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Intrinsic optimization using 
stochastic nanomagnets
Brian Sutton1, Kerem Yunus Camsari1, Behtash Behin-Aein2 & Supriyo Datta1

This paper draws attention to a hardware system which can be engineered so that its intrinsic physics 

is described by the generalized Ising model and can encode the solution to many important NP-

hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch 

randomly between the ±1 Ising states and can be monitored continuously with standard electronics. 
Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed 
to solve specific problems and to anneal the system at room temperature. The natural laws of statistical 
mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states 
with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we 
present simulation results for standard NP-complete examples including a 16-city traveling salesman 
problem using experimentally benchmarked models for spin-transfer torque driven stochastic 
nanomagnets.

�e use of Ising computers to solve NP-hard problems has a rich heritage in both theory1 and practice. �ese 
computers seek to solve a wide range of optimization problems by encoding the solution to the problem as the 
ground-state of an Ising energy expression. Many diverse systems have been proposed to solve NP-hard optimi-
zation problems such as those based on simulated annealing2, DNA3,4, quantum annealing5,6, Cellular Neural 
Networks7–9, CMOS10, trapped ions11, electromechanics12, optics13–20, and magnets21–23. A common objective of 
many of the Ising-based approaches is the identi�cation of hardware con�gurations that can e�ciently solve 
optimization problems of interest.

In this letter, we demonstrate the possibility of a hardware implementation that does not just mimic the Ising 
model, but embodies it as a part of its natural physics21–23. It uses a network of N “so�” nanomagnets operating in 
a stochastic manner24, each with an energy barrier ∆  comparable to kBT so that they switch between the two Ising 
states, ± 1, on time scales τ τ∼ ∆ k Texp( / )0 B  where τ0 ~ 0.1–1 ns. �e natural laws of statistical mechanics guide 
the network through the 2N collective states at GHz rates, with an emphasis on low energy states. We show how an 
optimization problem of interest is solved by engineering the spin-mediated magnet-magnet interactions to 
encode the problem solution and to simulate annealing without any change in temperature simply by continu-
ously adjusting their overall strength. As proof-of-concept for the potential applications of this natural Ising 
computer, we present detailed simulation results for standard NP-complete examples, including a 16-city trave-
ling salesman problem. �is involves using experimentally benchmarked modules to simulate a suitably designed 
network of 225 stochastic nanomagnets and letting the hardware itself rapidly identify solutions within the 2225 
possibilities. It should be possible to integrate such hardware into standard solid state circuits, which will govern 
the scalability of the solution.

�e Ising Hamiltonian for a collection of spins, Si, which can take on one of two values, ± 1,

∑ ∑= − −H J S S h S
(1)i j

ij i j
i

i i
,

was originally developed to describe ferromagnetism where the Jij are positive numbers representing an exchange 
interaction between neighboring spins Si and Sj, while hi represents a local magnetic �eld for spin Si. Classically, 
di�erent spin con�gurations σ{Si} have a probability proportional to σ−H k Texp( ( )/ )B , T being the temperature, 
and kB, the Boltzmann constant. At low temperatures, the system should be in its ground state σG, the state with 
the lowest energy H(σ). With hi =  0, and positive Jij, it is easy to see that the ground state is the ferromagnetic 
con�guration σF with all spins parallel.
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Much of the interest in the Ising Hamiltonian arises from the demonstration of many direct mappings of 
NP-complete and NP-hard problems to the model1,25,26 such that the desired solution is represented by the spin 
con�guration σ corresponding to the ground state. However, in general this mapping may require a large number 
of spins, and may require the parameters Jij and hi to take on a wide range of values, both positive and negative. 
Finding the ground state of this arti�cial spin glass is the essence of Ising computing, and broadly speaking it 
involves abstractly representing an array of spins, their coupling, and thermal noise through so�ware and hard-
ware that attempts to harness the e�ciencies of physical equivalence27. �ese representations may take the form 
of abstract models of the spins, the use of random number generators to produce noise, and logical or digital 
adders for the weighted summing. If enough layers of abstraction can be eliminated, the underlying hardware will 
inherently solve a given problem as part of its natural, intrinsic operation and this should be re�ected in increased 
speed and e�ciency.

Engineering Correlations Through Spin Currents
Here we describe a natural hardware for an Ising computer based on the representation of an Ising spin Sk by the 
magnetization m of a stochastic nanomagnet (SNM), which we believe will compare well with other alternative 
representations. �ese SNMs are in the “telegraphic” switching regime24,28 requiring the existence of a small bar-
rier in the magnetic energy (∆  ≈  kBT), that gives a small, but de�nite preference for a given axis, with two pre-
ferred states ± 1. In the absence of currents, these SNMs continually switch between + 1 and − 1 on the order of 
nanoseconds, and can be physically realized by a reduction of the magnetic grain volume29 or by designing weak 
perpendicular magnetic anisotropy (PMA) magnets30. Figure 1 shows the response of such a monodomain PMA 
magnet in the presence of an external spin current in the direction of the magnet’s easy axis.

Figure 1. Response of stochastic nanomagnet to spin current. (a) �e magnetization of a stochastic 
nanomagnet is shown for varying spin currents. �e �ve number summary of the magnetization 

��

mz is shown 
throughout the simulation. (b) Obtaining stochastic operation for a magnet can be accomplished with a 
reduction of the energy barrier of the magnet EB through device geometry or by increasing its temperature. �e 
response of the magnet to thermal noise under these conditions is modeled using a stochastic Landau-Lifshitz-
Gilbert (LLG) circuit element based on the input spin current IS and magnetic �eld H. (c) Sample time slices are 
shown at various set points along the sigmoid in order to visualize the magnetization dynamics.
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How do we couple the SNMs to implement the Ising Hamiltonian of Equation (1)? �e usual forms of cou-
pling involve dipolar or exchange interactions that are too limited in range and weightability. Instead, one pos-
sibility is an architecture23 that uses charge currents which can be readily converted locally into spin currents 
through the spin Hall e�ect (SHE). �ese charge currents can be arbitrarily long-range and the total number of 
cross-couplings is only limited by considerations of routing congestion and delay. �e couplings may also be con-
�ned to nearest-neighbors, simplifying the hardware design complexity while promoting scalability and retaining 
universality26.

�e Ising Hamiltonian of Equation (1) can be implemented by exposing each SNM mk to a spin current Ik

∑
α

=





+






( )I m

q
h J m{ }

2
2

(2)
k j k

j
kj j

which has a constant bias determined by hk together with a term proportional to the magnetization of the jth SNM 
mj. �e future state of magnet mk at time (t +  ∆ t) is related to the state of the other magnets at time t through the 
current Ik. �is expression is derived analytically in the following section using the Fokker-Planck equation for 
the system31.

�e spin current Ik can be generated using well-established phenomena and the prospects for physical reali-
zation of such a system are discussed later in this paper. �e distinguishing feature of the present proposal arises 
from the intrinsic stochasticity of SNMs and their biasing through the use of weighted spin currents (Fig. 1(a)). 
How the SNMs are interconnected to implement Equation (2) can evolve as the �eld progresses.

Getting a large system to reach its true ground state is non-trivial as it tends to get stuck in local minima32. It is 
common to guide the system towards the ground state through a process of “annealing”2 which is carried out dif-
ferently in di�erent hardware implementations. For example, systems based on superconducting �ux qubits make 
use of quantum tunneling, which is referred to as quantum annealing33, whereas classical CMOS approaches 
make use of random number generators34 to produce random transitions out of local minima.

For our system of coupled SNMs, random noise is naturally present and can be easily controlled (Fig. 1(a)), 
causing the system of SNMs coupled according to Equation (2) to explore the con�guration space of the problem 
on a nanosecond timescale. Annealing could be performed through a controlled lowering of the actual tempera-
ture, or equivalently through a controlled increase in the magnitude of the current Ik, even at room temperature. 
It has been noted that certain annealing schedules can guarantee convergence to the true ground state, but these 
schedules may be too slow to be used in practice35. �is paper only presents a straightforward annealing pro-
cess and does not seek out optimal annealing schedules. Consequently, as we show in one of our combinatorial 
optimization examples, we may �nd only an approximate solution which, however, may be adequate for many 
practical problems.

Steady-State Fokker-Planck Description. Our goal is to interconnect magnets such that their equilib-
rium state is governed by Boltzmann statistics with thermal noise as an inherent characteristic of the system. To 
see that this is possible, consider a system of N magnets where we want

ρ ρ… =
− …m m e( , , ) (3)N

E m m k T
1 0

( , , )/N B1

and

∑ ∑… = + +E m m A m h m J m m( , , ) ( )
(4)

N
i

i i i i
i j

ij i j1
2

,

where mk represents the z-component of the magnets.
Suppose each magnet is driven by a spin current derived from the others. We start with the Fokker-Planck 

equation31 for the N-magnet system:
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where µ∆ = H M V k T/2k k s0 B  and ik =  Ik/I0 with I0 as the critical switching spin current α= ∆I q k T(2 / )2 k0 B . At 
equilibrium, ρ τ∂ ∂ =/ 0 yielding from (3) and (5):
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respectively. Comparing equations (6) and (7) while assuming symmetric coupling, ≡J Jkj jk, for the system we 
�nd

∆ = −A k T/ (8)k k B

and arrive at (2):
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Stochastic Landau-Lifshitz-Gilbert (LLG) Model. In this section we brie�y describe the simulation 
framework and stochastic LLG model used throughout this paper. We start with the LLG equation31 for a 
monodomain magnet with magnetization mi in the presence of a spin current =
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�e magnetic thermal noise enters the equation through the e�ective �eld of the magnet, Hi =  H0 +  Hn, as an 
uncorrelated external magnetic �eld in three dimensions with the following mean and variance:
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�e numerical model is implemented as an equivalent circuit for SPICE-like simulators and reproduces the equi-
librium (Boltzmann) distribution from a Fokker-Planck Equation31.

A given system of magnets is simulated using a collection of independent, though current-coupled, stochastic 
LLG models. Delays associated with the communication from one magnet to the next are neglected assuming 
that the response time of the nanomagnets is much greater than associated wire-delays. Presently, the attempt 
time τ of experimental nanomagnets is on the order of ∼ µs to ∼ ms28,29,36. With additional scaling, the response 
times of these magnets will continue to improve37 and should approach the ∼ ns times discussed in this paper. 
With response times ∼ ns, our simulations show that even routing delays on the order of 100s of ps do not a�ect 
the results materially. Using nearest-neighbor Ising approaches or other constraining design decisions it should 
be possible to limit routing delays to shorter values. However, if the routing delay is comparable to the intrinsic 
response time of the nanomagnets then it would be important to include their e�ect in the simulation.

Many options exist, please see the �nal section, for physical realization of the proposed system of stochastic 
nanomagnets. For the simulations in this paper we simply use Equation (2) without assuming any speci�c hard-
ware to implement it, since it is likely that better alternatives will emerge in the near future, given the rapid pace 
of discovery in the �eld of spintronics, see for example38–41.

Combinatorial Optimization
We will focus on two speci�c examples to demonstrate the ability of such an engineered spin glass to solve prob-
lems of interest42: an instructive example based on the satis�ability problem (SAT), and a representative example 
based on the traveling salesman problem (TSP). �e �rst known NP-complete problem is the problem of Boolean 
satis�ability43, namely, deciding if some assignment of boolean variables {xi} exists that satis�es a given conjunc-
tive normal form (CNF) expression. Finding the collection of inputs that makes the clauses of the CNF expression 
true is computationally di�cult, but easy to verify.

It is known that any given CNF expression can be mapped to a collection of Ising contraints using the funda-
mental building blocks of NOT ( =m m1 2), AND ( = ∧m m m1 2 3), and OR ( = ∨m m m1 2 3) each subject to the 
Ising constraints given by44:

= − −H m m1 ( ) (11)NOT 1 2

= − − + + − − + +H m m m m m m m m m3 ( 2 2 ) ( 2 ) (12)AND 2 3 1 2 1 3 1 2 3

= − − + + − − −H m m m m m m m m m3 ( 2 2 ) (2 ) (13)OR 2 3 1 2 1 3 1 2 3

Using these building blocks, a network capable of �nding the truth table for XOR = ∨ ∧ ∧m m m m m( ( ) ( ))1 2 3 2 3  
was prepared (Fig. 2). For simplicity, the solution uses a naive method to construct the network and leverages the use of 
ancillary spins to represent ∨m m( )2 3  and ∧m m( )2 3  respectively (note that four spins could have been used45). �e 
array of spins from Fig. 2(b) are connected as speci�ed by equations (11–13), driven by a reference current I0. As the 
magnets explore the con�guration space, their outputs are digitized and used to compute the overall energy of the sys-
tem (Fig. 2(c)). �e regions of zero energy correspond to solutions of the problem. �e digitized outputs are aggregated 
to determine their probability of occurrence. By looking at the �rst three bits of the most probable outputs, the solution 
to the problem can be directly found (Fig. 2(d,e)). While this problem helps convey the essence of the approach, a more 
demonstrative application is worth considering.

�e decision form of the TSP is NP-complete, that is, for a collection of N cities, does there exist a closed path 
for which each city is visited exactly once that has a tour length less than some value d? Finding tours that satisfy 
this problem is computationally challenging and also of great practical interest. �ere are well-known mappings 
that translate the TSP to the Ising model25,46. Here we adopt the following:
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Figure 2. Boolean satis�ability with stochastic magnets. (a) �e coupling between individual magnets is 
represented using abstract write and read units. Each magnet 

��

mi is in�uenced by problem speci�c on-site bias, 
Bi, and weighted, W(ji), coupling to magnet 

��

m j. In turn, magnet 
��

mi in�uences magnet 
��

m j through weight W(ij). 
(b) �e magnetization response of the �ve magnets during a small time slice is digitized in order to compute the 
overall energy of the system as a function of time. (c) �e truth table of the exclusive or operation is found by 
decomposing the operation into an expression involving only NOT, OR, and AND. �e energy of this 
expression is found using the Ising model with two additional ancilla bits. �e logical bits are represented by 
magnets mi that are coupled and biased as speci�ed by the Ising energy expression. (d) Each digitized 
magnetization is used to represent the logical bits xi. (e) Steady-State Fokker-Planck equation analytical solution 
using thresholding, demonstrating a qualitative match to the stochastic LLG solution of (d).
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where xi,j is a Boolean variable that is TRUE when city i is stop number j and FALSE otherwise, and W(uv) are 
directed weights based on the distance between cities u and v. �is Hamiltonian is mapped to a spin system by 
replacing each xij with 1/2(mij +  1) and weights W(uv) with i(uv) given by Equation (2).

If the interconnections between each city are symmetric, then a Boltzmann machine47 with each of the 2N×N 
states associated with an e�ective energy H is realized, and the probability of the system visiting a particular state is 
proportional to −H k Texp( / )B . In order to �nd low-energy, optimized states, direct annealing of the glass can be 
performed. Using the ulysses16 reference dataset48, annealing of a problem speci�c magnetic array through control 
of the e�ective temperature was performed (Fig. 3). Two speci�c traits of interest arise, namely the energy decays in 
a sigmoidal relationship with the ln T, and the speci�c heat of the system, = −C T E T E T k T( ) ( ( ) ( ) )/2 2

B
2, 

shows a de�ned peak about a critical temperature. At high temperatures, the system is disordered and corresponds 
to high energy states (Fig. 3(c)). As the temperature is reduced, the system continues to explore the energy landscape 
on a nanosecond timescale while gradually converging to a low-energy solution. For the given annealing pro�le and 
simulation duration, a low-energy, though not ideal, solution is found to the problem, highlighting the heuristic 
nature of the optimization46. Note that in principle these simulation results could be obtained directly from actual 
hardware. For example, Figs 2(d) and 3(d) could be obtained by continuously monitoring the states of the individual 
SNMs using spin valves.

Considerations for Physical Realization
Physical realization of these engineered spin glasses requires the integration of multiple functional elements as 
highlighted in Fig. 2(a). �e magnetization of each magnet mi is �rst sensed with a read unit. �e signal produced 
by this read unit is then propagated to all of the magnets with couplings dependent on the read magnetization 

Figure 3. Annealing stochastic nanomagnets for heuristic optimization of the traveling salesman problem. 
(a) An N =  16 city traveling salesman problem based on the ulyssess16 data set48 was simulated using an array 
of (N −  1)2 =  225 stochastic magnets, assuming a �xed starting city. Each magnet represents if city i was stop 
j using mz =  + 1 or was skipped mz =  − 1 (insets). �e magnets are prepared in a random initial con�guration 
and gradually annealed until eventually frozen in a low-energy con�guration. �e normalized average energy 
of the system at each temperature is shown as the system is gradually annealed. (b) �e speci�c heat of the array 
versus temperature is shown along with insets of the array con�guration at early and late temperatures. (c) �e 
state of the array is shown as a TSP graph at various temperatures, shown as green diamonds in (a), during the 
annealing process with the ideal con�guration shown on the top le�. (d) Average magnetization shown at the 
temperatures of (c). (Map imagery data: Google, TerraMetrics).
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mi. Each of these connections is independently weighted with weights W(ij) and provided as input, along with an 
on-site bias Bi to the write units. �e write units in turn in�uence and control the state of magnet mj.

�ere are a number of design options available for each functional unit as shown in Table 1. Write-control of 
the magnets can be a�ected through a number of means including the spin Hall e�ect (SHE)39 or perhaps through 
voltage control40. �e use of the SHE e�ect provides a convenient mechanism with which to sum several, inde-
pendently weighted, input currents. Readout of the magnetization can be accomplished using well-established 
tunnel junctions49 which have been demonstrated for stochastic nanomagnets29. Alternatively, readout could 
perhaps be accomplished using the inverse SHE39. Assuming the use of a SHE material and tunnel junction stack, 
care must be given to accomodate the simultaneous use of write and read currents. One approach would be to 
introduce the use of a time-multiplexed scheme that disassociates the write and read operations50. Alternatively, 
structures that provide write and read isolation may be used51.

�e ability to write and read the magnetization is of fundamental importance, however, once read, the likely 
weak signal must be ampli�ed to satisfy the fanout requirements of the network. �is transistor-like gain can be 
realized using all-spin based approaches23,51 or perhaps with the use of a hybrid-CMOS design52,53. �ese pro-
posed approaches may introduce power dissipation challenges during the read operation, e.g. the short-circuit 
current produced with the use of amplifying inverters. Power dissipation considerations must be carefully evalu-
ated to assess the viability of scaling the proposed system.

The output from the amplification stage can be selectively weighted so that a wide range of problems 
based on (1) can be encoded onto the network. �e weighting of inputs can be based on an approach using 
re-programmable �oating-gate voltages54 that would enable the use of analog weights for the circuit. While 
�oating-gate regulation would enable convenient re-programmability, the design would be complicated with the 
requirement for peripheral drivers to control the �oating-gate array. Others proposals have suggested the use of 
memristors24,53,55 or other programmable elements in a cross-bar like con�guration50,56, though with constrained 
fanout. Note that one weighting scheme that still retains the ability to encode NP-hard problems onto the network 
is with the use of {− 1, 0, 1} weights1. Using this simple approach removes the necessity for tunable weights and 
instead relegates the problem to one of routing, connectivity, and area.

All of the simulations used in this paper assume a fully connected network of magnets in which each mag-
net talks to all other magnets. For small networks this is reasonable, however, such an assumption is invalid 
for large networks as the number of routes grows rapidly. Instead, di�erent topologies57 and routing consider-
ations must be made to account for congestion and long-distance communication. By limiting the connections 
to local-neighbors9,10, the network may still be used to perform NP-hard optimization while also simplifying 
routing complexity. One design possibility is to leverage the lessons learned from the advances in the design of 
Field-Programmable Gate Array (FPGA) interconnects58. FPGAs are designed with routing topologies that facil-
itate both short and long-range interconnections while also providing re-programmability.

�e �delity of the programmed weights and number of high-fanout signals needed for robust solutions may 
impose challenges on the selected weighting and routing schemes. Additionally, the propagation delay of these 
high-fanout signals must be balanced with the response time of the magnets in order for the system to be gov-
erned by (1). While �exibility in the allowed weights and number of couplings is convenient for encoding prob-
lems onto the model25, it is important to note that discrete nearest-neighbor couplings still retain NP-hardness1 
and may greatly simplify the hardware design, improving scalability at the expense of increased encoding com-
plexity and area.

�e main point of this paper is the remarkable high-speed search through Fock space enabled by the intrin-
sic physics of a network of stochastic nanomagnets interacting via spin-mediated interactions. We hope this 
work fosters an interest in the physical realization and exploration of stochastic nanomagnets as a viable Ising 
computer.

Function Technique

Writing
Spin-Orbit Torque39,41

Voltage Control40

Reading
Spin-Valves/Tunnel Junctions49

Inverse Spin-Hall E�ect39

Ampli�cation
Spin-Switches51

CMOS52

Weighting

Floating-gate Regulators54

Memristive Elements24,53,55

Digital Logic10

Fixed Voltages

Routing
Tailored Topologies57

FPGA-Like Interconnect58

Table 1.  Options for Physical Realization. Many options exist for physical realization of the proposed system 
of stochastic nanomagnets. �ese magnets must be written, read, possibly ampli�ed, weighted, and routed for 
the network to form a Boltzmann machine. �e design options shown in this table re�ect various approaches 
that can be used to perform each of these functions.
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Methods
Simulations based on the modular framework for spintronics38 were used to produce the results in this work. 
Within the framework, a stochastic Landau-Lifshitz-Gilbert (LLG) model was used to simulate each nanomagnet. 
�e magnetic parameters for the telegraphic PMA magnets used in the simulations are: e�ective anisotropy of 
PMA, =H 600 OeK

eff , saturation magnetization, =M 300 emu/ccs , damping coe�cient, α =  0.01, and PMA 
diameter, Φ  =  45 nm, amounting to a barrier height of ∆  =  1 kT. In all simulations, the initial state of the magnetic 
array was randomly selected. Figure 1 was produced using a modular stochastic LLG simulation element with the 
input current swept from − 2 µA to 2 µA in increments of 800 nA. At each current, the response of the magnet is 
observed for 10 µs. Figure 2 was simulated for 100 µs using the coupling depicted in the Figure and a reference 
current I0 of 2 µA. Figure  3 used an annealing schedule of Ti+1 =  0.9 Ti and Lagrange multiplier of 

λ = . W0 9/ max( )uv( ) . At each temperature the magnets were allowed to randomly walk for 1 µs and were meas-
ured every 200 ps. �e SAT and TSP magnetic networks were simulated using coupled stochastic LLG models 
with the intermagnet-coupling and on-site biases produced via the spin current term of the LLG equation. �e 
magnetization of each magnet was digitized using Schmitt trigger based thresholds. HSPICE was used to solve the 
simultaneous coupled di�erential equations of the magnetic network.
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