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Abstract

Our paper derives and estimates an NK wage Phillips curve that accounts for intrinsic

inertia. Our approach considers a model of wage-setting featuring an upward-sloping hazard

function, based on the idea that the probability of resetting a wage depends on the time elapsed

since the last reset. According to our speci�cation, we obtain a wage Phillips curve including

also backward-looking terms, which account for persistence. With GMM estimation we test

the slope of the hazard function. Then, placing our equation in a small-scale NK model, we

investigate its dynamic properties by Bayesian estimation. Model comparison shows that our

model outperforms commonly used alternative methods to introduce persistence.

JEL classi�cation: E24, E31, E32, C11.

Keywords: time-dependent wage adjustments, intrinsic in�ation persistence, DSGE model,

hybrid Phillips curves, model comparison.

1 Introduction

Micro empirical evidence suggests that nominal wages are sticky and wage in�ation is persistent

(Barattieri et al., 2014). In aggregate models, these imperfections play a crucial role in the

transmission of monetary policy and in our understanding of business cycle �uctuations (Christiano

et al., 2005; Rabanal and Rubio-Ramirez, 2005; Olivei and Tenreyro, 2010). If wage stickiness is

neglected, macroeconomic models are actually unable to mimic the inertial dynamics of output

observed in the data, unless implausibly high degrees of price stickiness are assumed (Christiano

et al., 2005). Moreover, the inertial structural component of wage in�ation also plays a role in

a¤ecting price in�ation persistence, which is present in the data (Fuhrer and Moore, 1995; Fuhrer,
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Chirinko, Jordi Galí, Francesco Lippi, Peter McAdam, Ricardo Reis, Lorenza Rossi, Massimiliano Tancioni, Pa-
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(University of Manchester). The authors also acknowledge �nancial support by Sapienza University of Rome.
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2011). Everything equal, in fact, price in�ation depends on expected future nominal marginal

cost, which in turn depends on wages.

In macroeconomic models, stickiness and wage in�ation persistence are usually captured by

assuming wage adjustment processes á la Calvo and some forms of indexation to past price in�ation

(e.g., Erceg et al., 2000; Christiano et al., 2005; Rabanal and Rubio-Ramirez, 2005; Smets and

Wouters, 2007). The former accounts for wage stickiness, whereas the latter introduces intrinsic

in�ation persistence.1 The success of these assumptions is mainly related to their simplicity and

tractability (Tsoukis et al., 2009). However, both assumptions seem to be rejected by the micro

evidence on wage-setting process.

In a recent study for the U.S., using quantitative data from the Survey of Income and Program

Participation, Barattieri et al. (2014) �nd that wages are sticky, but the hazard function of a

nominal wage change is not constant. This is in contrast to the Calvo mechanism, whereby the

probability of changing a price is independent of the time elapsed from the last price reset (i.e., the

hazard function is �at). In their sample, the hazard function is initially increasing, with a peak at

twelve months, signaling that the probability of observing a wage reset positively depends on the

time elapsed from the last wage adjustment, i.e., newer wages are stickier than older. Moreover,

the probability of a wage change does not vary across quarters, i.e., the wage reset process is not

a¤ected by seasonality.

Barattieri et al. (2014) also reject wage indexation. They �nd that only a fraction of wages

are reset in every period, while the remaining wages are left unchanged. This is at odds with

the assumption of wage indexation, which entails that all the wages are updated in every period.

Moreover, the degree of wage indexation largely varies across time (Holland, 1988) and seems to be

endogenously determined by the business cycle �uctuations or other factors (Hofmann et al., 2010;

Di Bartolomeo et al., 2015). As a result, the degree of wage indexation might not be a structural

parameter in the sense of Lucas (1976). In general, in�ation indexation can be considered an ad

hoc assumption to introduce persistence because it is not supported by the survey evidence (see,

e.g., Dhyne et al., 2005; Fabiani et al., 2005).

In light of the above facts, we propose a di¤erent approach for modelling the wage adjustment

process and introduce wage in�ation persistence. Our starting point is Sheedy (2007, 2010),2 who

shows that, by assuming a positive hazard function in price setting,3 a Phillips curve with any

number of lags in past in�ation rates can be obtained. We borrow Sheedy�s mechanism and extend

it to wage setting.

We assume that the length of a wage spell directly in�uences the reset probability. If the slope

of the hazard is positive (negative), the probability of posting a new wage increases (decreases)

for the wages left �xed for many periods. Considering a non-constant hazard function, we derive

a wage equation that accounts for stickiness and intrinsic wage in�ation inertia, without assuming

1 Intrinsic persistence is the structural inertia that is proper for the in�ation process, i.e., generated by past
in�ation. See, e.g., Angeloni et al. (2006), Rudd and Whelan (2006), Fuhrer (2011).

2Price adjustments with non-constant hazard functions are considered by many other papers� including Taylor
(1980), Goodfriend and King (1997), Dotsey et al. (1999), Wolman (1999), Guerrieri (2001, 2002), and Mash
(2004). These models are based on state or time-dependent assumptions and focus on price dynamics.

3Micro evidence on price setting about the slope of the hazard function is mixed. Results depend on the sample,
countries, periods considered and methodologies used (see, e.g., Cecchetti, 1986; Nakamura and Steinsson, 2013).
For a detailed discussion on the positive hazard function based on macroeconomic evidence, see instead Sheedy
(2010) and Yao (2011).
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that all the wages are adjusted in every period (as for indexation)� in line with Barattieri et al.

(2014). After deriving the wage Phillips curve, we estimate our equation by a single equation

using generalized method of moments (GMM) and in a small-scale DSGE model by Bayesian

techniques.4

Our paper makes both theoretical and empirical contributions to the literature on wage-setting

behavior and in�ation persistence. To our knowledge, this is the �rst attempt to capture wage

intrinsic persistence by assuming a positive hazard function and to estimate the resulting wage

Phillips curve by using macro data. Our main results can be summarized as follows.

We extend the price adjustment mechanism proposed by Sheedy (2007, 2010) to the wage-

setting process. Assuming time-dependent reset probabilities, we analytically derive a wage

forward-looking Phillips curve that also embeds past terms for wage in�ation rates. In doing

this, we provide microfoundations and a theoretical justi�cation for intrinsic wage in�ation per-

sistence that is not at odds with the micro evidence.

We estimate our wage Phillips curve as a single equation using GMM. We �nd that the esti-

mated hazard parameters are positive and statistically signi�cant. This provides evidence that a

positive hazard function emerges for wage changes at a the macro aggregate level. Moreover, our

estimation also provides evidence for intrinsic (versus extrinsic) wage in�ation persistence.

Including our equation in a DSGE macro model, we generalize Erceg et al. (2000) to take

account of possible time-dependent wage adjustments. By estimating our DSGE macro model, we

�nd that hazard gradients are positive for both prices and wages� con�rming our GMM results

and those of Sheedy (2010). Then, following Benati (2008, 2009), we test the robustness of

time-dependent adjustments to policy regime shifts. By considering sub-samples, we �nd that

parameters encoding intrinsic persistence remain signi�cantly di¤erent from zero also during the

Great Moderation� so they are �deep�in the sense of Lucas (1976).

Finally, we �nd that our model outperforms alternative speci�cations for price and wage ad-

justments. Following Rabanal and Rubio-Ramirez (2005), we evaluate the empirical performance

of di¤erent models by comparing marginal likelihoods (via Bayes factor). As alternatives, we

consider �at hazard functions (price and wage Phillips curves á la Calvo) and past or dynamic

indexation mechanisms (see Galí and Gertler, 1999; Christiano et al., 2005).5

The rest of the paper is organized as follows. In the next section, we introduce the hazard

function and show the derivation and estimation of our time-dependent wage Phillips curve. Sec-

tion 3 presents a DSGE simple small-scale model characterized by price and wage Phillips curve

able to account for intrinsic in�ation persistence. Section 4 provides ours model estimations and

compares them to commonly used alternatives based on di¤erent types of in�ation indexation. A

�nal section concludes and provides some future lines of research.

4Regarding price adjustment in macro models with rational expectations, there is a long debate about single
equation estimation and full model speci�cation. See, e.g., Galí et al. (2005), Lindé (2005), Mavroeidis (2005),
Rudd and Whelan (2005). We consider both approach for the sake of robustness.

5Similar results are found by Laforte (2007) for price setting. He �nds that, in terms of the Bayes factor, the
predictive ability of a model with positive hazard functions (Wolman, 1999) is strongly higher than that of models
with indexation (Smets and Wouters, 2007) and sticky information (Mankiw and Reis, 2002).
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2 Wage Phillips curve and intrinsic persistence

This section illustrates the main characteristics of a hazard function and shows how to derive

a wage Phillips curve under the assumption that wages are reset following a vintage-dependent

mechanism. Moreover, we perform the GMM estimation of our Phillips curve to test if the sign of

the hazard slope is positive as well as the statistical signi�cance of the Phillips curve coe¢ cients.

2.1 Hazard function and time dependent adjustment

According to Sheedy (2007),6 the probability of a wage adjustment is not random as in the Calvo

speci�cation, but depends on the time elapsed since the last wage reset. This means that the

probability of posting a new wage is not equal among households, but it is a positive function of

time. Formally, wage adjustments are de�ned by using a hazard function, which expresses the

relationship between the probability of updating a wage and the duration of wage stickiness. The

hazard function is de�ned by the sequence of probabilities f�w;lg1l=1, where �w;l represents the
probability of resetting a wage that remained unchanged for l periods. The hazard function is

speci�ed as follows:7

�w;l = �w + 'w (1� �w;l�1)
�1
; for l > 1 (1)

where �w is the initial value of the hazard function (for l = 1) and 'w is its slope. In what follows

we assume that only one parameter controls the slope of the hazard,8 as described below:8><>:
'w = 0, �! the hazard is �at (Calvo case);

'w > 0, �! the hazard is upward-sloping;

'w < 0, �! the hazard is downward-sloping.

(2)

Thus, the hazard is positive if 'w > 0. As mentioned above, a positive hazard function

translates into a higher probability of updating a wage reset from many periods ago. Equation (1)

helps us to grasp the intuition about this point: Whenever 'w > 0, �w;l shifts upward, implying

�w;l+1 > �w;l, this means that older wages will more likely be reset than newer wages.

Each hazard function is related to a survival function, which expresses the probability that a

wage remains �xed for l periods. As for the hazard, the survival function is de�ned by a sequence

of probabilities: f&w;lg1l=0, where &w;l denotes the probability that a wage �xed at time t will still
be in use at time t+ l. Formally, the survival function is de�ned by:

&w;l =
lY

h=1

(1� �w;h) (3)

with &w;0 = 1.

By making use of (3), we can rewrite the non-linear recursion (1) for the wage adjustment

6Note that the hazard function modeled in Sheedy (2010) is equivalent to Sheedy (2007). Di¤erences are based
only on parameterization choice. Both hazard functions lead to the same Phillips curve speci�cation.

7Further details about the hazard function properties are in Appendix A.
8 In Appendix A, we provide the general case in which the sequence

�
'w;l

	n
l=1

a¤ects the hazard gradient.
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probabilities as a linear recursion for the corresponding survival function:

&w;l = (1� �w)&w;l�1 � 'w&w;l�2; for l > 1 (4)

with &w;1 =(1 � �w) for l = 1.9 Let �w;lt denote the proportion of households earning at time t

a wage posted at period t� l. The sequence f�w;ltg1l=0 indicates the distribution of the duration
of wage stickiness at time t. If both the hazard function and the evolution over the time of

the distribution of wage duration satisfy certain conditions,10 the following three relations are

obtained: 8><>:
�w;l = (�w+'w) &w;l

�ew = �w + 'w

De
w =

1�'w
�w+'w

(5)

where �w;l represents the unique stationary distribution to which the economy always converges,

�ew indicates the unconditional probability of a wage reset and D
e
w denotes the expected duration

of wage stickiness.

2.2 Time-dependent wage Phillips curve derivation

The supply side of the economy we consider is fairly standard (see EHL, 2000). It is composed

of a continuum of monopolistically competitive �rms indexed on the unit interval 
 � [0; 1]. The
production function of the representative �rm i 2 
 is described by a Cobb-Douglas without

capital:

Yt(i) = AtNt(i)
1��; (6)

where Yt(i) is the output of good i at time t, At represents the state of technology, Nt(i) is the

quantity of labor employed by i��rm and 1� � is the labor share. The quantity of labor used by
�rm i is de�ned by:

Nt(i) =

24Z



Nt(i; j)
"w�1
"w dj

35
"w

"w�1

(7)

where Nt(i; j) is the quantity of j-type labor employed by �rm i in period t and "w denotes the

elasticity of substitution between workers. Cost minimization with respect to the quantity of labor

employed yields to the labor demand schedule:

Nt(i; j) =

�
Wt(j)

Wt

��"w
Nt(i) (8)

where Wt(j) is the nominal wage paid to j�type worker and Wt is the aggregate wage index

de�ned in the following way:

Wt =

24 1Z
0

Wt(j)
1�"wdj

35
1

1�"w

(9)

9 It derives from (3).
10See Appendix A for all the restrictions that must be satis�ed.
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We consider a continuum of monopolistically competitive households indexed on the unit in-

terval � � [0; 1]. Each household supplies a di¤erent type of labor Nt(j) =
R


Nt(i; j)di to all

the �rms. The representative household j 2 � chooses the quantity of labor Nt (j) to supply, to

maximize the following separable utility:

U(Ct (j) ; Nt (j)) = E0

(
1P
t=0

�t

"
Gt
(Ct(j)� hCt�1(j))1��

1� � � Nt(j)
1+

1 + 

#)
(10)

where E0 is the expectation operator conditional on time t = 0 information, � is the stochastic

discount factor, � denotes the relative risk aversion coe¢ cient,  is the inverse of the Frisch labor

supply elasticity and h is an external habit on consumption. Finally, Gt is a preference shock that

a¤ects the marginal utility of consumption and is assumed to follow an AR(1) stationary process.

The household faces a standard budget constraint speci�ed in nominal terms:

Pt (j)Ct (j) + Et [Qt+1;tBt (j)] � Bt�1 (j) +Wt (j)Nt (j) + Tt (j) (11)

where Pt (j) is the price of good j, Bt (j) denotes holdings of one-period bonds, Qt is the bond price,

Tt represents a lump-sum government nominal transfer. Finally, Ct (j) represents the consumption

of household j and it is described by a CES aggregator: Ct (j) =
�R

�
Ct(i; j)

"p�1
"p di

� "p
"p�1

, where

Ct(i; j) denotes the quantity of i-type good consumed by household j and "p is the elasticity of

substitution between goods.

In our framework, households are wage setters. In setting wages, each maximizes (10) inter-

nalizing the e¤ects of labor demand (8) and taking account of (11). Households are subject to a

random probability of updating their wage, but, according to our time-dependent mechanism, a

wage change will be more likely to be observed when the last wage reset happened far in the past.

Formally, suppose that at time t a household sets a new wage, denoted by W �
t ,
11 if the household

still earns this wage at time � � t, its relative wage will be W �
t =W� , and the household utility can

be written as U
�
W �
t =W� ;C� jt;N� jt

�
;12 by considering the survival function, the household will

then choose its optimal reset wage by solving:

max
W�

t

1X
�=t

&w;��tEt

( 
�Y

s=t+1

�ps
Is

!
U

�
W �
t

W�
;C� jt;N� jt

�)
(12)

where �ps = Ps=Ps�1 is the gross price in�ation rate and Is = is=is�1 is the gross nominal interest

rate. This maximization is subject to the budget constraint (11) and the labor demand schedule

(8). Equation (12) yields the following �rst-order condition:

1X
�=t

&w;��tEt

�
W �
t

W�

��"w  �Y
s=t+1

�s
Is

!�
Uc(C� jt; N� jt)

N� jt

P�
(1� "w)� "wUn(C� jt; N� jt)

N� jt

W �
t

�
= 0

(13)

11Because each household solves the same optimization problem, henceforth, index j is omitted.
12C� jt and N� jt denote the level of consumption and the labor supply at time � of a household, respectively, for

which the last wage reset was in period t.
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where Uc(C� jt; N� jt) is the marginal utility of consumption and �Un(C� jt; N� jt) is the marginal
disutility of labor. Considering that the marginal rate of substitution between consumption and

leisure is MRS� jt = �Un(C�jt;N�jt)

Uc(C�jt;N�jt)
, and the steady state wage mark-up is �w =

"w
"w�1 , equation

(13) can be rearranged and expressed in terms of the optimal wage reset as:

W �
t =

"
�w
�P1

�=t &w;��t�
��tMRS� jtP�

�P1
�=t &w;��t�

��t

#
(14)

Assuming that the economy has converged to f�w;lg1l=0, the wage level (9) can be expressed
as a weighted-average of the past reset wages:

Wt =

 1X
l=0

�w;lW
�1�"w
t�l

! 1
1�"w

(15)

As common practice in DSGE models, we log-linearize (14) and (15) around a deterministic

steady state. Speci�cally, there is no trend in�ation, i.e., �w = 1 and �p = 1, where �w and �p

represent the steady state of the wage and price in�ations, respectively. This assumption implies

that the steady state value for the relative reset wage is 1 and that the steady state of the real

interest rate is equal to ��1. Thus, we obtain:13

w�t =
1X
�=t

 
���t&w;��tP1
j=0 �

j&w;j

!
[w� � �w�w� ] (16)

where �w = 1
1+"w

and

wt =

1X
l=0

�w;lw
�
t�l (17)

Equations (16) and (17) describe the wage adjustment mechanism. The time-dependent wage

Phillips curve is derived by combining them with (4) and (5).

Speci�cally, inserting (4) in (16), we obtain:

w�t = �(1� �w)Etw�t+1 � �2'wEtw�t+2 +
�
1� �(1� �w) + �2'w

�
(wt � �w�wt ) (18)

By making use of (5), equation (17) can be recast as follows:

wt = (1� �w)wt�1 � 'wwt�2 + (�w+'w)w�t (19)

where we have used the fact that the stationary distribution of the wage duration (5) can be

rewritten in a recursive way as:

�w;l = (1� �w)�w;l�1 � 'w�w;l�2 for l > 1 (20)

with �w;0 = �w + 'w and �w;1 = (1� �w) (�w + 'w) because of (5) and (3).
13Small-caps letters denote log-deviations from the steady state.
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The general expression for the wage Phillips curve is obtained from (18) and (19):

�wt =  w�
w
t�1 + � [1 + (1� �) w]Et�wt+1 � �2 wEt�wt+2 � kw�wt ; (21)

where �wt is the wage in�ation and �
w
t is the wage mark-up. Moreover:8<:  w =

'w
(1��w)�'w[1��(1��w)]

kw =
(�w+'w)[1��(1��w)+�2'w]
(1��w)�'w[1��(1��w)]

�w
, (22)

where  w and kw are coe¢ cients depending on the hazard parameters.
14 In particular, 'w and

�w control the slope and the initial level of the hazard function, respectively.

As highlighted previously, our wage Phillips curve establishes that current wage in�ation is

determined not only by the expectations over future wage in�ation15 but now also has a �history

dependent�dimension as an endogenous lagged term a¤ects it. Unlike the case with indexation,

here the past term is on wage in�ation and not on price in�ation, indicating a �purely�intrinsic

inertia. Moreover, the presence of this term does not derive any more from an ad hoc assumption,

but it now has a clear theoretical foundation.

The backward term in wage in�ation derives from a �selection e¤ect� stemming from our

pricing mechanism. In all sticky wage models, after a temporary shock has vanished, there are

still incentive to change prices because the average price level changes and not all wage setters

are able to adjust in every period. In a Calvo framework, the incentive to raise wages exactly

compensate the incentive to reduce them. By contrast, in our framework, after a positive shock,

the former dominates the latter, generating in�ation persistence. The intuition of our result is

explained more in detail as follows.

Suppose that at time t a temporary positive cost-push shock hits the economy, as nominal wages

are sticky, a part of them does not change, while the remaining fraction increases. Therefore, the

average wage level increases. At time t+1, after the shock has vanished, the wage setters who did

adjust at t �nd their relative wage too low and want to raise their nominal wage (the �catch-up�

e¤ect). By contrast, the wage setters who did adjust at t now �nd their relative wage too high

and, hence, want to lower it (the �roll-back�e¤ect).

In the Calvo context, the two e¤ects exactly countervail one another and in�ation stabilizes

right away. When non-constant hazard functions are considered, one e¤ect dominates over the

other. In the case of the positive hazard function, the �catch-up� e¤ect prevails over the �roll-

back�e¤ect because wages that remained unvaried at t are more likely to be changed than newly

set wages. As a result, aggregate wage in�ation is also still positive after the shock has dissipated,

generating in�ation persistence. In terms of (21), this is captured by the presence of the past wage

in�ation rate. In our framework, on average, the �selection e¤ect�is positive because the relative

gains of adjusting a wage are more likely to be higher for wages that have remained unchanged

for longer periods.

14The evolution of the wage Phllips curve coe¢ cients for the general case n > 1 is reported in Appendix A.
15Both in�ation at time t + 1 and t + 2 are relevant. Although the coe¢ cient associated with the latter is

negative, the overall e¤ect of expected in�ation is positive on its current rate. The second-order term in the
di¤erence equation captures the dynamics of the adjustment process. See Sheedy (2007) for a discussion.
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A positive slope for the hazard also implies that the coe¢ cient on the backward term is always

positive, which is consistent with observed wage in�ation dynamics. Finally, our Phillips curve

encompasses the Calvo purely forward-looking speci�cation as the particular case 'w = 0 (a �at

hazard) implies that  w drops to zero and, consequently, we return to the standard textbook case.

2.3 Hazard function estimation

As in Sheedy (2007, 2010), we estimate our wage Phillips curve via GMM, to inspect the shape

of the hazard function and the statistical signi�cance of the coe¢ cients attached to the lead and

lag components of the wage equation. For the sake of simplicity we show only the estimation of

(21) when n = 1.16 Because it is not easy to �nd an observable proxy for the wage mark-up, the

latter can be expressed as a function of unemployment, as in Galí et al. (2011):

�wt = ut (23)

where ut represents the unemployment gap. Therefore, (21) becomes:

�wt =  w�
w
t�1 + � [1 + (1� �) w]Et�wt+1 � �2 wEt�wt+2 � kwut (24)

To perform a GMM estimation of (24), we need to use a set of instruments, to correctly identify

all the coe¢ cients. Let zt�1 represent a vector of observable variables known at time t� 1: Under
rational expectations the error forecast of �wt is uncorrelated with information contained in zt�1,

and thus, the following orthogonality condition holds:

Et
��
�wt �  w�wt�1 � �(1 + (1� �) w)Et�wt+1 + �2 wEt�wt+2 + kwut

�
zt�1

	
= 0 (25)

Following Galí and Gertler (1999), because (25) is non-linear in the structural parameters, we

normalize the orthogonality condition in the following way:

Et
�
�w
�
�wt �  w�wt�1 � �(1 + (1� �) w)Et�wt+1 + �2 wEt�wt+2 + kwut

�
zt�1

	
= 0 (26)

where �w = (1� �w)� 'w [1� � (1� �w)].
Our estimation is made using quarterly U.S. data ranging from 1960:1 to 2011:4: All the data

are from the FRED database. Wage in�ation is measured by the compensation per hour, whereas

for the unemployment rate, we use the civilian unemployment rate. The set of instruments is

composed of the lags of the following observable variables: wage in�ation, unemployment, price

in�ation, consumer price index, output gap, labor share, and the spread between ten-year Treasury

Bond and three-month Treasury Bill yields. In particular, six lags in price in�ation, wage in�ation

and CPI, four lags for the output gap and two lags for the remaining instruments are used.17

16For n > 1, we �nd that the extra leads and lags deriving from this speci�cation are not statistically signi�cant.
17The sample range, the data and the wage Phillips curve speci�cation used for GMM estimation di¤er from

those that will be used for the Bayesian estimation. We made this choice to avoid the possibility that the Bayesian
comparison might unduly favor our model with respect to the alternatives considered. However, we chose to
perform a �non-informative� estimation for the hazard slope parameters to test the robustness of our comparison
(see Section 4).
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The structural form of (26) is estimated by imposing � = 0:99, "w = 8:85 and  = 2; wage

elasticity is derived as in Galí (2011) by using "w = [1� exp (�un)]�1 = 8:85, where we assume
 = 2 and a natural unemployment rate un equal to 6%, as the average rate of the period

considered. The reduced form coe¢ cients (see (22)) are a convolution of the structural parameters

estimated and they are obtained by substituting these parameters into them; the standard errors

are computed using the delta method.18

The results for the structural form estimation are reported in Table 1. We show the estimation

for the structural parameters 'w (hazard slope) and �w (hazard initial value); moreover, we also

report De
w and �

e
w (computed as in (5)) and the J � stat.

Table 1 �Wage Phillips curve estimation (structural form)19

�w 'w De
w �ew J � stat

0.318� 0.126� 1.964� 0.444� 19.527

(0.050) (0.030) (0.146) (0.033) [0.813]

Notes: a 6-lag Newey-West estimate of the covariance matrix is used.

Standard errors are shown in parentheses.

For the J-stat the p-value is shown in brackets.

* denotes statistical signi�cance at 5% level.

All the coe¢ cients estimated are statistically signi�cant, and the hazard function is estimated

to be upward-sloping. Wages are estimated to be rigid, as an adjustment comes every two quarters.

The J � stat is a test of over-identifying moment condition: In our case, we accept the null

hypothesis that the over-identifying restrictions are satis�ed (the model is �valid�).

We now report the reduced form of (25), obtained by substituting the estimated values of �w
and 'w into (22).

�wt = 0:197�wt�1 + 0:991Et�
w
t+1 � 0:193Et�

w
t+2 � 0:03ut

(0:038) (0:000) (0:037) (0:006)
(27)

Also under this speci�cation, all the coe¢ cients are statistically signi�cant at the 5% level

(standard errors computed using delta method are reported in parentheses). Our wage Phillips

curve, in line with the underlying theory, is able to capture the well-known negative relation

between the unemployment gap and the wage in�ation, as highlighted by the negative coe¢ cient

measuring the slope of the curve. In Figure 1, we provide a graphical representation for the

hazard and survival functions derived from our estimation and computed by using (1) and (4),

respectively. The hazard clearly shows a positive slope, meaning that a time-dependent mechanism

for wage adjustment emerges.

18See Papke and Wooldridge (2005).
19The estimation has been performed by using Cli¤�s (2003) GMM package for MATLAB available from

https://sites.google.com/site/mcli¤web/programs.
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Figure 1 - Hazard and survival function deriving from GMM estimation.
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3 The DSGE model

Our model generalizes EHL (2000) by assuming that price and wage adjustments are governed by

a time-dependent mechanism. Moreover, to improve its empirical realism, we also consider habit

formation in consumption, which implies persistence in the IS curve. As the main di¤erence with

EHL (2000) is the derivation of the Phillips curves, as explained in Section 2, the description of the

model derivation is not detailed. For a full derivation, we refer to EHL (2000). All the equation

reported herein are expressed as log-linear deviations from the steady state.

3.1 The log-linearized economy

The demand side of the economy is described by a simple IS curve, which is obtained by log-

linearizing the Euler equation around the steady state. As usual, the Euler equation is derived by

maximizing the utility function (10) subject to the budget constraint (11). Formally,

yt =
1

1 + h
Etyt+1 +

h

1 + h
yt�1 �

1� h
� (1 + h)

�
it � Et�pt+1 + Etgt+1 � gt

�
; (28)

where yt is the output, �
p
t is the price in�ation rate, it is the nominal interest rate set by the

central bank, and gt is a preference shock. The lagged term on output is due to the presence of

external consumption habits.

Price adjustment is described by a Phillips curve with a time-dependent mechanism similar to

that used for wages. As shown by Sheedy (2007), by using the same structure of (1) for prices,

the price Phillips curve is:20

�pt =  p�
p
t�1 + �

�
1 + (1� �) p

�
Et�

p
t+1 � �

2 pEt�
p
t+2 + kp (mct + �t) ; (29)

where mct is the real marginal cost and �t is a price mark-up shock. The coe¢ cients  p and kp
are a function of the parameters characterizing the hazard function for prices 'p and �p:8<:  p =

'p
(1��p)�'p[1��(1��p)]

kp =
(�p+'p)[1��(1��p)+�2'p]
(1��p)�'p[1��(1��p)]

�cx

The parameter 'p controls the gradient of the hazard function, and �p is its starting level; the

coe¢ cient �cx =
1��

1��+�"p is the elasticity of a �rm�s marginal cost with respect to average real

marginal cost and depends on the labor share (1 � �) and the elasticity of substitution between

goods ("p).

The log-linearized real marginal cost is:

mct = !t + nt � yt; (30)

where !t denotes the real wage and nt is the amount of hours worked. Equation (30) is derived

from cost minimization subject to the production function (6), which can be written in a log-
20The curve is derived in a similar way as explained in Section 2. For a detailed derivation of it, see Sheedy

(2007).
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linearized form as:

yt = at + (1� �)nt; (31)

where at is the technology shock.

The wage adjustment is described by the wage Phillips curve (21) previously derived, i.e.:

�wt =  w�
w
t�1 + � [1 + (1� �) w]Et�wt+1 � �2 wEt�wt+2 � kw(!t �mrst); (32)

where the wage mark-up is written as the di¤erence between the real wage (!t) and the marginal

rate of substitution (mrst) because the labor market is characterized by imperfect competition.

The real wage, by assumption, follows:

!t = �wt � �
p
t + !t�1: (33)

The marginal rate of substitution between consumption and hours worked is obtained from

the wage setter�s problem, and it equals the ratio between the marginal utility of leisure and

consumption. Formally, in log-linear terms, it is given by:

mrst =
�

1� h (yt � hyt�1) + nt � gt; (34)

Finally, monetary policy is assumed to follow a simple Taylor rule:

it = �rit�1 + (1� �r) (���
p
t + �xyt) + �t; (35)

where �r captures the degree of interest rate smoothing, �� and �x measure the response of the

monetary authority to the deviation of in�ation and output from their steady state values; �t is

a monetary policy shock.

Aside from the monetary disturbance,21 all the shocks considered in the model follow an AR(1)

process: 8>>>><>>>>:
at = �aat�1 + "

a
t ;

gt = �ggt�1 + "
g
t ;

�t = ���t�1 + "
�
t ;

�t = "�t ;

(36)

where "jt � N
�
0; �2j

�
are white noise shocks uncorrelated among them and �j are the parameters

measuring the degree of autocorrelation, for j = fa; g; �g.
Summarizing, our model consists of six equations, describing the following: the dynamic IS

(28); the price Phillips curve (29); the real marginal cost (30); the production function (31); the

wage Phillips curve (32); the real wage dynamics (33); the marginal rate of substitution (34); and

the Taylor rule (35). Shock dynamics are described by (36).

21Monetary policy persistence is already captured by the lagged term in (35). We have, however, successfully
checked the robustness of our result with respect to alternative assumptions. Speci�cally, we have considered an
AR(2) process for the interest rate in equation (35). Results are available upon request.
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4 Empirical analysis

We estimate our model (28)-(36) for the U.S. economy by Bayesian techniques. Our choice is

motivated by the fact that Bayesian methods outperform GMM and maximum likelihood in small

samples.22 After writing the model in state-space form, the likelihood function is evaluated using

the Kalman �lter, whereas prior distributions are used to introduce additional non-sample infor-

mation into the parameters estimation: Once a prior distribution is elicited, posterior density for

the structural parameters can be obtained by reweighting the likelihood by a prior. The posterior

is computed via numerical integration by making use of the Metropolis-Hastings algorithm for

Monte Carlo integration; for the sake of simplicity, all structural parameters are assumed to be

independent from each other.

We use four observable macroeconomic variables: real GDP, price in�ation, real wage, and

nominal interest rate. The dynamics are driven by four orthogonal shocks, including monetary

policy, productivity, preference and price mark-up; because the number of observable variables is

equal to the number of exogenous shocks, the estimation does not present problems deriving from

stochastic singularity.23 The estimation of the model is performed by using informative priors

and, as a robustness check, non-informative priors for the parameters characterizing the slope of

the hazard function.

We aim to test whether the model exhibits a positive hazard function, i.e., the time-dependent

price/wage adjustments holds. Following Benati (2008, 2009), we also test the robustness of our

pricing mechanism to policy regime shifts. By considering only price rigidity and �exible wages,

Benati (2009) analyses several models to build in�ation persistence including Sheedy (2007).24 He

�nds evidence of positive-sloping hazard functions, but, by considering the Great Moderation sub-

sample, he also �nds that the parameters encoding the hazard slope have dropped to zero in the

last thirty years. He concludes that these parameters depend on the monetary regime referring to

the switch in the way monetary policy is conducted as discussed in Clarida et al. (2000). However,

he only focuses on price in�ation: We generalize his setup by considering staggered wages with a

possible time-dependent adjustment process in the labor markets. As mentioned above, nominal

rigidity and persistence in wages may have important implications for both in�ation persistence

and monetary policy e¤ects.

After estimating our model for the full sample (1960:1-2008:4), we also consider a smaller

one (1982:1-2008:4), representative of the Great Moderation, to investigate if a positive hazard

function still holds in a period characterized by small volatility in shocks and more aggressive

tactics by central bankers in the �ght against in�ation.

Finally, we evaluate the empirical performance of our time-dependent Phillips curves in relation

to alternative speci�cations commonly used in the literature. We consider the traditional forward-

looking Phillips curves derived in EHL (2000) extended with price and wage indexation, which

is often one main assumption to account for in�ation persistence. Model comparison is based on

22For an exhaustive analysis of Bayesian estimation methods, see Geweke (1999), An and Schorfheide (2007) and
Fernández-Villaverde (2010).
23Problems deriving from misspeci�cation are widely discussed in Lubik and Schorfheide (2006) and Fernández-

Villaverde (2010).
24Speci�cally, Benati (2009) analyzed Fuhrer and Moore (1995), Galí and Gertler (1999), Blanchard and Galí

(2007), Sheedy (2007), Ascari and Ropele (2009).
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log-marginal likelihood. To apply this methodology, we will show how the models compared here

are nested.

The next subsection presents the data used and prior distributions. Subsection 4.2 provides

the estimation for the baseline model. Subsection 4.3 evaluates our time-dependent model against

alternative speci�cations.

4.1 Data and prior distributions

In our estimations, we use U.S. quarterly data. All the time series used are from the FRED

database maintained by the Federal Reserve Bank of St. Louis. The real gross domestic product

is used as measure of the output; the e¤ective Fed funds rate is used for the nominal interest rate.

Price in�ation is measured using the GDP implicit price de�ator taken in log-di¤erence. Real

wage is obtained dividing the nominal wage, measured by the compensation per hour in nonfarm

business sector, by the GDP implicit price de�ator. All the variables have been demeaned; output

and real wage are detrended using Baxter and King�s bandpass �lter.

Our choices about prior beliefs are as follows. The coe¢ cients of the Taylor rule are centered on

a prior mean of 1:5 for in�ation and 0:125 for the output gap, which are Taylor�s (1999) estimates,

and follow a Normal distribution. These values are quite standard in the literature. The smoothing

parameter is assumed to follow a Beta distribution, with a mean of 0:6 and a standard deviation

equal to 0:2. The same choice has been made for the consumption habit. We assume that the

inverse of Frisch elasticity is based on a Gamma distribution, with a mean of 2 and a standard

deviation 0:375. These priors are fairly di¤use and broadly in line with those adopted in previous

studies, such as Del Negro et al. (2007), Smets and Wouters (2007), Justiniano and Primicieri

(2008), and Justiniano et al. (2013).

For the hazard function coe¢ cients, we perform an �informative estimation�using as priors

coe¢ cients estimated from a single equation GMM;25 we assign a Normal distribution to 'p and

'w with a standard deviation equal to 0:2; whereas �p and �w follow a Beta distribution with a

standard deviation of 0:1. As a robustness check, following Benati (2009), we also estimate the

model using non-informative priors for the parameters a¤ecting the slope of the hazard function,

instead of those derived from the GMM estimations. Unlike his approach, we use a Uniform

distribution with support [�1; 1]: The choice of such a large interval is motivated by the fact that
we want to investigate if the hazard slope is positive, negative or zero.

We need to calibrate some parameters to avoid identi�cation problems.26 Because we consider

a production function without capital, it is di¢ cult to estimate � and �; which are set to 0:99 and

0:33, respectively. Similarly, we �x "p = 6 and "w = 8:85, implying a price and wage mark-up equal

to 1:20 and 1:12. Price elasticity is calibrated following Sheedy (2007), to be coherent with the

hazard priors derived from his GMM estimation. As explained in Section 2, wage elasticity is set

equal to 8:85. Finally, all the autoregressive coe¢ cients of the shocks follow a Beta distribution,

25The values of 'w and �w estimated in Section 2 are used as priors. For the hazard characterizing price
adjustment, we directly use as priors the GMM estimates of Sheedy (2007).
26The identi�cation procedure has been performed by using the Identi�cation toolbox for Dynare, which imple-

ments the identi�cation condition proposed by Iskrev (2010a, 2010b). For a review of identi�cation issues arising
in DSGE models, see Canova and Sala (2009).
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with a mean of 0:5 and a standard deviation equal to 0:2. The prior for the shock standard

deviations is an Inverse Gamma, with a mean of 0:01 and 2 degrees of freedom.

4.2 Estimation results

Our estimations are reported in Table 2, which also summarizes the 90% probability intervals and

our beliefs about the priors. The table describes the results for the full sample and the Great

Moderation. We report posterior estimation of the shocks and structural parameters, obtained by

the Metropolis-Hastings algorithm, when informative priors for the hazard slope are used.

Table 2 �Prior and posterior distributions27

Prior distribution Posterior distribution Posterior distribution

(full sample) (Great Moderation)

Density Mean St. Dev.28 Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.324 0.673 1.955 1.227 0.581 1.820

 Gamma 2.0 0.375 2.515 2.041 2.997 2.249 1.732 2.748

h Beta 0.6 0.2 0.906 0.866 0.946 0.908 0.863 0.955

�� Normal 1.5 0.25 1.423 1.197 1.650 1.851 1.524 2.158

�x Normal 0.125 0.05 0.215 0.152 0.279 0.164 0.096 0.235

�r Beta 0.6 0.2 0.818 0.787 0.850 0.850 0.819 0.883

�p Beta 0.132 0.1 0.020 0.001 0.042 0.063 0.001 0.124

'p Normal 0.222 0.2 0.195 0.157 0.233 0.128 0.048 0.213

�w Beta 0.318 0.1 0.126 0.073 0.179 0.151 0.073 0.228

'w Normal 0.126 0.2 0.242 0.210 0.277 0.250 0.203 0.297

�a Beta 0.5 0.2 0.781 0.706 0.854 0.850 0.819 0.883

�g Beta 0.5 0.2 0.768 0.717 0.817 0.802 0.738 0.867

�� Beta 0.5 0.2 0.825 0.762 0.889 0.822 0.732 0.910

�a Inv. Gamma 0.01 2 0.019 0.013 0.025 0.014 0.008 0.019

�g Inv. Gamma 0.01 2 0.053 0.038 0.068 0.044 0.028 0.059

�� Inv. Gamma 0.01 2 0.002 0.002 0.002 0.001 0.001 0.002

�� Inv. Gamma 0.01 2 0.020 0.013 0.028 0.030 0.012 0.047

In the full sample case, the estimated hazard function is upward-sloping, because 'p and 'w
are both positive. Thus, the time-dependent mechanism seems to be able to account for in�ation

inertia for both prices and wages. The duration of a price spell is 3:7 quarters, whereas wages

appear to be less sticky, because their duration is 2:05 quarters.29 These durations are similar to

those obtained in the literature, in which it is also common to �nd higher duration in price setting

compared to wages (e.g., Rabanal and Rubio-Ramirez, 2005; Galí et al., 2011).

27The posterior distributions are obtained using the Metropolis-Hastings algorithm; the procedure is implemented
using the Matlab-based Dynare package. Mean and posterior percentiles are from two chains of 250,000 draws each
from the Metropolis-Hastings algorithm, for which we discarded the initial 30% of draws.
28For the Inverse Gamma distribution the degrees of freedom are indicated.
29The durations (De

i ) of price and wage stickiness are computed by using the following relation: D
e
i =

1�'i
�i+'i

for

i = fp; wg (see (5)).
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The estimations for the parameters characterizing the utility function (i.e., habit, relative risk

aversion and inverse of Frisch elasticity) are coherent with the standard �ndings in the literature

(see, e.g., Del Negro et al. 2007; Smets and Wouters, 2007; Justiniano and Primicieri, 2008;

Justiniano et al., 2013).

The response of monetary authority to in�ation and the output gap is in line with the Taylor

principle; estimated coe¢ cients of the monetary rule are in line with the literature. The estimated

degree of interest rate smoothing is 0:82. All the shocks exhibit a high degree of autocorrelation,

of approximately 0:8.

By considering the Great Moderation period, as expected, we �nd a more aggressive monetary

policy stance (Clarida et al., 2000). Di¤erently from Benati (2009), we �nd that the hazard

functions still exhibit positive slopes also in this sub-sample. This result gives us evidence that a

pricing mechanism based on hazard function still holds also in a period characterized by a central

bank more concerned in �ghting in�ation, as highlighted by the higher estimated coe¢ cient for

��. As a result, intrinsic persistence also holds for the Great Moderation period.

The price duration increases to 4:5 quarters. This is highlighted by the fact that the hazard

function sloping is still positive, but smaller. This fact is in line with macroeconomic theory:

During the Great Moderation, in�ation has dropped, the cost of not adjusting a price is smaller

compared to the previous period and this translates into a longer price spell.

By contrast, computed wage stickiness is rather stable, re�ecting the fact that wage bargaining

is more in�uenced by institutional factors related to the labor market than by the monetary

policy.30 The stability of wage duration over time is also found by Rabanal and Rubio-Ramirez

(2005).

In Figure 2, we plot prior distribution, posterior distribution and posterior mode of the esti-

mated parameters.

30Considering a Walrasian labor market, as in Benati (2009), may force the estimated price Phillips curve to
capture also wage stickiness present in the data. This leads to an overestimation of price duration, which, in the
Great Moderation sub-sample, drops the hazard coe¢ cients to zero, implying a quite �at hazard function and no
intrinsic persistence in price in�ation.
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Figure 2 - Prior distribution (grey curve), Posterior distribution (green curve) and Posterior

mode (dotted line) of the estimated parameters.

Bayesian estimations of DSGE models can be quite sensitive to the choice of priors for model-

speci�c parameters and other assumptions regarding, e.g., measures of variables used and shock

speci�cations. Thus, we have checked the robustness of our analysis by considering also uniform

priors for the parameters 'p and 'w with support [�1; 1],31 whereas the prior distributions for the
remaining parameters are the same as those used previously. The results are provided in Table 3.

31Choosing this large support we can test if the hazard slope is negative, positive or �at. The prior mean is
centered on 0.
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The �non-informative� estimation con�rms our results about the hazard function, which is

still characterized by positive slope, both in the full sample and during the Great Moderation;

the estimated parameters for the hazard slope are very similar to the ones estimated under �in-

formative�priors. This result shows as the hazard function mechanism is robust to a change of

policy.

Table 3 - Prior and posterior distributions under non-informative priors

Prior distribution Posterior distribution Posterior distribution

(full sample) (Great Moderation)

Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.321 0.670 1.933 1.227 0.595 1.834

 Gamma 2.0 0.375 2.511 2.021 2.974 2.251 1.738 2.753

h Beta 0.6 0.2 0.906 0.868 0.948 0.909 0.865 0.957

�� Normal 1.5 0.25 1.428 1.203 1.661 1.855 1.545 2.171

�x Normal 0.125 0.05 0.215 0.151 0.277 0.165 0.096 0.234

�r Beta 0.6 0.2 0.818 0.787 0.850 0.851 0.820 0.882

�p Beta 0.132 0.1 0.020 0.001 0.041 0.067 0.001 0.133

'p Uniform 0 0.57 0.195 0.158 0.236 0.125 0.042 0.213

�w Beta 0.318 0.1 0.126 0.073 0.177 0.151 0.072 0.225

'w Uniform 0 0.57 0.243 0.209 0.276 0.252 0.207 0.298

�a Beta 0.5 0.2 0.780 0.704 0.854 0.832 0.755 0.910

�g Beta 0.5 0.2 0.768 0.719 0.817 0.800 0.738 0.866

�� Beta 0.5 0.2 0.824 0.760 0.887 0.824 0.737 0.914

�a Inv. Gamma 0.01 2 0.019 0.013 0.025 0.014 0.008 0.019

�g Inv. Gamma 0.01 2 0.052 0.038 0.067 0.044 0.029 0.061

�� Inv. Gamma 0.01 2 0.002 0.002 0.002 0.001 0.001 0.002

�� Inv. Gamma 0.01 2 0.020 0.013 0.028 0.029 0.013 0.044

We have also successfully checked the robustness of our results by considering di¤erent model

speci�cations (i.e., a model without habit), various speci�cations for the Taylor rule (as already

mentioned) and alternative series for observable variables.32 Results are available upon request.

In the �gures below, we plot the dynamic behavior of the model variables, described by the

Bayesian impulse response functions, conditional to price mark-up and monetary policy shocks.

The solid line represents the estimated response, with the shaded area capturing the corresponding

95 percent con�dence interval. The horizontal axis measures the quarters after the initial shock.

The monetary shock is illustrated in Figure 3, whereas the cost-push shock is described by Figure

4.

The monetary shock a¤ects both real and nominal variables and has persistent e¤ects on

output. As expected, in response to the monetary tightening, GDP declines with a characteristic

32 In particular, we have considered a di¤erent measure for prices by using the nonfarm business sector implicit
price de�ator. With regard to wages, we have considered alternatives measures given by: average hourly earnings
of production ; business sector compensation per hour ; hourly earnings for manufacturing sector.
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hump-shaped pattern. It reaches a trough after four quarters, and then, it slowly reverts back to

its initial level. Both price in�ation and real wage also exhibit a hump-shaped behavior. Similarly,

a positive cost-push shock a¤ects all the variables and has persistent e¤ects on output. In both

cases, the pattern of interest rate, real output, hours, real wage and in�ation are in line with the

literature (see, e.g., Smets and Wouters, 2003; Christiano et al., 2005; Güneş and Millard, 2012).

In regard to wage dynamic adjustments, which are the core of our investigation, wage in�ation

has a pattern similar to that of price in�ation. In Figure 3, following a monetary shock, wage

in�ation has a moderate hump shape and progressively returns to its steady state with a little

overshooting. In the case of a cost-push shock, described in Figure 4, the dynamic response of

wage in�ation is strongly hump shaped with a trough after approximately ten quarters, which

denotes a high level of wage persistence. We will discuss in more detail the response of nominal

wage in�ation in the next section, when we compare the responses of our model to alternatives in

which inertia is introduced by wage indexation to past prices.

Figure 3 - Bayesian IRFs conditional to a monetary shock.
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Figure 4 - Bayesian IRFs conditional to a price mark-up shock.

4.3 Time-dependent Phillips curves vs. alternatives

In this section, we aim to compare the empirical performance of our time-dependent Phillips

curves to di¤erent speci�cations accounting for price and wage in�ation inertia. Speci�cally, we

focus on EHL (2000), augmenting it by indexation because, as discussed, this is a common way to

introduce price and wage persistence in New Keyensian DSGE models. We consider two di¤erent

widely used forms of indexation and we compare these alternatives to our baseline model in terms

of log-marginal density.

4.3.1 Alternative price-setting mechanisms

Simply by setting 'p = 0 and 'w = 0 in (29) and (32), we obtain �at hazard functions and,

therefore, price and wage Phillips curves á la Calvo as in EHL (2000), which is nested in our

model. Formally, these two purely forward-looking curves are

�pt = �Et�
p
t+1 + �p (mct + �t) (37)

�wt = �Et�
w
t+1 � �w�wt (38)
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where �p =
�p[1��(1��p)]

1��p �cx and �w =
�w[1��(1��w)]

1��w �w.

Equations (37) and (38) clearly do not exhibit any persistence. However, price and wage inertia

can be easily introduced by considering indexation to past price in�ation. Two popular ways to

do it have been proposed by Galí and Gertler (1999) and Christiano et al. (2005). The former

obtains a lagged term in the aggregate Phillips curve by assuming the existence of a fraction of

agents who set prices/wages according to a backward-looking rule of thumb. The latter, instead,

considers dynamic indexation, i.e., all agents not able to reset their price/wage adjust according

to past price in�ation, and consequently, the past in�ation rate appears in the Phillips curve.

According to Galí and Gertler (1999), the Phillips curves can be rewritten as follows:

�pt =
�p
�p
�pt�1 +

� (1� �p)
�p

Et�
p
t+1 + �

�
p (mct + �t) (39)

�wt =
�w
�w

�pt�1 +
� (1� �w)

�w
Et�

w
t+1 � ��w�wt (40)

where �p (�w) measures the fraction of rule-of-thumb agents, i.e., the degree of price (wage) index-

ation to past price in�ation; �p = 1��p+�p [�p + (1� �p)�], �w = 1��w+�w [�w + (1� �w)�],

��p =
(1��p)(1��p)�p

�p
, and ��w =

(1��w)(1��w)�w
�w

:

Instead, assuming dynamic indexation as in Christiano et al. (2005), equation (37) and (38)

can be written as:

�pt =
�p

(1 + �p�)
�pt�1 +

�

1 + �p�
Et�

p
t+1 + �

�
p (mct + �t) (41)

�wt = �w�
p
t�1 � �w��

p
t + �Et�

w
t+1 � �w�wt (42)

where �p (�w) denotes the degree of price (wage) indexation to last period�s price in�ation and

��p =
�p

(1+�p�)
.

4.3.2 Model comparison

Our formalization nests di¤erent models of price and wage adjustment. Di¤erences only depend

on the Phillips curve parameterization. With di¤erent assumptions on 'p, 'w, �p, �w, �p, �w, we

can consider positive or �at hazard functions augmented by the two di¤erent types of indexation

aforementioned. We compare our baseline (BASE) to three alternative scenarios:33

1. EHL model with dynamic indexation (DYNind), by considering (41) and (42);

2. EHL model with rule of thumb indexation á la Galí-Gertler (GG), by considering (39) and

(40).

3. EHL model with inertia only in wage equation (MIXED), i.e., Phillips curves are (37) and

(32).

33We omit the comparison with a model characterized by simple forward-looking Phillips curves á la Calvo
because this model has not intrinsic persistence. However, Rabanal and Rubio-Ramirez (2005) showed that this
model exhibits quite the same performance as a model with indexation.
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The measure used to compare the models is the log-marginal likelihood, which is a measure of

the �t of a model in explaining the data.34 The aim is to evaluate if the way in which price and

wage are modeled adjustment a¤ects the �t of a model. The model with the highest log-marginal

likelihood better explains the data.35 Table 4 reports our results.

Table 4 - Log-marginal data densities and Bayes factors for di¤erent models36

Model Log-marginal data density Bayes factor vs. BASE

BASE 3615:6

BASE (non-info) 3613:6 exp [�2:0]
MIXED 3598:1 exp [�17:5]
DYNind 3569:7 exp [�45:9]
GG 3564:8 exp [�50:8]

The di¤erence, in terms of marginal likelihood, between Galí-Gertler speci�cation and dynamic

indexation is minimal. According to Je¤reys�scale of evidence,37 this di¤erence must be consid-

ered as �slight� evidence in favor of DYNind with respect to GG. However, our model clearly

outperforms both the alternatives considered: In particular, the Bayes factor gives �very strong�

evidence in favor of our speci�cation. As the models considered di¤er only for the Phillips curves,

this result signals that the data prefer a pricing method based on positive hazard functions; this

is not surprising as the micro evidence rejects both constant hazard and indexation. Under �non-

informative�priors, we observe a slight decrease of the marginal likelihood: This happens because

under di¤use priors there is an increase in model complexity, and this penalizes the marginal data

density (this e¤ect dominates the improvement in model �t).

In the comparison between our time-dependent adjustment model and those with dynamic

indexation or rule-of-thumb agents, the �t of the di¤erent models is judged by the log-marginal

likelihoods. The di¤erences are signi�cant (as evidenced by the Bayes factors). The models only

di¤er in the Phillips curves. Moreover, all price equations are observable equivalent for the di¤erent

speci�cations considered (all include backward- and forward-looking terms for the main dependent

variables and imply similar reduced forms). Therefore, the great improvement in the �t of our

model should be necessarily explained by di¤erences in the wage equations.

Comparing the dynamics of our model with those generated by models with indexation, we

observe large di¤erences for the nominal wage dynamics. These di¤erences are plotted in Figure 5.

Unsurprisingly, the dynamics of all the other variables are qualitatively similar among the models

considered here; thus, we do not report them (the dynamics of other variables in case of indexation

mechanisms are similar to those reported in Figures 3 and 4).

34The estimated reduced forms of the Phillips curves considered are reported in Appendix B.
35For details on model comparison technique, see Fernández-Villaverde and Rubio-Ramirez (2004), Rabanal and

Rubio-Ramirez (2005), Lubik and Schorfheide (2006), Riggi and Tancioni (2010).
36For the computation of the marginal likelihood for di¤erent model speci�cations, we used the modi�ed harmonic

mean estimator, based on Geweke (1999). The Bayes factor is the ratio of posterior odds to prior odds (see Kass
and Raftery, 1995).
37Je¤reys (1961) provided a scale for the evaluation of the Bayes factor indication. Odds ranging from 1:1 to 3:1

give �very slight evidence�; odds ranging from 3:1 to 10:1 constitute �slight evidence�; odds ranging from 10:1 to
100:1 constitute �strong to very strong evidence�; odds greater than 100:1 give �decisive evidence.�
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Figure 5 - IRFs of the wage in�ation to 1% monetary policy (upper panel) and

price mark-up (lower panel) shocks for several model speci�cations.

Considering �rst the monetary shock, in both cases of indexation to past price, wage in�ation

follows a smooth path, while in our framework, beyond exhibiting a little hump immediately after

the shock, it is more volatile. Under a cost-push shock, for both the models with indexation, wage

in�ation responds with a spike in the early periods and then slowly returns to its stationary value.

A model with a vintage-dependent wage adjustment instead generates a dynamic quite di¤erent

with respect to indexation models.

The higher predictive ability associated to our model by the Bayesian comparison comes out

from the di¤erent dynamic behavior of nominal wages generated by our wage Phillips curve. This

occurs because the reduced forms of the wage Phillips curves are di¤erent. Our mechanism embeds

the wage Phillips curve of a lagged term for wage in�ation (intrinsic inertia). In this respect, it

di¤ers from the wage equations with indexation, for which the backward term is on past price

in�ation (inherited inertia). As the marginal likelihood is a measure of the ability of a model to

�t the data, we can conclude that our wage-setting mechanism better captures the information
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contained in the data with respect to models with some form of indexation.

In line with the above observations, the crucial role of wage adjustment is also highlighted by

the fact that the log-marginal likelihood of MIXED is signi�cantly higher than that of indexation

models (see Table 4). It is worth recalling that MIXED refers to the model with time-dependent

adjustment only in wages, while prices follow the common Calvo�s scheme. This result con�rms

the key role of nominal wage rigidities to explain the data� as claimed by, e.g., Christiano et al.

(2005), Rabanal and Rubio-Ramirez (2005), Olivei and Tenreyro (2010).

5 Conclusions

Our paper proposed a new approach to model wage in�ation persistence and evaluated its empirical

relevance. By assuming that wage adjustments are governed by a vintage-dependent mechanism,

we showed how to derive a New Keynesian wage Phillips curve that also embeds backward terms for

past wage in�ation (intrinsic persistence). In our speci�cation, the presence of endogenous-lagged

terms does not rest on the unrealistic assumption of indexation to past price in�ation rates, but

it has a theoretical reason justi�ed by the presence of a positive selection e¤ect. Because of wage

stickiness, after the shock has vanished, wage setters continue to adjust wages. In the standard

Calvo model, upward and downward adjustments compensate (no selection e¤ect). In our case,

due to a positive hazard function, a wage setter is more likely to adjust wages in the same direction

of the past shock, inducing wage persistence.

We successfully tested the relevance of intrinsic wage persistence by using both GMM and

Bayesian methods. Lagged terms for wage in�ation are signi�cantly di¤erent from zero in single

equation GMM estimation. Placing our equation in a small-scale DSGE model, by Bayesian

estimations, we con�rmed that an upward-sloping hazard function emerges for both prices and

wages. By comparing log-marginal likelihoods, we found that our model outperforms alternatives

based on popular mechanisms for modeling in�ation persistence. We showed that the key rationale

of this result is in our wage adjustment mechanism. Our result con�rms the crucial role of nominal

wage rigidities to understand the economic �uctuations (see, e.g., Christiano et al., 2005). Finally,

we test that the hazard function slope does not change with the policy regime.

It would be interesting to observe other features of the di¤erent modeling choices for price-

setting, e.g., implications for welfare and optimal monetary policy. However, this is beyond the

scope of the current paper, and we leave it for future research.

Appendix A �Hazard function properties

This appendix provides further details about the hazard function properties. We refer to Sheedy

(2007) for the proofs relative to the hazard function mentioned here. See, in particular his Appen-

dix A.2 and A.5. Moreover, we show the evolution of the hazard and the resulting wage Phillips

curve for the general case n > 1.

Assuming that �t � � denotes the set of households that post a new wage at time t, the length
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of wage stickiness can be de�ned as:

Dt(j) � min fl � 0 j j 2 �t�lg (43)

where Dt(j) is the duration of a wage spell for household j for which the last reset was l periods

ago.

As explained in the text, the hazard function is de�ned by a sequence of probabilities: f�w;lg1l=1,
where �w;l represents the probability to reset a wage that remained unchanged for l periods. This

probability is de�ned as: �w;l � Pr (�t j Dt�1 = l � 1).
Each hazard function is related to a survival function, which expresses the probability that a

wage remains �xed for l periods. As for the hazard, the survival function is de�ned by a sequence

of probabilities: f&w;lg1l=0, where &w;l denotes the probability that a wage �xed at time t will still
be in use at time t+ l.

The hazard function can be reparameterized by making use of a set of n + 1 parameters and

rewritten as (1) if n = 1 and in the following way for the general case n > 1:

�w;l = �w +
min(l�1;n)P

j=1

'w;j

"
l�1Q
k=l�j

(1� �w;k)
#�1

; (44)

where �w is the initial value of the hazard function and 'w;j is its slope; n is the number of

parameters that control the slope. The sequence of parameters
�
'w;l

	n
l=1

a¤ect the gradient of

the hazard function in the following way:8><>:
'w;l = 0, 8 l = 1; :::; n �! the hazard is �at (Calvo case);

'w;l � 0, 8 l = 1; :::; n �! the hazard is upward-sloping;

'w;l � 0, 8 l = 1; :::; n �! the hazard is downward-sloping.

(45)

The survival function (4) in the general case is rewritten as:

&w;l = (1� �w)&w;l�1 �
min(l�1;n)X

h=1

'w;h&w;l�1�h (46)

Following Sheedy (2007), we assume that the hazard function satis�es two weak restrictions:(
�w;1 < 1, meaning that is allowed a degree of wage stickiness;

�w;1 > 0, with �w;1 = liml!1 �w;l:
(47)

We now introduce �w;lt � Pr (Dt = l) which denotes the proportion of households earning at

time t a wage posted at period t � l. The sequence f�w;ltg1l=0 indicates the distribution of the
duration of wage stickiness at time t. This distribution evolves over time according to:8<: �w;0t =

1P
l=1

�w;l�w;l�1;t�1

�w;lt = (1� �w;l) �w;l�1;t�1
(48)
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If the hazard function satis�es the restrictions (47) and the evolution over the time of the

distribution of wage length evolves as in (48), then a) from whatever starting point, the economy

always converges to a unique stationary distribution f�w;lg1l=0. Hence �w;lt = �w;l = Pr (Dt = l),

8t; b) let�s consider (1) and assume that the economy has converged to f�w;lg1l=0; the relations
expressed in (5) are obtained. For n > 1, conditions in (5) become:8>>>>><>>>>>:

�w;l =

�
�w+

nP
h=1

'w;h

�
&w;l

�ew = �w +
nP
l=1

'w;l

De
w =

1�
Pn

l=1
l'w;l

�w+
Pn

l=1
'w;l

(49)

Then, inserting (46) in (16), we obtain:

w�t = �(1� �w)Etw�t+1 �
nX
l=1

�l+1'w;lEtw
�
t+l+1 +

"
1� �(1� �w) +

nX
l=1

�l+1'w;l

#
(wt � �w�wt )

(50)

By making use of (49), equation (17) can be recast as follows:

wt = (1� �w)wt�1 �
nX
l=1

'w;lwt�1�l +

 
�w+

nX
h=1

'w;h

!
w�t (51)

Finally, the expression for the wage Phillips curve in the case n > 1 is obtained by mixing (50)

and (51):

�wt =
nX
l=1

 w;l�
w
t�l +

n+1X
l=1

�w;lEt�
w
t+l � kw�wt (52)

where the coe¢ cients  w;l, �w;l and kw have the following parameterization:

 w;l =
'w;l +

Pn
h=l+1 'w;h

h
1� � (1� �w)+

Ph�1
k=1 �

k+1'w;k

i
�w

for l = 1; :::; n

�w;1 =
�
h
(1� �w)�

Pn
h=1 �

h'w;h

�
�w+

Ph�1
k=1 'w;k

�i
�w

�w;l+1 = �
�l+1

h
'w;l +

Pn
h=l+1 �

h�1'w;h

�
�w+

Ph�1
k=1 'w;k

�i
�w

for l = 1; :::; n

kw =
�w

h�
�w+

Pn
h=1 'w;h

� h
1� � (1� �w)+

Pn
h=1 �

h+1'w;h

ii
�w

where �w = (1� �w)�
Pn

h=1 'w;h

h
1� � (1� �w)+

Ph�1
k=1 �

k+1'w;k

i
.

It is easy to check that if we assume that only one parameter controls the slope of the hazard

function (i.e., n = 1), the wage Phillips curve (52) becomes that reported in the paper, i.e., (21).
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Appendix B�Reduced form Phillips curves from the Bayesian

estimation

The reduced form from the Bayesian estimation for the price and wage Phillips curves in the EHL

model with dynamic indexation (DYNind) are:

�pt = 0:138�pt�1 + 0:853Et�
p
t+1 + 0:01mct (53)

�wt = 0:153�pt�1 � 0:151�
p
t + 0:99Et�

w
t+1 � 0:01�wt (54)

The EHL model with rule-of-thumb indexation á la Galí-Gertler (GG) implies:

�pt = 0:144�pt�1 + 0:847Et�
p
t+1 + 0:009mct (55)

�wt = 0:106�pt�1 + 0:884Et�
w
t+1 � 0:01�wt (56)

Finally, our time-dependent speci�cation is associated with:

�pt = 0:2�pt�1 + 0:99Et�
p
t+1 � 0:196Et�

p
t+2 + 0:012mct (57)

�wt = 0:288�wt�1 + 0:99Et�
w
t+1 � 0:283Et�wt+2 � 0:007�wt (58)

As shown in the paper, the above reduced forms imply that models without time-dependent

adjustment capture persistence in the wage equation by past price in�ation (i.e., inherited inertia),

whereas (57)-(58) include a backward term for wage in�ation. Both for price and wage in�ation

equations, our estimated Phillips curves capture a higher degree of persistence, as highlighted by

the coe¢ cients attached to backward in�ation, with respect to models based on indexation. This

is not surprising as, since the Great Moderation, indexation to past in�ation has progressively

vanished, and thus, the parameter encoding it has progressively dropped to zero (see Benati,

2008).
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