σQ−(τ − σ)

)
, (4.11)

while the corner term in (4.8) gives

−δp̃ · X̃(τ, 0) = −δp̃ ·
(
x̃(τ) +Q+(τ)−Q−(τ)

)
. (4.12)

Combining these two expressions we see that the zero mode factors contain a term p ·
δx(τ) − δp̃ · (x̃(τ) − πα′p). We are now ready to evaluate the symplectic potential. The

symplectic structure is obtained by variation Ω = δΘ, where δ is the variational differential

satisfying δ2 = 0. Denoting f the wedge product of variations δaf δb = −δbf δa we get

Ω(τ) = δpḟδx(τ) + δp̃ḟ(δx̃(τ)− πα′δp)− 1

2πα′

∫ 2π

0
dσ
(
δQ+ḟ∂τδQ+ + δQ−ḟ∂τδQ−

)
.

(4.13)

The periodic modes inside the integral are consistent with the commutation relations15

for the oscillators αm and α̃m. The first two terms contain the symplectic form of the

zero modes.

To summarize: the dynamics of x̃, p̃ comes from the corner term. Thus the corner term

is responsible for the fact that x, p, x̃, p̃ (or equivalently xL, pL, xR, pR) must be thought

of as independent variables. This is natural, since the physical significance of x̃, p̃ comes

15Indeed we have that

− 1

2πα′

∫ 2π

0

dσ
(
δQ−f∂τδQ−

)
= −i~

∞∑
m=1

1

m
δαm f δα−m. (4.14)

Inverting Ω/i~ gives the commutator [α̂m, α̂−m] = m.
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about from relaxing boundary conditions and thus should not arise from the bulk of the

(constant time slice of) the worldsheet. Also, there is an additional term πα′δpḟδp̃ in

the symplectic 2-form. Finally, the corner term is responsible for ensuring diffeomorphism

invariance, and the corner term removes any dependence on the location of the cut.

How should we read this? The proper interpretation is that (p, x) and (p̃, x̃−πα′p) are

canonically conjugate pairs, and in particular, we should have [x̂, ˆ̃x− πα′p̂] = 0. Therefore

[x̂a, ˆ̃xb] = πα′[x̂a, p̂b] = 2πiλ2δab. (4.15)

Thus we recover directly the results (3.40) established by analyzing the structure of the

vertex operator algebra. Equivalently, we can proceed more formally, rewriting the zero

mode part of the symplectic 2-form as

Ω0 =
1

2
ΩαβδZα f δZβ , (4.16)

where we use the ordering Zα = {pa, xa, p̃a, x̃a}. The corresponding commutation relations

are then of the form

[Ẑα, Ẑβ ] = i~Ωαβ 1̂, (4.17)

where Ωαβ are the components of the inverse matrix. Explicitly, we have

Ω =


0 1 πα′ 0

−1 0 0 0

−πα′ 0 0 1

0 0 −1 0

 , Ω−1 =


0 −1 0 0

1 0 0 πα′

0 0 0 −1

0 −πα′ 1 0

 , (4.18)

and thus

[x̂a, ˆ̃xb] = 2πiλ2δab, [x̂a, p̂b] = i~δab, [ˆ̃xa, ˆ̃pb] = i~δab, [p̂a, ˆ̃pb] = 0. (4.19)

In particular, the operators (x̂, ˆ̃x) appearing in the mode expansions do not commute, with

the noncommutativity scale given by 2πλ2 = π~α′. Note that p̂ and ˆ̃p do commute, which

is consistent with their diagonalization, and the labeling of states with their eigenvalues.

Recall that there is an additional payoff if we take the non-trivial commutation relations of x̂

and ˆ̃x into account: the mutually local vertex operators involve the simple zero mode factors

ÛK = eik·x̂eik̃·
ˆ̃x, (4.20)

without additional operatorial cocycle terms. This is the result that we suggested in the

previous section.

4.1 Causality

Let us examine more carefully the symplectic structure derived above. In particular, let us

focus on the p · δp̃ term, as its presence will no doubt be controversial. One might try to

argue that in fact this term can be dropped from Θ(τ) because if both p and δp̃ are on-shell,
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they are time-independent. Of course, adding a time-independent quantity to Θ(τ) does

not change (4.7). In fact, this term cannot be dropped, as it is required by causality. To

see this, note that the [x̂, ˆ̃x] commutator appears in

[X̂(τ, σ1), ˆ̃X(τ, σ2)] = [x̂, ˆ̃x] + α′[x̂, p̂]σ2 + α′[ ˆ̃p, ˆ̃x]σ1 (4.21)

+λ2
∑
m,n 6=0

1

mn
e−i(m+n)τ

[
[α̂m, α̂n]eimσ1+inσ2−[ ˆ̃αm, ˆ̃αn]e−imσ1−inσ2

]

= 2πiλ2 − 2iλ2

[
σ12 +

∑
n 6=0

einσ12

in

]
(4.22)

= 2iλ2
[
π − θ(σ12)

]
. (4.23)

Recall that we are working on the interval σ ∈ [0, 2π], and θ(σ) = π for all σ in the open

interval σ ∈ (0, 2π). Thus, the non-zero [x̂, ˆ̃x] commutator gives rise to the commutativity

at space-like separation of the fields X(τ, σ) and X̃(τ, σ), that is, it gives rise to world-

sheet causality, not just for the physical vertex operators, but also for X(τ, σ) and X̃(τ, σ).

Note that since the [x̂, ˆ̃x] commutator has led to a constant in the [X̂(τ, σ1), ˆ̃X(τ, σ2)]

commutator, it can be interpreted as an integration constant obtained by integrating the

canonical equal-time commutator

[X̂(τ, σ1), ∂τ X̂(τ, σ2)] = [X̂(τ, σ1), ∂σ
ˆ̃X(τ, σ2)] = 2πi~α′δ(σ12), (4.24)

with respect to σ2. But the only value of this integration constant consistent with causality

is πα′~.

This result was in fact found in previous work in the language of the metastring [7].

There, we used the double notation XA(τ, σ) = (Xµ(τ, σ), X̃µ(τ, σ)). Using this notation,

the equal-time commutator can be written covariantly[
X̂A(τ, σ1), X̂B(τ, σ2)

]
= 2iλ2

[
πωAB − ηABθ(σ12)

]
, (4.25)

where ω and η are the tensors that we used earlier in the discussion of co-cycles. In the

metastring construction, ωAB appeared in fact in the worldsheet action as a total derivative

term. The subtlety there, complementary to the present discussion, is that the ω term had

to be kept even for the closed string, because of the presence of monodromies. Here, ωAB
appears as the symplectic form of the X zero modes. Our analysis therefore confirms the

results established in [7] that the double space P should be understood as a phase space.

4.2 T-duality

Before exploring the consequences of the zero mode non-commutativity let us consider a

loose end concerning the action we used so far, the usual Polyakov action (4.1). This action

is well suited for the study of strings propagating in a non-compact target. However, as

we have witnessed repeatedly, when the string propagates in a compact target Rd/Zd, the

multivaluedness of the field X could be understood as if the closed string had boundaries
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for the zero mode operators. If that is the case then it should be possible to introduce

“closed string boundary terms” that depend on the string windings. We want to understand

such terms.

Another related puzzle comes from the non-commutativity that we have just estab-

lished. It is well-known that semi-classically the non-commutative nature of two observables

like (x, p) normally translates into the presence of Aharonov-Bohm-like phases associated

with topologically non-trivial paths in phase space. It is then customary to work with

a properly defined action that records naturally the presence of these phases - hence the

term
∫
pdx added to the Hamiltonian

∫
Hdτ in the usual action that accounts for the

non-commutativity of p with x. Is it then possible to find such terms in the closed string

action in order to account directly for the established non-commutativity of (x, x̃)?

Finally, the presence of the zero-mode x̃ as an edge mode of the string action suggests

that we could exchange the role of X and X̃ in the action in order to have a T-dual

formulation. However, the usual form of the Polyakov string action which depends only on

X precludes such a formulation and one usually establishes the target T-duality symmetry

only at the level of the spectra of the string operators. Is it possible to account for this

directly at the level of the string action? What is interesting is that these three loose ends

can all be tied up together in one go. In order to see this we first focus on T-duality.

To this end, consider the form of the symplectic potential Θ as written in (4.9). We

denote by Θ̃ the same symplectic potential after the exchange (X, X̃) → (X̃,X). If T-

duality was manifest we might expect that Θ̃ = Θ. This is not the case and instead we

obtain, after integration by parts, the relation

Θ(τ) + δJ(τ) = Θ̃(τ) + 2πα′p·δp̃, (4.26)

where we have defined

J(τ) := −p ·X(τ, 0) +
1

2πα′

∫ 2π

0
dσ X̃(τ, σ) · ∂σX(τ, σ). (4.27)

Let us first examine the last term in (4.26). This term should not concern us since the

quantization condition (3.28) translates into

2πα′p · p̃ ∈ 2π~Z. (4.28)

Thus, if we look at transformations that preserve this condition, the action is modified

by a quantity which is 1 when exponentiated. This is similar to the Wess-Zumino term

in the principal chiral model. The main physical difference comes from the presence of

the total variation term δJ . The fact that this term is a total variation means that it

can be reabsorbed by the addition of a boundary term to the Polyakov action S. The

last bit of information we need in order to identify this term comes from the fact that the

functional J is self-dual in the sense that if we denote by J̃ the functional obtained from

J after the T-duality transformation (X, X̃)→ (X̃,X), we have J̃ = −J . Therefore, what

we are looking for is an action s such that S + s has the same equation of motion as S

and such that δS + δs =
[
Θ + 1

2δJ
]τ1
τ0

which is also equal to
[
Θ̃ + 1

2δJ̃
]τ1
τ0

modulo 2π~Z.
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Note that the addition of such a term does not modify the symplectic structure, since the

latter appears as a total variation in the symplectic potential. So the conclusions about

the commutation relations will not be modified.

Remarkably, there is a solution of this set of constraints given by

s(X, X̃) = ~
∫
ω, ω :=

1

8πλ2
(dX̃a ∧ dXa). (4.29)

This follows from the fact that the integrand ω is a closed form and thus

s(X, X̃) =
1

4πα′

∫ τ1

τ0

dτ

∫ 2π

0
dσ
(
∂σ(X̃ ·∂τX)− ∂τ (X̃ ·∂σX)

)
=

1

4πα′

∫ τ1

τ0

dτ(X̃(2π)− X̃(0))∂τX −
1

4πα′

[∫ 2π

0
dσ(X̃ ·∂σX)

]τ1
τ0

= −1

2
[J(τ)]τ1τ0 . (4.30)

Therefore, we have just established that the action functional that gives the symplectic

potential invariant under T-duality is the Polyakov action extended by a topological term

Sext
Σ (X, X̃) = SΣ(X) + ~

∫
Σ
ω. (4.31)

If we modify X̃a by a vector-valued function αa which is single-valued on the worldsheet

Σ, the extended action is invariant Sext(X, X̃ + α) = Sext(X, X̃). This means that X̃

is a topological degree of freedom coupled to the string. Its only dynamical components

are the zero modes of X̃. The presence of these topological degrees of freedom makes the

appearance of the zero modes (x, x̃) in the symplectic potential more natural, since they

are already there at the level of the action.

For the non-compact string, X is single-valued on the worldsheet and ω is an exact

form on Σ. Its integral vanishes and thus ω plays no role. This is why it was never noticed

before. When the string has winding,
∫

Σ ω does not vanish. In the case Σ is a disk this

integral reduces to 1
2πλ2

∫
S1 X̃dX. In this form the topological term reduces to the usual

Aharanov-Bohm phase of quantum mechanics, where x̃/2πλ2 plays the role of the variable

conjugate to x, and it is the Lagrangian analog of the non-commutativity relation (4.15).

As promised, we see that the restoration of T-duality also introduces extra phases for

paths which are non-contractible. These extra phases are necessary to account for the non-

commutativity of the zero modes, and these extra phases enter the action via a topological

coupling that involves a symplectic structure ω in the double space (x, x̃), making it into a

phase space. As we already mentioned the same conclusion was reached in the metastring

formulation [7].

4.3 O(d, d) and more general backgrounds

So far our discussion has been centered on the flat closed string with trivial metric and

zero B fields and we now want to turn on constant G,B background fields

SG,B =
1

4πα′

∫
d2σ

(
Gab[(∂τX

a∂τX
b − ∂σXa∂σX

b] + 2Bab∂τX
a∂σX

b
)
. (4.32)
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As we are going to see the main effect that comes from the presence of a B-field is to

produce a non-commutativity of the dual coordinates.

We define the dual coordinate X̃a as a covector where ∂σX̃a := Gab∂τX
a, while the

string equation of motion implies ∂τ X̃a=̂Gab∂σX
b when G,B are constant. Repeating the

calculation with constant G,B background fields included, one finds

δS=̂
1

2πα′

∫ 2π

0
dσ δXa

(
∂σX̃a +Bab∂σX

b
)∣∣∣τ1
τ0
−
∫ τ1

τ0

dτ p̃a
(
∂τ X̃a +Bab∂τX

b
)
. (4.33)

Here we have introduced, as before, momenta pa = 1
2πα′

∫ 2π
0 dσ ∂σX̃a and dual momenta

p̃a = 1
2πα′

∫ 2π
0 dσ ∂σX

a. We then deduce

Θ = δxapa − δp̃a
[
x̃a − πα′(pa +Babp̃

b)
]

+
1

2πα′

∫ 2π

0
dσ

(
δQa−(G−B)ab∂τQ

b
− + δQa+(G+B)ab∂τQ

b
+

)
.

We should note that the momentum field conjugate to X is now 2πα′P = G · ∂τX +

B · ∂σX. So in this notation, p is not the zero mode of P . Instead, we have

1

2π

∫ 2π

0
dσ Pa = pa +Babp̃

b, (4.34)

and it is this zero mode, i.e., the momentum conjugate to x, that appears in the shift of x̃

in the zero mode contribution to Θ. The zero mode part of the symplectic form is

Ω = δpa f δx
a + δp̃a f

[
δx̃a − πα′(δpa +Babδp̃

b)
]
. (4.35)

This symplectic one-form can be inverted in order to obtain the commutation relations

[xa, pb] = i~ = [x̃a, p̃b], while the commutation relations for the zero modes (x, x̃) are

given by16

[x̂a, x̂b] = 0, [x̂a, ˆ̃xb] = 2πiλ2δab, [ˆ̃xa, ˆ̃xb] = −4πiλ2Bab. (4.36)

The key property satisfied by this bracket is that the combinations x̂a and ˆ̃xa − πα′(p̂a +

Bab ˆ̃p
b) generate a commutative sub-algebra. The presence of a non-trivial B-field implies

that the subalgebra generated by the dual coordinates x̃ is non-commutative, with non-

commutativity being proportional to the background B-field.

In order to understand the nature of this result it is convenient to introduce the

following kinematical tensors on doubled space

ηAB =

(
0 δa

b

δab 0

)
, ωAB =

(
0 −δab

δab 0

)
, (4.37)

where η defines a neutral O(d, d) metric and ω a compatible 2-form. The compatibility

means that the tensor K := η−1ω is a product structure, i.e., it squares to the identity

16This algebra is well-known in the open string sector in the limit of non-commutative field theory [16–21].
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K2 = 1. When we set Bab = 0, then we can simply write the zero mode symplectic form

in a covariant manner as

Ω = ηABδPA f δXB +
πα′

2
ωABδPA f δPB. (4.38)

When we turn on the Bab field, there are two ways to write the symplectic form in covariant

form. The first one, which we call the passive point of view, is to consider that a non-zero

B-field corresponds to a change of background.

One introduces the modified metric and form

η
(B)
AB = ηAB =

(
0 δa

b

δab 0

)
, ω

(B)
AB =

(
−2Bab −δab

δab 0

)
, (4.39)

and using these we can simply evaluate the symplectic structure in a B background as

Ω = ηABδPA f δX̃B +
πα′

2
ω

(B)
AB δP

A f δPB. (4.40)

In this passive picture the change of background results in a modification of the commu-

tation relations of X, which can be written as

[
X̂A, X̂B

]
= 2πiλ2(ω(B))AB, where (ω(B))AB =

(
0 δab
−δab −2Bab

)
. (4.41)

This is equivalent to (4.36). For this reason, we see that ωAB plays the role of a symplectic

form on the subspace of phase space coordinatized by (x, x̃), and we will refer to it as such.

Thus we realize that the modified forms are simply given by a change of the O(d, d)

frame

η(B) = (eB̂)T ηeB̂ = η, ω(B) = (eB̂)TωeB̂, (4.42)

where eB̂ is the O(d, d) transformation determined by the B-field.17

The alternative active interpretation of (4.40) is to keep the background fields un-

changed and to modify the O(d, d) frame by an active transformation eB̂, i.e., one that

acts on P and X as

XA =

(
xa

x̃a

)
→ (eB̂X)A =

(
xa

x̃a +Babx
b

)
, PA =

(
p̃a

pa

)
→ (eB̂P)A =

(
p̃a

pa +Babp̃
b

)
,

(4.43)

which results in the symplectic form

Ω = η(eB̂δP, eB̂δX)− πα′

2
ω(eB̂δP, eB̂δP). (4.44)

Of course, the active and passive transformations have the same effect on Ω, as (4.40)

is equal to (4.44). We emphasize that although the idea that a B-field yields an O(d, d)

17The transformation B̂(x, x̃) = (0, B(x)) is a nilpotent transformation and its exponential is linear in B.
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transformation is familiar, here we see that because we have appreciated the significance

of the form ω, the O(d, d) transformation is entirely geometric.

A similar perspective is found in the dynamical sector where the spectrum is given by

H = λ2HABK̂AK̂B +NL + ÑR − 2, with HAB =

(
Gab 0

0 Gab

)
, (4.45)

where P̂ = ~K̂ and NL, NR ∈ N are the oscillator numbers. This spectrum is modified in the

presence of the B-field by a redefinition H 7→ H(B) (or equivalently, by a change of frame

P→ eB̂P). The new ingredient here is that this field redefinition also affects the kinematics

of the effective string geometry by changing the nature of the non-commutativity of the

zero modes.

That the introduction of a B-field implies a modification of the canonical structure of

zero modes can also be understood from the point of view of the extended action (4.31).

Under a B transform the topological action term is modified to

~
∫
ω(B) =

1

4πα′
dX ∧ d(X̃a +BabX

b) = ~
∫
ω +

1

4πα′

∫
BabdX

a ∧ dXb. (4.46)

Therefore, we see that we can write the extended action either as Sext
G,B = ~

∫
ω + SG,B

or as

Sext
G,B = ~

∫
ω(B) + SG,0. (4.47)

In the second formulation, which corresponds to a different choice of the O(d, d) frame, we

see that the effect of the B-field is simply to modify the topological interaction term. The

fact that the geometrical elements of the string given by the pair (η, ω), which controls the

kinematics of the theory, and H, which controls the metric, are all rotated in a different

frame into (η, ω(B), H(B)), implies that (ω, η,H) form the elements of a Born geometry [6].

More generally, let us recall that a general O(d, d) transformation g : (x, x̃) → (Ax +

Cx̃,Dx̃ + Bx), such that A is invertible, can be decomposed uniquely as a product g =

eB̂Âeβ̂ of a B-transformation eB̂(x, x̃) = (x, x̃+B(x)) labeled by a 2-form, a GL(d) trans-

formation Â(x, x̃) = (Ax, (AT )−1x̃), where A ∈ GL(d), and a β-transform eβ̂(x, x̃) =

(x+ β(x̃), x̃) labeled by a skew symmetric bi-vector βab. These sets of transformations do

not include the T-duality transformations Ta which exchange habx
b and x̃a (with hab the

Minkowski metric). The A-transform and the B-transform are special in the sense that

they do not affect our notion of space-time. The usual space-time can be embedded in

the double space as the slice M := {(x, 0)}. Both A- and B-transformations map the set

M onto itself and this explains why these have a commutative space-time interpretation.

On the other hand, the β-transform and T-duality do not preserve the space-time slice M ,

mixing x with x̃. Since these coordinates do not commute, the proper way to understand

these transformations is in the context of non-commutative geometry.

5 Conclusion

In this paper we have uncovered an intrinsic non-commutative structure in closed string

theory on flat backgrounds. For a compactified string, we have found that the doubled
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space of zero modes coordinatized by (x, x̃) is in fact a non-commutative geometry. The

precise form of this non-commutativity is that it is a Heisenberg algebra. From this point

of view, the zero mode space can be considered as a phase space. Drawing an analogy

with [9] then, it seems natural to conjecture that in this framework a choice of space-

time corresponds to a choice of commutative subalgebra. The obvious classical choices of

commutative subalgebras corresponding to the subspace coordinatized by {xµ} (or {x̃µ}),
as would be recovered in decompactification limits. On the other hand, in ref. [9] we pointed

out the existence of quantum polarizations of the Heisenberg group given by a choice of

modular variables. In this case, the length scale inherent to such a modular polarization

is set by the string scale λ itself.

From the string point of view, space-time, which is the target space of string theory, is

the usual commutative compactified space. However, from the effective field theory point

of view, space-time is an index space. Our point is twofold. First, space-time viewed as

an index space does not have to be the same as the space-time viewed as a target. This

has already been observed in the context of double field theory [4]. The second point is

that, in order to understand space-time as an index space, we have to leave the realm of

commutative geometry and enter the realm of non-commutative geometry. In this context,

the space-time viewed as an index space appears as a commutative subalgebra of the

Heisenberg algebra. From this viewpoint, strings propagating on a compact space-time

involve a choice of (modular) polarization for an effective description based on string zero

modes. Generally, T-dualities act within this framework as the operations that change the

choice of polarization.

It is natural to ask in what sense effective field theories can be thought to emerge from

string theory in the context of compactification. We will explore this question elsewhere,

but it seems natural to note that such field theories may be defined not in the UV, but in

terms of a notion of self-dual fixed points. Such self-dual fixed points occur for example in

the doubled renormalization group [21], found in the toy models of non-commutative field

theory [16–21].

Clearly, the non-commutativity that we have uncovered here will be of crucial im-

portance for duality-symmetric formulations of string theory. In particular, as we will

also discuss elsewhere, the methods that we have developed here will serve to make

the structure of exotic backgrounds (such as asymmetric orbifolds [2] or more generally

T-folds [3]) transparent.

We conclude with a comment about the literature: there exist old papers that are

apparently not widely known in the community [14, 22–26], in which the central results

concerning the co-cycles of closed string vertex operators (in orbifold backgrounds) that

follow from the presentation of this paper were also discussed. The relevance of co-cycles

was more recently emphasized in [27, 28]. Non-commutative aspects of the vertex op-

erator algebra of free string theory in the zero mode sector were also studied in [29].

What was missing in these papers was the recognition of the generic non-commutativity of

closed string theory as well as the relevance of the more general structures associated with

Born geometry.
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