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Abstract We develop a framework for polynomial regres-

sion on Riemannian manifolds. Unlike recently developed

spline models on Riemannian manifolds, Riemannian poly-

nomials offer the ability to model parametric polynomials of

all integer orders, odd and even. An intrinsic adjoint method

is employed to compute variations of the matching func-

tional, and polynomial regression is accomplished using a

gradient-based optimization scheme. We apply our polyno-

mial regression framework in the context of shape analysis

in Kendall shape space as well as in diffeomorphic landmark

space. Our algorithm is shown to be particularly convenient

in Riemannian manifolds with additional symmetry, such as

Lie groups and homogeneous spaces with right or left invari-

ant metrics. As a particularly important example, we also

apply polynomial regression to time-series imaging data us-

ing a right invariant Sobolev metric on the diffeomorphism

group. The results show that Riemannian polynomials pro-

vide a practical model for parametric curve regression, while

offering increased flexibility over geodesics.

Keywords Polynomial · Riemannian geometry ·

Regression · Rolling maps · Lie groups · Shape space

1 Introduction

Comparative studies are essential to biomedical statistical

analysis. In the context of shape, such analyses are used

to discriminate between healthy and disease states based

on observations of anatomical shapes within individuals in
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the two populations [35]. Commonly, in these methods the

shape data are modelled on a Riemannian manifold and in-

trinsic coordinate-free manifold-based methods are used [8].

This prevents bias due to arbitrary choice of coordinates and

avoids the influence of unwanted effects. For instance, by

modelling shapes with a representation incapable of repre-

senting scale and rotation of an object and using intrinsic

manifold-based methods, scale and rotation are guaranteed

not to effect the analysis [19].

Many conditions such as developmental disorders and

neurodegeneration are characterized not only by shape char-

acteristics, but by abnormal trends in anatomical shapes over

time. Thus it is often the temporal dependence of shape

that is most useful for comparative shape analysis. The field

of regression analysis involves studying the connection be-

tween independent variables and observed responses [34].

In particular, this includes the study of temporal trends in a

observed data.

In this work, we extend the recently developed geodesic

regression model [12] to higher order polynomials using in-

trinsic Riemannian manifold-based methods. We show that

this Riemannian polynomial model is able to provide in-

creased flexibility over geodesics, while remaining in the

parametric regression setting. The increase in flexibility is

particularly important, as it enables a more accurate descrip-

tion of shape trends and, ultimately, more useful compara-

tive regression analysis.

While our primary motivation is shape analysis, the Rie-

mannian polynomial model is applicable in a variety of ap-

plications. For instance, directional data is commonly mod-

elled as points on the sphere S
2, and video sequences repre-

senting human activity are modelled in Grassmannian man-

ifolds [36].

In computational anatomy applications, the primary ob-

jects of interest are elements of a group of symmetries acting
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on the space of observable data. For instance, rigid motion

is studied using the groups SO(3) and SE(3), acting on a

space of landmark points or scalar images. Non-rigid mo-

tion and growth is modelled using infinite-dimensional dif-

feomorphism groups, such as in the currents framework [37]

for unlabelled landmarks or the large deformation diffeo-

morphic metric mapping (LDDMM) framework of deform-

ing images [30]. We show that in the presence of a group

action, optimization of our polynomial regression model us-

ing an adjoint method is particularly convenient.

This work is an extension of the Riemannian polynomial

regression framework first presented by Hinkle et al. [15]. In

Sects. 5–7, we give a new derivation of polynomial regres-

sion for Lie groups and Lie group actions with Riemannian

metrics. By performing the adjoint optimization directly in

the Lie algebra, the computations in these spaces are greatly

simplified over the general formulation. We show how this

Lie group formulation can be used to perform polynomial

regression on the space of images acted on by groups of dif-

feomorphisms.

1.1 Regression Analysis and Curve-Fitting

The study of the relationship between measured data and de-

scriptive variables is known as the field of regression anal-

ysis. As with most statistical techniques, regression analy-

ses can be broadly divided into two classes: parametric and

non-parametric. The most widely used parametric regres-

sion methods are linear and polynomial regression in Eu-

clidean space, wherein a linear or polynomial function is

fit in a least-squares fashion to observed data. Such meth-

ods are the staple of modern data analysis. The most com-

mon non-parametric regression approaches are kernel-based

methods and spline smoothing approaches which provide

great flexibility in the class of regression functions. How-

ever, their non-parametric nature presents a challenge to in-

ference problems; if, for example, one wishes to perform a

hypothesis test to determine whether the trend for one group

of data is significantly different from that of another group.

In previous work, non-parametric kernel-based and

spline-based methods have been extended to observations

that lie on a Riemannian manifold with some success [8, 18,

22, 26], but intrinsic parametric regression on Riemannian

manifolds has received limited attention. Recently, Flet-

cher [12] and Niethammer et al. [31] have each indepen-

dently developed a form of parametric regression, geodesic

regression, which generalizes the notion of linear regression

to Riemannian manifolds. Geodesic models are useful, but

are limited by their lack of flexibility when modelling com-

plex trends.

Fletcher [12] defines a geodesic regression model by in-

troducing a manifold-valued random variable Y ,

Y = Exp
(
Exp(p,Xv), ǫ

)
, (1)

where p ∈ M is an initial point and v ∈ TpM an initial ve-

locity. The geodesic curve Exp(p,Xv) then relates the in-

dependent variable X ∈ R to the dependent random vari-

able Y , via this equation and the Gaussian random vector

ǫ ∈ TExp(p,Xv)M . In this paper, we extend this model to a

polynomial regression model

Y = Exp
(
γ (X), ǫ

)
, (2)

where the curve γ (X) is a Riemannian polynomial of integer

order k. In the case that M is Euclidean space, this model is

simply

Y = p +

k∑

i=1

vi

i!
Xi + ǫ, (3)

where the point p and vectors vi constitute the parameters

of our model.

In this work we use the common term regression to de-

scribe methods of fitting polynomial curves using a sum

of squared error penalty function. In Euclidean spaces, this

is equivalent to solving a maximum likelihood estimation

problem using a Gaussian noise model for the observed data.

In Riemannian manifolds, the situation is more nuanced, as

there is no consensus on how to define Gaussian distribu-

tions on general Riemannian manifolds, and in general the

least-squares penalty may not correspond to a log likelihood.

Many of the examples we will present are symmetric spaces:

Kendall shape space in two dimensions, the rotation group,

and the sphere, for instance. As Fletcher [12, Sect. 4] ex-

plains, least-squares regression in symmetric spaces does, in

fact, correspond to maximum likelihood estimation of model

parameters, using a natural definition of Gaussian distribu-

tion.

1.2 Previous Work: Cubic Splines

Noakes et al. [32] first introduced the notion of Rieman-

nian cubic splines. They fix the endpoints y0, y1 ∈ M of a

curve, as well as the derivative of the curve at those points

y′
0 ∈ Ty0

M,y′
1 ∈ Ty1

M . A Riemannian cubic spline is then

defined as any differentiable curve γ : [0,1] → M taking on

those endpoints and derivatives and minimizing

Φ(γ ) =

∫ 1

0

〈
∇ d

dt
γ

d

dt
γ (t),∇ d

dt
γ

d

dt
γ (t)

〉
dt. (4)

As is shown by Noakes et al. [14, 32], between endpoints,

cubic splines satisfy the following Euler-Lagrange equation:

∇ d
dt

γ

d

dt
γ + R

(
∇ d

dt
γ

d

dt
γ,

d

dt
γ

)
d

dt
γ = 0. (5)

Cubic splines are useful for interpolation problems on

Riemannian manifolds. However, cubic splines provide an
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insufficient model for parametric curve regression. For in-

stance, by increasing the order of derivatives in Eq. (4), cu-

bic splines are generalizable to higher order curves. Still,

only odd order splines may be defined in this way, and there

is no clear way to define even order splines.

Riemannian splines are parametrized by the endpoint

conditions, meaning that the space of curves is naturally ex-

plored by varying control points. This is convenient if con-

trol points such as observed data are given at the outset.

However, for parametric curve regression, curve models are

preferred that don’t depend on the data, such as the initial

conditions of a geodesic [12]. Although Eq. (5) provides an

ODE which could be used as such a parametric model in a

“spline shooting” algorithm, estimating initial position and

derivatives as parameters, the curvature term complicates in-

tegration and optimization.

1.3 Contributions in This Work

The goal of the current work is to extend the geodesic re-

gression model in order to accommodate more flexibility

while remaining in the parametric setting. The increased

flexibility introduced by the methods in this manuscript al-

low a better description of the variability in the data. The

work presented in this paper allows one to fit polynomial

regression curves on a general Riemannian manifold, us-

ing intrinsic methods and avoiding the need for unwrapping

and rolling. Since our model includes time-reparametrized

geodesics as a special case, information about time depen-

dence is also obtained from the regression without explicit

modeling by examining the collinearity of the estimated pa-

rameters.

We derive practical algorithms for fitting polynomial

curves to observations in Riemannian manifolds. The class

of polynomial curves we use, described by Leite & Krakow-

ski [24], is more suited to parametric curve regression than

are spline models. These polynomials curves are defined for

any integer order and are naturally parametrized via initial

conditions instead of control points. We derive explicit for-

mulas for computing derivatives with respect to the initial

conditions of these polynomials in a least-squares curve-

fitting setting.

In the following sections, we describe our method of fit-

ting polynomial curves to data lying in various spaces. We

develop the theory for general Riemannian manifolds, Lie

groups with right invariant metrics, and finally for spaces

acted on by such Lie groups. In order to keep each appli-

cation somewhat self-contained, results will be shown in

each case in the section in which the associated space is

treated, instead of in a separate results section following all

the methods.

2 Riemannian Geometry Preliminaries

Before defining Riemannian polynomials, we first review a

few basic results from Riemannian geometry and establish

a common notation. For a more in-depth treatment of this

background material see, for instance, do Carmo [9]. Let

(M,g) be a Riemannian manifold. At each point p ∈ M ,

the metric g defines an inner product on the tangent space

TpM . The metric also provides a method to differentiate

vector fields with respect to one another, referred to as the

covariant derivative. For smooth vector fields v,w ∈ X(M)

and a smooth curve γ : [0,1] → M the covariant derivative

satisfies the following product rule:

d

dt

〈
v
(
γ (t)

)
,w

(
γ (t)

)〉
=

〈
∇ d

dt
γ
v
(
γ (t)

)
,w

(
γ (t)

)〉

+
〈
v
(
γ (t)

)
,∇ d

dt
γ
w

(
γ (t)

)〉
. (6)

A geodesic γ : [0,1] → M is characterized (for instance)

by the conservation of kinetic energy along the curve:

d

dt

〈
d

dt
γ,

d

dt
γ

〉
= 0 = 2

〈
∇ d

dt
γ

d

dt
γ,

d

dt
γ

〉
. (7)

which leads to the differential equation

∇ d
dt

γ

d

dt
γ = 0. (8)

This is called the geodesic equation and uniquely deter-

mines geodesics, parametrized by the initial conditions

(γ (0), d
dt

γ (0)) ∈ T M . The mapping from the tangent space

at p into the manifold M , defined by integration of the geo-

desic equation, is called the exponential map and is writ-

ten Expp : TpM → M . The exponential map is injective on

a zero-centered ball B in TpM of some non-zero radius.

Thus, for a point q within a neighborhood of p, there exists

a unique vector v ∈ TpM corresponding to a minimal length

path under the exponential map from p to q . The mapping

of such points q to their associated tangent vectors v at p is

called the log map of q at p, denoted v = Logp q .

Given a curve γ : [0,1] → M , the covariant derivative

∇ d
dt

γ
provides a way to relate tangent vectors at different

points along γ . A vector field w is said to be parallel trans-

ported along γ if it satisfies the parallel transport equation,

∇ d
dt

γ
w

(
γ (t)

)
= 0. (9)

Notice that the geodesic equation is a special case of paral-

lel transport, under which the velocity is parallel along the

curve itself.

3 Riemannian Polynomials

We now introduce Riemannian polynomials as a generaliza-

tion of geodesics [15]. Geodesics are generalizations to the
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Riemannian manifold setting of curves in R
d with constant

first derivative. In the previous section we briefly reviewed

how the covariant derivative provides a way to define vector

fields which are analogous to constant vector fields along γ ,

via parallel transport.

We refer to the vector field ∇ d
dt

γ
d
dt

γ (t) as the acceler-

ation of the curve γ . Curves with parallel acceleration are

generalizations of curves in R whose coordinates are second

order polynomials, and satisfy the second order polynomial

equation,

(∇ d
dt

γ
)2 d

dt
γ (t) = 0. (10)

Extending this idea, a cubic polynomial is a curve with par-

allel jerk (time derivative of acceleration), and so on. Gen-

erally, a kth order polynomial in M is defined as a curve

γ : [0,1] → M satisfying

(∇ d
dt

γ
)k

d

dt
γ (t) = 0 (11)

for all times t ∈ [0,1]. As with polynomials in Euclidean

space, polynomials are fully determined by initial conditions

at t = 0:

γ (0) ∈ M, (12)

d

dt
γ (0) ∈ Tγ (0)M, (13)

(∇ d
dt

γ
)i

d

dt
γ (0) ∈ Tγ (0)M, i = 1, . . . , k − 1. (14)

Introducing vector fields v1(t), . . . , vk(t) ∈ Tγ (t)M , we

write the following system of covariant differential equa-

tions, which is equivalent to Eq. (11):

d

dt
γ (t) = v1(t) (15)

∇ d
dt

γ
vi(t) = vi+1(t), i = 1, . . . , k − 1 (16)

∇ d
dt

γ
vk(t) = 0. (17)

In this notation, the initial conditions that determine the

polynomial are γ (0), vi(0), i = 1, . . . , k.

The Riemannian polynomial equations cannot, in gen-

eral, be solved in closed form, and must be integrated nu-

merically. In order to discretize this system of covariant dif-

ferential equations, we implement a covariant Euler integra-

tor, depicted in Algorithm 1. A time step Δt is chosen and,

at each step of the integrator, γ (t + Δt) is computed using

the exponential map:

γ (t + Δt) = Expγ (t)

(
Δtv1(t)

)
. (18)

Each vector vi is incremented within the tangent space at

γ (t) and the results are parallel transported infinitesimally

Algorithm 1 Pseudocode for forward integration of kth or-

der Riemannian polynomial

γ ← γ (0)

for i = 1, . . . , k do

vi ← vi(0)

end for

t ← 0

repeat

w ← v1

for i = 1, . . . , k − 1 do

vi ← ParTrans(γ,Δtw,vi + Δtvi+1)

end for

vk ← ParTrans(γ,Δtw,vk)

γ ← Expγ (Δtw)

t ← t + Δt

until t=T

Fig. 1 Sample polynomial curves emanating from a common base-

point on the sphere (black = geodesic, blue = quadratic, red = cubic)

along a geodesic from γ (t) to γ (t + Δt). For a proof that

this algorithm approximates the polynomial equations, see

Appendix A. The only ingredients necessary to integrate a

polynomial are the exponential map and parallel transport

on the manifold.

Figure 1 shows the result of integrating polynomials of

order one, two, and three on the sphere. The parameters,

the initial velocity, acceleration, and jerk, were chosen a

priori and a cubic polynomial was integrated to obtain the

blue curve. Then the initial jerk was set to zero and the blue

quadratic curve was integrated, followed by the black geo-

desic whose acceleration was also set to zero.

3.1 Polynomial Time Reparametrization

Geodesic curves propagate at a constant speed as a result of

their extremal action property. Polynomials provide flexibil-

ity not only in the class of paths that are possible, but in the

time dependence of the curves traversing those paths. If the

parameters of a polynomial γ consist of collinear vectors
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vi(0) ∈ Tγ (0)M , then the path of γ (the image of the map-

ping γ ) matches that of a geodesic, but the time dependence

has been reparametrized by some polynomial transforma-

tion t �→ c0 + c1t + c2t
2 + c3t

3. This generalizes the exis-

tence of polynomials in Euclidean space which are merely

polynomial transformations of a straight line path. Regres-

sion models could even be implemented in which the op-

erator wishes to estimate geodesic paths, but is unsure of

parametrization, and so enforces the estimated parameters

to be collinear.

4 Polynomial Regression via Adjoint Optimization

In order to regress polynomials against observed data Jj ∈

M,j = 1, . . . ,N at known times tj ∈ R, j = 1, . . . ,N , we

define the following objective function

E0

(
γ (0), v1(0), . . . , vk(0)

)
=

1

N

N∑

j=1

d
(
γ (tj ), Jj

)2
(19)

subject to the constraints given by Eqs. (15)–(17). Note that

in this expression d represents the geodesic distance: the

minimum length of a path from the curve point γ (tj ) to

the data point Jj . The function E0 is minimized in order to

find the optimal initial conditions γ (0), vi(0), i = 1, . . . , k,

which we will refer to as the parameters of our model.

In order to determine the optimal parameters of the poly-

nomial, we introduce Lagrange multiplier vector fields λi

for i = 0, . . . , k, often called the adjoint variables, and de-

fine the augmented Lagrangian function

E
(
γ, {vi}, {λi}

)

=
1

N

N∑

j=1

d
(
γ (tj ), Jj

)2

+

∫ T

0

〈
λ0(t),

d

dt
γ (t) − v1(t)

〉
dt

+

k−1∑

i=1

∫ T

0

〈
λi(t),∇ d

dt
γ
vi(t) − vi+1(t)

〉
dt

+

∫ T

0

〈
λk(t),∇ d

dt
γ
vk(t)

〉
dt. (20)

As is standard practice, the optimality conditions for this

equation are obtained by taking variations with respect to all

arguments of E, integrating by parts when necessary. The re-

sulting variations with respect to the adjoint variables yield

the original dynamic constraints: the polynomial equations.

Variations with respect to the primal variables gives rise to

the following system of equations, termed the adjoint equa-

tions (see B for derivation).

∇ d
dt

γ
λi(t) = −λi−1(t) i = 1, . . . , k (21)

∇ d
dt

γ
λ0(t) = −

k∑

i=1

R
(
vi(t), λi(t)

)
v1(t), (22)

where R is the Riemannian curvature tensor and the adjoint

variable λ0 takes jump discontinuities at time points where

data is present:

λ0

(
t−j

)
− λ0

(
t+j

)
= Logγ (tj ) Jj . (23)

Note that this jump discontinuity corresponds to the varia-

tion of E with respect to γ (tj ). The Riemannian curvature

tensor is defined by the formula [9]

R(u, v)w = ∇u∇vw − ∇v∇uw − ∇[u,v]w, (24)

and can be computed in closed form for many manifolds.

Gradients of E with respect to initial and final conditions

give rise to the terminal endpoint conditions for the adjoint

variables,

λi(1) = 0, i = 0, . . . , k (25)

as well as expressions for the gradients with respect to the

parameters γ (0), vi(0):

δγ (0)E = −λ0(0), (26)

δvi (0)E = −λi(0). (27)

In order to determine the value of the adjoint vector fields at

t = 0, and thus the gradients of the functional E0, the adjoint

variables are initialized to zero at time 1, then Eq. (22) is

integrated backward in time to t = 0.

Given the gradients with respect to the parameters, a sim-

ple steepest descent algorithm is used to optimize the func-

tional. At each iteration, γ (0) is updated using the expo-

nential map and the vectors vi(0) are updated via parallel

translation. This algorithm is depicted in Algorithm 2.

Note that in the special case of a zero-order polyno-

mial (k = 0), the only gradient λ0 is simply the mean of

the log map vectors at the current estimate of the Fréchet

mean. So this method generalizes the common method of

Fréchet averaging on manifolds via gradient descent [13].

In the case of geodesic polynomials, k = 1, the curvature

term in Eq. (22) indicates that λ1 is a sum of Jacobi fields.

So this approach subsumes geodesic regression as presented

by Fletcher [12]. For higher order polynomials, the adjoint

equations represent a generalization of Jacobi field.

As we will see later, in some cases these adjoint equations

take a simpler form not involving curvature. In the case that

the manifold M is a Lie group, the adjoint equations can be

computed by taking variations in the Lie algebra, avoiding

explicit curvature computation.
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Algorithm 2 Pseudocode for reverse integration of adjoint

equations for kth order Riemannian polynomial

γ ← γ (T )

for i = 0, . . . , k do

λi ← 0

end for

t ← T

repeat

w ← v1(t)

λ0 ← λ0 + Δt
∑k

i=1 R(vi, λi)v1

if t = ti then

λ0 ← λ0 + 2
N

Logγ Ji

end if

for i = k, . . . ,1 do

λi ← ParTrans(γ,−Δtw,λi + Δtλi−1)

end for

λ0 ← ParTrans(γ,−Δtw,λ0)

γ ← Expγ (−Δtw)

t ← t − Δt

until t=0

δγ (0)E ← −λ0

for i = 1, . . . , k do

δvi (0)E ← −λi

end for

4.1 Coefficient of Determination (R2) in Metric Spaces

In order to characterize how well our model fits a given set

of data, we define the coefficient of determination of our

regression curve γ (t), denoted R2 [12]. As with the usual

definition of R2, we first compute the variance of the data.

Naturally, as the data lie on a non-Euclidean metric space,

instead of the standard sample variance, we substitute the

Fréchet variance, defined as

var{y1, . . . , yN } =
1

N
min
ȳ∈M

N∑

j=1

d(ȳ, yj )
2. (28)

The sum of squared error for a curve γ is the value E0(γ ):

SSE =
1

N

N∑

j=1

d
(
γ (tj ), yj

)2
. (29)

We then define R2 as the amount of variance that has been

reduced using the curve γ :

R2 = 1 −
SSE

var{y1, . . . ,N}
. (30)

Clearly a perfect fit will remove all error, resulting in an R2

value of one. The worst case (R2 = 0) occurs when no poly-

nomial can improve over a stationary point at the Fréchet

mean, which can be considered a zero-order polynomial re-

gression against the data.

4.2 Example: Kendall Shape Space

A common challenge in medical imaging is the compari-

son of shape features which are independent of easily ex-

plained differences such as differences in pose (relative po-

sition and rotation). Additionally, scale is often uninterest-

ing as it is easily characterized by volume calculation and

explained mostly by intersubject variability or differences

in age. It was with this perspective that Kendall [19] origi-

nally developed his theory of shape space. Here we briefly

describe Kendall’s shape space of m-landmark point sets

in R
d , denoted Σm

d . For a complete treatment of Kendall’s

shape space, the reader is encouraged to consult Kendall and

Le [20, 23].

Given a point set x = (xi)i=1,...,m, xi ∈ R
d , translation

and scaling effects are removed by centering and uniform

scaling. This is achieved by translating the point set so that

the centroid is at zero, then scaling so that
∑m

i=1 ‖xi‖
2 = 1.

After this standardization, x constitutes a point in the sphere

S
(m−1)d−1. This representation of shape is not yet complete

as it is effected by global rotation, which we wish to ignore.

Thus points on S
(m−1)d−1 are referred to as preshapes and

the sphere S
(m−1)d−1 is referred to as preshape space. Ken-

dall shape space Σm
d is obtained by taking the quotient of the

preshape space by the action of the rotation group SO(d). In

practice, points in the quotient (referred to as shapes) are

represented by members of their equivalence class in pre-

shape space. We describe now how to compute exponential

maps, log maps, and parallel transport in shape space, us-

ing representatives in S
(m−1)d−1. The work of O’Neill [33]

concerning Riemannian submersions characterizes the link

between the shape and preshape spaces.

The case d > 2 is complicated in that these spaces con-

tain degeneracies: points at which the mapping from pre-

shape space to Σm
d fails to be a submersion [1, 11, 17]. De-

spite these pathologies, outside of a singular set, the shape

spaces are described by the theory of Riemannian submer-

sions. We assume the data lie within a single “manifold part”

away from any singularities, and show experiments in two

dimensions, so that these technical issues can be safely ig-

nored.

Each point p in preshape space projects to a point π(p)

in shape space. The shape π(p) is the orbit of p under the

action of SO(d). Viewed as a subset of S(m−1)d−1, this or-

bit is a submanifold whose tangent space is a subspace of

that of the sphere. This subspace is called the vertical sub-

space of TpS
(m−1)d−1 and its orthogonal complement is the

horizontal subspace. Projections onto the two subspaces of

a vector v ∈ TpS
(m−1)d−1 are denoted by V(v) and H(v),

respectively. Curves moving along vertical tangent vectors

result in rotations of a preshape, and so do not indicate any

change in actual shape.

A vertical vector in preshape space arises as the derivative

of a rotation of a preshape. The derivative of such a rotation



38 J Math Imaging Vis (2014) 50:32–52

is a skew-symmetric matrix W , and its action on a preshape

x has the form (Wx1, . . . ,Wxn) ∈ T S
(m−1)d−1. The verti-

cal subspace is then spanned by such tangent vectors arising

from any linearly independent set of skew-symmetric matri-

ces. The projection H is performed by taking such a span-

ning set, performing Gram-Schmidt orthonormalization, and

removing each component.

The horizontal projection allows one to relate the covari-

ant derivative on the sphere to that on shape space. Lemma 1

of O’Neill [33] states that if X,Y are horizontal vector fields

at some point p in preshape space, then

H∇XY = ∇∗
X∗Y

∗, (31)

where ∇ denotes the covariant derivative on preshape space

and ∇∗,X∗, and Y ∗ are their counterparts in shape space.

For the manifold part of a general shape space Σm
d , the

exponential map and parallel translation are performed us-

ing representatives preshapes in S
(m−1)d−1. For d > 2, this

must be done in a time-stepping algorithm, in which at each

time step an infinitesimal spherical parallel transport is per-

formed, followed by the horizontal projection. The resulting

algorithm can be used to compute the exponential map as

well. Computation of the log map is less trivial, as it requires

an iterative optimization routine. A special case arises in the

case when d = 2, in which case the entire space Σm
d is a

manifold. In this case the exponential map, parallel trans-

port and log map are computed in closed form [12]. With

the exponential map, log map, and parallel transport, one

performs polynomial regression on Kendall shape space via

the adjoint method described previously.

4.2.1 Rat Calivaria Growth

We have applied polynomial regression in Kendall shape

space to the data first analyzed by Bookstein [2], which

consists of m = 8 landmarks on a midsagittal section of rat

calivaria (skulls excluding the lower jaw). The positions of

eight identifiable positions on the skull are available for 18

rats and at of eight ages apiece. Figure 2 shows Rieman-

nian polynomial fits of orders k = 0,1,2,3. Curves of the

same color indicate the synchronized motion of landmarks

within a preshape, and the collection of curves for all eight

landmarks represents a curve in shape space. While the geo-

desic curve in Kendall shape space shows little curvature,

the quadratic and cubic curves are less linear which demon-

strates the added flexibility provided by higher order polyno-

mials. The R2 values agree with this qualitative difference:

the geodesic regression has R2 = 0.79, while the quadratic

and cubic regressions have R2 values of 0.85 and 0.87, re-

spectively. While this shows that there is a clear improve-

ment in the fit due to increasing k from one to two, it also

shows that little is gained by increasing the order of the poly-

nomial beyond k = 2. Qualitatively, Fig. 2 shows that the

slight increase in R2 obtained by moving from a quadratic

to cubic model corresponds to a marked difference in the

curves, indicating that the cubic curve is likely overfitting

the data. As seen in Table 1, increasing the order of polyno-

mial to four or five has very little effect on R2 as well.

These results indicate that moving from a geodesic to

quadratic model provides an important improvement in

fit quality. This is consistent with the results of Kenobi

et al. [21], who also found that quadratic and possibly cubic

curves are necessary to fit this dataset. However, whereas

Kenobi et al. use polynomials defined in the tangent space

Fig. 2 Bookstein rat calivaria data after uniform scaling and Pro-

crustes alignment. The colors of lines indicate order of polynomial

used for the regression (black = geodesic, blue = quadratic, red = cu-

bic). Zoomed views of individual rectangles are shown at right, along

with data points in gray. Note that the axes are arbitrary, due to scale-

invariance of Kendall shape space, but that they are the same for the

horizontal and vertical axes in these figures
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Table 1 R2 for regression of rat dataset

Polynomial order k R2

1 0.79

2 0.85

3 0.87

4 0.87

5 0.87

at the Fréchet mean of the data points, the polynomials we

use are defined intrinsically, independent of base point.

4.2.2 Corpus Callosum Aging

The corpus callosum, the major white matter bundle con-

necting the two hemispheres of the brain, is known to shrink

during aging [10]. Fletcher showed [12] that more nuanced

modes of shape change are observed using geodesic regres-

sion. In particular, the volume change observed in earlier

studies corresponds to a thinning of the corpus callosum

and increased curling of the anterior and posterior regions.

In order to investigate even higher modes of shape change

of the corpus callosum during normal aging, polynomial

regression was performed on data from the OASIS brain

database [27]. Magnetic resonance imaging (MRI) scans

from 32 normal subjects with ages between 19 and 90 years

were obtained from the database and a midsagittal slice was

extracted from each volumetric image. The corpus callosum

was then segmented on the 2D slices using the ITK-SNAP

program [39]. Sets of 64 landmarks for each patient were ob-

tained using the ShapeWorks program [6], which generates

samplings of each shape boundary with optimal correspon-

dences among the population.

Regression results for geodesic, quadratic, and cubic re-

gression are shown in Fig. 3. At first glance the results ap-

pear similar for the three different models, since the motion

envelopes each show the thinning and curling observed by

Fletcher. Indeed, the optimal quadratic curve is quite simi-

lar to the optimal geodesic, as reflected by their similar R2

values (0.13 and 0.12, respectively). However, moving from

a quadratic to cubic polynomial model delivers a substantial

increase in R2 (from 0.13 to 0.21). This suggests that there

are interesting third-order phenomena at work. However, as

seen in Table 2, increasing the order beyond three results in

very little increase in R2, indicating that those orders overfit

the data, as was the case in the rat calivaria study as well.

Inspection of the estimated parameters for the optimal cu-

bic curve, shown in Fig. 4, reveals that the tangent vectors

appear to be collinear. As discussed in Sect. 3.1, this sug-

gests that the cubic curve is a geodesic that has undergone a

cubic time reparametrization.

Note that the R2 values are quite low in this study. Sim-

ilar values were observed using geodesic regression in [12].

Table 2 R2 for regression of corpus callosum dataset

Polynomial order k R2

1 0.11

2 0.14

3 0.20

4 0.21

5 0.22

Fig. 3 Geodesic (top, R2 = 0.12) quadratic (middle, R2 = 0.13) and

cubic (bottom, R2 = 0.21) regression for corpus callosum dataset.

Color represents age, with yellow indicating youth (age 19) and pur-

ple indicating old age (age 90)

As is noted, this is likely due to high inter-subject variability,

and that age is only able to explain an effect which is small

compared to differences between subjects. Fletcher [12] also

notes that although the effect may be small, geodesic regres-

sion gives a result which is significant (p = 0.009) using a

non-parametric permutation test.

Model selection, which in the case of polynomial regres-

sion amounts to the choice of polynomial order, is an im-

portant issue. R2 always increases with increasing k, as we

have seen in these two studies. As a result, other measures

are sought which balance goodness of fit with complexity

of the curve model. Tools often used for model selection in

Euclidean polynomial regression, such as Akaike informa-
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Fig. 4 Parameters for regression of corpus callosa using a cubic poly-

nomial. The velocity (black), acceleration (blue) and jerk (red) are

nearly collinear, indicating that the estimated path is essentially a geo-

desic with cubic time reparametrization. The time reparametrization is

shown in the plot, for geodesic, quadratic, and cubic Riemannian poly-

nomial regression

tion criterion and Bayesian information criterion [5] make

assumptions about the distribution of data that are difficult

to generalize to the manifold setting. Extension of permuta-

tion testing for geodesic regression to higher orders would

be useful for this task, but such extension is not trivial on a

Riemannian manifold. We expect that such an extension of

permutation testing is possible in certain cases where it is

possible to define “exchangeability” under the null hypoth-

esis that the data follow a given order k trend. Currently, we

select models based on qualitative analysis of the fit curves,

as in the rat calivaria study, and R2 values.

4.3 LDDMM Landmark Space

Analysis of landmarks is commonly done in an alterna-

tive fashion when scale and rotation invariance is not de-

sired. In this section, we present polynomial regression us-

ing the large distance diffeomorphic metric mapping (LD-

DMM) framework. This framework consists of a Lie group

of diffeomorphisms endowed with a right invariant Sobolev

metric acting on a space of landmark configurations. For a

more detailed description of the group action approach, the

reader is encouraged to consult Bruveris et al. [4]. We will

instead focus on the Riemannian structure of landmarks and

use the formulas for general Riemannian manifolds.

Given m landmarks in d dimensions, let M ∼= R
md be the

space of all possible configurations. We denote by xi ∈ R
d

the location of the ith landmark point. Tangent vectors are

also represented as tuples of vectors, v = (vi)i=1,...,m ∈

R
md , as are cotangent vectors α = (αi)i=1,...,m ∈R

md . Con-

trasting ordinary differential geometric methods in which

vectors and metrics are the objects of interest, it is more con-

venient to work with landmark covectors (which we refer to

as momenta). In such case the inverse metric (also called the

cometric) is generally written using a shift-invariant scalar

kernel K : R → R. The inner product of two covectors is

given by

〈α,β〉T ∗
x M =

∑

i,j

K
(
|xi − xj |

2
)
αT

i βj . (32)

The following Hamilton’s equations describe geodesics in

landmark space [38, Eq. (21)]:

d

dt
xi =

∑

j

K
(
|xi − xj |

2
)
αj (33)

d

dt
αi =

∑

j

2(xi − xj )K
′
(
|xi − xj |

2
)
αT

i αj (34)

where K ′ denotes the derivative of the kernel.

Introducing tangent vectors v = Kα and w = Kβ , par-

allel transport in LDDMM landmark space are computed in

coordinates using the following formula, derived by Younes

et al. [38, Eq. (25)]:

d

dt
βi = K−1

(
N∑

j=1

(xi − xj )
T (wi − wj )K

′
(
|xi − xj |

2
)
αj

−

N∑

j=1

(xi − xj )
T (vi − vj )K

′
(
|xi − xj |

2
)
βj

)

−

N∑

j=1

(xi − xj )γ
′
(
|xi − xj |

2
)(

αT
j βi + αT

i βj

)
. (35)

In order to integrate the adjoint equations, it is also neces-

sary to compute the Riemannian curvature tensor, which in

this case is more complicated. For an in-depth treatment, see

Micheli et al. [29, Theorem 2.2].

Using these approaches to computing parallel transport

and curvature, we implemented the general polynomial ad-

joint optimization method. We applied this approach to the

rat calivaria data, treating the data as absolute landmark po-

sitions (after Procrustes alignment) instead of as scale and

rotation invariant Kendall shapes.

Shown in Fig. 5 are the results of LDDMM landmark

polynomial regression. Notice that while the geodesic curve

in this case corresponds to nonlinear trajectories for the indi-

vidual landmarks, these paths do not fit the data quite as well

as the quadratic curve. In particular, the point at the crown

of the skull (labelled point A in Fig. 5) appears to change di-

rections in the quadratic curve, which is not possible using
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Fig. 5 Regression curves for Bookstein rat data using LDDMM land-

mark polynomials. The colors of lines indicate order of polynomial

used for the regression (black = geodesic, blue = quadratic). Zoomed

views of individual rectangles are shown at right, along with data points

in gray. The data were aligned with respect to translation and rotation

but not scaling, which explains the clear growth trend

a geodesic. These qualitative improvements correspond to a

slight increase in R2, from 0.92 with the geodesic to 0.94

with the quadratic curve.

5 Riemannian Polynomials in Lie Groups

In this section, we consider the case when the configuration

manifold is a Lie group G. A tangent vector v ∈ TgG at a

point g ∈ G can be identified with a tangent vector at the

identity element e ∈ G via either right or left translation by

g−1. The resulting element of TeG is referred to as the right

(respectively, left) trivialization of v. We call a vector field

X ∈X(G) right (respectively, left) invariant if the right triv-

ialization of X(g) is constant for all g. Both left and right

translation, considered as mappings TgG → TeG are linear

isomorphisms, and we will use the common notation g to

refer to TeG. The vector space g, endowed with the vec-

tor product given by the right trivialization of the negative

Jacobi-Lie bracket of right invariant vector fields is called

the Lie algebra of G.

Of particular importance to the study of Lie groups is

the adjoint representation, which for each group element g

determines a linear action Adg on g called the adjoint action

and its dual action Ad∗
g on g∗ which is called the coadjoint

action of g. In a Riemannian Lie group, the inner product on

g can be used to compute the adjoint of the adjoint action,

which we term the adjoint-transpose action Ad†
g , defined by

〈
Ad†

g X,Y
〉
= 〈X,Adg Y 〉 (36)

for all X,Y ∈ g. The infinitesimal version of these actions

at the identity element are termed the infinitesimal adjoint

action, adX , and the infinitesimal adjoint-transpose action,

ad
†
X . These operators, along with the metric at the identity,

encode all geometric properties such as covariant derivatives

and curvature in a Lie group with right invariant Rieman-

nian metric. For a more complete review of Lie groups and

the adjoint representation, see [28]. Following [25], we in-

troduce the symmetric product of two vectors X,Y ∈ g as

symX Y = symY X = −
(
ad

†
X Y + ad

†
Y X

)
. (37)

Extending X and Y to right invariant vector fields X̃, Ỹ ,

the covariant derivative ∇X̃Ỹ is also right invariant (c.f. [7,

Proposition 3.18]) and satisfies

(∇X̃Ỹ )g−1 = −∇XY (38)

where we have introduced the notation ∇ for the reduced

Levi-Civita connection:

∇XY =
1

2
adX Y +

1

2
symX Y. (39)

Notice that in this notation, ad represents the skew-sym-

metric component of the Levi-Civita connection, while sym

represents the symmetric component.

We use ξ1 to denote the right trivialized velocity of the

curve γ (t) ∈ G. Using our formula for the covariant deriva-

tive, one sees that the geodesic equation in a Lie group with

right invariant metric is the right “Euler-Poincaré” equation:

d

dt
ξ1 = ∇ξ1

ξ1 = − ad
†
ξ1

ξ1. (40)

The left Euler-Poincaré equation is obtained by removing

the negative sign from the right hand side. For polynomials,

the Euler-Poincaré equation is generalized to higher order.

Introducing ξi, i = 1, . . . , k to represent the right trivialized

higher-order velocity vectors vi ,

vi(t) = ξi(t)g(t), (41)

the reduced Riemannian polynomial equations are

d

dt
γ (t) = ξ1γ (t) (42)

d

dt
ξi(t) = ∇ξ1

ξi(t) + ξi+1(t), i = 1, . . . , k − 1 (43)

d

dt
ξk(t) = ∇ξ1

ξk(t). (44)

Notice that these equations correspond precisely to the poly-

nomial equations (Eq. (15)).
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6 Polynomial Regression in Lie Groups

We have seen that the geodesic equation is simplified in

a Lie group with right invariant metric, using the Euler-

Poincaré equation. In this section, we derive the adjoint

equations used to perform geodesic and polynomial regres-

sion in a Lie group. Using right-trivialized adjoint variables,

we will see that the symmetries provided by the Lie group

structure result in adjoint equations more amenable to com-

putation than those in Sect. 4.

6.1 Geodesic Regression

Before moving on to polynomial regression, we first present

an adjoint optimization approach to geodesic regression in a

Lie group with right invariant metric. Suppose N data points

Jj ∈ G are observed at times tj ∈ [0,1]. Using the geodesic

distance d : G × G → R, the least squares geodesic regres-

sion problem is to find the minimum of

E(γ ) =
1

2

N∑

j=1

d
(
γ (tj ), Jj

)2
, (45)

subject to the constraint that the curve γ : [0,1] → G is a

geodesic.

In order to determine optimality conditions for γ , con-

sider a variation of the geodesic γ (t), which is a vector field

along γ that we denote δγ (t) ∈ Tγ (t)G. We denote by Z(t)

the right trivialization of δγ (t). The variation of γ induces

the following variation in the trivialized velocity ξ1 [16]:

δξ1(t) =
d

dt
Z(t) − adξ1

Z(t). (46)

Constraining δγ to be a Jacobi field, we use the following

variation of the Euler-Poincaré equation to obtain

d

dt
δξ1 = δ

(
d

dt
ξ1

)
= δ

(
− ad

†
ξ1

ξ1

)
= symξ1

δξ1. (47)

Combining these results, we write the ordinary differential

equation (ODE) that determines, along with initial condi-

tions, the vector field Z:

d

dt

(
Z

δξ1

)
=

(
adξ1

I

0 symξ1

)(
Z

δξ1

)
. (48)

This ODE constitutes a general perturbation of a geodesic

and the vector field Z(t) is a right trivialized Jacobi field.

In order to compute the variations of E with respect to the

initial position γ (0) and velocity ξ1(0) of the geodesic γ (t),

the variations of E with respect to γ (1) and ξ1(1) are trans-

ported backward to t = 0 by the adjoint ODE. Introducing

adjoint variables λ0(t), λ1(t) ∈ g, the left trivialized varia-

tion of E with respect to γ (t) and the variation with respect

to ξ1(t) are given by

δγ (0)E = −λ0(0) (49)

δξ1(0)E = −λ1(0). (50)

These variations are computed by initializing λ0(1) =

λ1(1) = 0 and integrating the adjoint ODE backward to

t = 0. The adjoint ODE is obtained by simply computing

the adjoint of the ODE governing geodesic perturbations,

Eq. (48), with respect to the L2([0,1] → g) inner product.

The resulting adjoint ODE is

d

dt

(
λ0

λ1

)
=

(
− ad

†
ξ1

0

−I − sym
†
ξ1

)(
λ0

λ1

)
, (51)

where the adjoint of the symmetric product is given by

sym
†
X Y = − adX Y + ad

†
Y X. (52)

The adjoint variable λ0 takes jump discontinuities when

passing over data points:

λ0

(
t−j

)
− λ0

(
t+j

)
= (Logγ (tj ) Jj )γ (tj )

−1. (53)

The jumps represent the residual vectors, obtained by right

trivialization of the Riemannian log map from the predicted

point γ (tj ) to the data Jj . Notice that the adjoint variable λ

satisfies an equation resembling the Euler-Poincaré equation

and can likewise be solved in closed form:

λ0(t) =
∑

j,tj >t

Ad
†

γ −1(t)γ (tj )
Logγ (tj ) Jj . (54)

This is particularly useful because it reduces the second or-

der ODE, Eq. (51), to an ODE of first order, since the first

equation is solved in closed form. We will soon see that this

simplification occurs even when using higher order polyno-

mials.

Finally, minimization of E is performed using the varia-

tions δγ (0)E,δξ1(0)E using, for example the following gra-

dient descent steps:

γ (0)k+1 = Exp(−αδγ (0)kE)γ (0)k (55)

ξ1(0)k+1 = ξ1(0)k − αδξ(0)kE (56)

for some positive step size α, where k denotes the step of

the iterative optimization process. Note that commonly the

Riemannian exponential map Exp in the above expression

is replaced by a numerically efficient approximation such as

the Cayley map [3].
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6.2 Example: Rotation Group SO(3)

As an example, in this section we derive the algorithm for

polynomial regression in the group of rotations in three di-

mensions, SO(3). This group consists of orthogonal matri-

ces with determinant one, and has associated the Lie algebra

so(3) of skew-symmetric 3-by-3 matrices. Skew-symmetric

matrices can be bijectively identified with vectors in R
3 us-

ing the following mapping ∗:

∗ : R3 ↔ so(3), ∗

⎛
⎝

a

b

c

⎞
⎠ =

⎛
⎝

0 −c b

c 0 −a

−b a 0

⎞
⎠ . (57)

We use a star to indicate both this mapping R
3 → so(3) and

its inverse, a notation which emphasizes that it is the Hodge

dual in R
3, though it is also commonly written using a hat

symbol [28]. Using the cross product on R
3, the star map is

also a Lie algebra isomorphism, so that

∗ ad∗x ∗y = x × y. (58)

The adjoint action under the star is also quite convenient, as

it is given simply by matrix-vector multiplication:

Adg(∗x) = ∗(gx) (59)

for any g ∈ SO(3), x ∈ R
3.

We will use a left invariant metric given by a symmetric

positive definite 3-by-3 matrix A. For vectors x, y ∈ R
3, the

inner product is

〈∗x,∗y〉g = xT Ay. (60)

With this inner product, the infinitesimal adjoint transpose

action is

∗ ad†
∗x ∗y = −A−1(x × Ay). (61)

The most natural metric is that in which A is the identity ma-

trix. In that case, left invariance also implies right invariance

and skew-symmetry of ad†, so that for any X,Y ∈ so(3):

symX Y0, ∇XY =
1

2
adX Y. (62)

The Euler-Poincaré equation in the biinvariant case is

d

dt
ξ = ad

†
ξ ξ = − ∗ ξ × ∗ξ = 0, (63)

implying that geodesics using the biinvariant metric have

constant trivialized velocity. The geodesic can then be in-

tegrated in closed form:

d

dt
γ (t) = ξγ (t) =⇒ γ (t) = exp(tξ). (64)

Notice that the adjoint-transpose action of a rotation matrix

g ∈ SO(3) on a 3-vector x is given by

∗Ad†
g(∗x) = gT x. (65)

So the first adjoint equation is given by

λ0(t) = γ (t)T γ (1)λ0(1) (66)

= exp(−tξ ) exp(ξ)λ0(1) (67)

= exp
(
(1 − t)ξ

)
λ0(1) (68)

= λ0(1) cos
(
(1 − t)‖ξ‖

)

−
1

‖ξ‖

(
∗ξ × λ0(1)

)
sin

(
(1 − t)‖ξ‖

)

+
1

‖ξ‖2
∗ ξ

(
∗ξ · λ0(1)

)(
1 − cos

(
(1 − t)‖ξ‖

))
.

(69)

where the last line is Rodrigues’ rotation formula. The sec-

ond adjoint equation, which determines the variation used

to update the velocity, is obtained by integrating this. For

geodesic regression with biinvariant metric, a closed form

solution is available for the second adjoint variable as well:

d

dt
λ1(t) = −λ0(t) (70)

λ1(t) =

∫ 1

t

λ0(s)ds (71)

= λ0(1)
1

‖ξ‖
sin

(
(1 − t)‖ξ‖

)
(72)

−
1

‖ξ‖2

(
∗ξ × λ0(1)

)(
1 − cos

(
(1 − t)‖ξ‖

))

+
1

‖ξ‖3
∗ ξ

(
∗ξ · λ0(1)

)(
1− t − sin

(
(1− t)‖ξ‖

))
.

6.3 Polynomial Regression

We apply a method similar to that of the previous section to

derive an adjoint optimization scheme for Riemannian poly-

nomial regression in a Lie group with right invariant metric.

A variation of the first equation gives Eq. (46). Taking vari-

ations of the other equations, noting that ∇ is linear in each

argument, we have

d

dt
δξi = ∇δξ1

ξi + ∇ξ1
δξi + δξi+1. (73)

Along with Eq. (46), these provide the essential equations

for a polynomial perturbation Z of γ , which can be con-

sidered a kind of higher-order Jacobi field. Introducing ad-

joint variables λ0, . . . , λk ∈ g, the adjoint system is (see Ap-

pendix C for derivation)

d

dt
λ0 = − ad

†
ξ1

λ0 (74)
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d

dt
λ1 = −λ0 − sym

†
ξ1

λ1 +

k∑

i=2

(
−∇ξi

− sym
†
ξi

)
λi (75)

d

dt
λi = −λi−1 + ∇ξ1

λi, i = 2, . . . , k, (76)

or, using only ad and ad†, as

d

dt
λ0 = − ad

†
ξ1

λ0 (77)

d

dt
λ1 = −λ0 + adξ1

λ1 − ad
†
λ1

ξ1

+
1

2

k∑

i=2

(
adξi

λi + ad
†
ξi

λi − ad
†
λi

ξi

)
(78)

d

dt
λi = −λi−1 +

1

2

(
adξ1

λi − ad
†
ξ1

λi − ad
†
λi

ξ1

)
. (79)

For i = 2, . . . , k, these equations resemble the original poly-

nomial equations. However, the evolution of λ1 is influ-

enced by all adjoint variables and higher-order velocities in

a non-trivial way. The first adjoint equation again resem-

bles the Euler-Poincaré equation, and its solution is given

by Eq. (54).

6.3.1 Polynomial Regression in SO(3)

Revisiting the rotation group, we can extend the geodesic

regression results to polynomials. Representing Lie algebra

elements as 3-vectors ξi , the equations for higher order poly-

nomials in SO(3) are

d

dt
γ (t) =

(
∗ξ1(t)

)
γ (t) (80)

d

dt
ξ1(t) = ξ2(t) (81)

d

dt
ξi(t) =

1

2
ξ1(t) × ξi(t) + ξi+1(t), i = 2, . . . , k − 1

(82)

d

dt
ξk(t) =

1

2
ξ1(t) × ξk(t). (83)

In this case, closed form integration isn’t available, even

with a biinvariant metric. Even for higher order polynomi-

als, the first adjoint equation is integrated in closed form,

giving

λ0(t) = γ (t)T γ (1)λ0(1). (84)

7 Lie Group Actions

So far, we’ve seen that polynomial regression is particularly

convenient in Lie groups with right invariant metrics, reduc-

ing the adjoint system from second to first order using the

closed form integral of λ0. We now consider the case when

a Lie group G acts on another manifold M which is itself

equipped with a Riemannian metric. For our purposes, the

group action need not be transitive, in which case the target

space is called a “homogeneous space” for G.

Although the two approaches sometimes coincide, gener-

ally one must choose between using polynomials defined by

the metric in M , ignoring the action of G, or using curves

defined by the action of polynomials in G on points in M .

In cases when a Riemannian Lie group is known to act on

the space M , the primary object of interest is usually not the

path in the object space M , but the path of symmetries de-

scribed by the group elements. Therefore it is most natural to

use the Lie group structure to define paths in object space.

We employ this approach, in which polynomial regression

under a Riemannian Lie group action is studied primarily

using the Lie group elements.

Following this plan, we model a polynomial in M as a

curve p(t) defined using the group action:

p(t) = γ (t).p0 (85)

where γ is a polynomial of order k in G with parameters

γ (0) ∈ G, ξ1, . . . , ξk ∈ g (86)

and p0 ∈ M is a base point in the object space. Invariance of

the metric on G allows us to assume, without loss of flexi-

bility in the model, that the base deformation is the identity:

γ (0) = e ∈ G. Optimization is done by fixing γ (0) = e ∈ G

and minimizing a least squares objective function defined

using the metric on M , with respect to the base point p0 ∈ M

and the parameters of the Lie group polynomial, ξ1, . . . , ξk ∈

g. This is accomplished using a similar adjoint method to

that presented in the previous sections, but where the jump

discontinuities in λ0 are modified due to this change in ob-

jective function. In the following sections, we discuss this in

more detail and also derive the gradients with respect to the

base point p0.

7.1 Action on a General Manifold

A smooth group action can be differentiated to obtain a map-

ping from the Lie algebra g to the tangent space TpM at any

point p ∈ M . Given a curve g(t) : (−ǫ, ǫ) → G such that

g(0) = e and d
dt

|t=0g(t) = ξ ∈ g, define the following map-

ping (c.f. [16]):

ρp(ξ) :=
d

dt

∣∣∣∣
t=0

g(t).p. (87)

The function ρp is a linear mapping from g to TpM , and

as such it has a dual ρ∗
p : T ∗

p M → g∗ that maps cotangent

vectors in M to the Lie coalgebra g∗. This dual mapping
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we refer to as the cotangent lift momentum map and use the

notation J : T ∗M → g∗.

The most important property of J is that it is preserved

under the coadjoint action:

Ad∗
g Jm = Jg.m ∀m ∈ T ∗M. (88)

The action of g on the cotangent bundle, which appears

on the right-hand side above, maps a cotangent vector μ at

point p to the vector g.μ ∈ T ∗
g.pM . Replacing squared norm

with squared geodesic distance on the Riemannian manifold

M , the first adjoint variable is then given by

λ0(t) =
∑

j,tj >t

Jγ (t)γ (tj )
−1.(Logγ (tj ).p0

Jj )
♭. (89)

Of particular interest is the case when the metric on G

and the metric on the manifold M coincide, in the sense that

for any vectors ξ,μ ∈ g and points p ∈ M :

〈ξ,μ〉g = 〈ξ.p,μ.p〉TpM . (90)

Fixing a base point p0 ∈ M , this means the mapping g →

g.p0 is a Riemannian submersion. If, additionally, the metric

on G is biinvariant, this implies that the covariant derivative

satisfies [33]

∇ξ.pμ.p = (∇ξμ).p (91)

so that geodesics and polynomials in M are generated by

polynomials in G along with the action on the base point p0.

7.1.1 Example: Rotations of the Sphere

Consider the sphere of radius one in R
3, which is denoted

S
2. The group SO(3) acts naturally on the sphere. For

this example, we will use the biinvariant metric on SO(3),

which corresponds to using the identity for the A matrix in

Sect. 6.2. Representing points on the sphere as unit vectors

in R
3, the group action is simply left multiplication by a ma-

trix in SO(3):

γ.p = γp (92)

ξ.p = ξp (93)

for all γ ∈ SO(3), ξ ∈ so(3),p ∈ S
2, v ∈ TpS

2. The in-

finitesimal action is in fact a cross product, which is easily

seen using the star map:

ξ.p = ξp = (∗ξ) × p. (94)

Representing elements in so(3)∗ as 3-vectors, we derive

the cotangent lift momentum map as well; letting a ∈ TpS
2,

Ja = ∗(p × a). (95)

This can be interpreted as converting a linear momentum

on the surface of the sphere into an angular momentum in

so(3) using the cross product with the moment arm p. The

standard metric on the sphere corresponds to the standard

biinvariant metric on SO(3) so that, as discussed previously,

polynomials on S
2 correspond to polynomials in SO(3) act-

ing on points on the sphere.

The polynomial equations for the sphere are precisely

those for SO(3), along with the action of γ (t) on the base

point p0 ∈ S
2. The derivative of γ (t) is replaced by the equa-

tion

d

dt
p(t) =

d

dt

(
γ (t).p0

)
= ξ1(t).p(t). (96)

The evolution of ξi is the same as that for SO(3). Figure 6

shows example polynomial curves in the rotation group and

their action on a point on the sphere. Notice that the exam-

ple polynomials on the sphere are precisely those shown in

Fig. 1, although they were generated here using polynomials

on SO(3) instead of integrating directly on the sphere.

In order to integrate the adjoint equations, the jump dis-

continuities must be computed using the log map on the

sphere:

Logx y = θ

(
y − cos θx

sin θ

)
, cos θ = xT y. (97)

The flatting operation acts trivially on this vector, and the

action of SO(3) on covectors corresponds to matrix-vector

multiplication. Using this, along with the momentum map J,

we have the jump discontinuities for the first adjoint variable

λ0:

λ0

(
t−j

)
− λ0

(
t+j

)
= γ (tj ) × (Logγ (tj ) Jj ). (98)

The higher adjoint variables satisfy the same ODEs as in

Sect. 6.3.1.

7.2 Lie Group Actions on Vector Spaces

We will assume in this section that the manifold is a vector

space V and that G acts linearly on the left on V . Given a

smooth linear group action, a vector ξ in the Lie algebra g

acts linearly on a vector v ∈ V in the following way

ξ.v =
d

dǫ

∣∣∣∣
ǫ=0

g(ǫ).v (99)

where g(ǫ) is a curve in G satisfying g(0) = e and
d
dǫ

|ǫ=0g(ǫ) = ξ . Again we use the notation ρv : g → V to

denote right-multiplication under this action:

ρvξ := ξ.v ∀v ∈ V, ξ ∈ g. (100)
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Fig. 6 Sample polynomial curves in SO(3) and their action on a base

point p0 ∈ S
2 (black dot) on the sphere. In the top row, the rotating co-

ordinate axes are shown for three polynomials. In the bottom row, the

arrows show the vectors ξ1(0) (black), ξ2(0) (blue), and ξ3(0) (red),

representing initial angular velocity, acceleration, and jerk. The action

on the base point, p(t) = γ (t).p0 ∈ S
2, is represented as a black curve

on the sphere. A geodesic corresponds to constant angular velocity,

while the non-zero acceleration and jerk in the quadratic and cubic

curves tilt the rotation axis

In the vector space setting, the cotangent lift momentum

map (again defined as the dual of ρv), is written using the

diamond notation introduced in [16]:

v ⋄ a ∈ g∗ ∀v ∈ V,a ∈ V ∗, (101)

(v ⋄ a, ξ)(g∗,g) := (a,ρvξ)(V ∗,V ) ∀ξ ∈ g. (102)

The diamond map interacts with the coadjoint action Ad∗ in

a convenient way:

Ad∗
g−1(v ⋄ a) = (g.v) ⋄ (g.a). (103)

This relation is fundamental in that it shows that the dia-

mond map is preserved under the coadjoint action. This is

quite useful in our case, as we will soon see that diamond

maps show up commonly in variational problems on inner

product spaces.

Commonly, data is provided in the form of points Ji in

the vector space V . In that case, the inner product on V is

used to write the regression problem as a minimization of

E(γ, v0) =
1

2

N∑

j=1

∥∥γ (tj ).v0 − Jj

∥∥2

V
, (104)

subject to the constraint that γ is a polynomial in G and v0 ∈

V is an evolving template vector. Without loss of generality,

γ (0) can also be constrained to be the identity so that v0 is

the template vector at time zero. Optimization of Eq. (104)

with respect to v0 requires the variation

δv0
E =

N∑

j=1

γ (tj )
−1

(
γ (tj ).v0 − Jj

)♭
. (105)

Here the musical flat symbol ♭ denotes lowering of indices

using the metric on V , an operation mapping V to V ∗. If

the group G acts by isometries on V , then the group action

commutes with flatting and the optimal base vector v0 can
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be computed in closed form

v̂0 =
1

N

N∑

j=1

γ (tj )
−1.Jj . (106)

Even when G does not act by isometries, the optimal base

vector can often be solved for in closed form.

The variation with respect to γ (tj ) is more interesting:

δγ (tj )E =
(
γ (tj ).v0

)
⋄

(
γ (tj ).v0 − Jj

)♭
. (107)

Using this along with the relation between the coadjoint ac-

tion and diamond map, we can write the first polynomial

adjoint variable in closed form

λ0(t) =
∑

j,tj >t

(
γ (t).v0

)
⋄

(
γ (t)γ (tj )

−1.
(
γ (tj ).v0 − Jj

)♭)
.

(108)

7.2.1 Example: Diffeomorphically Deforming Images

Right invariant Sobolev metrics on groups of diffeomor-

phisms are the main objects of study in computational

anatomy [30]. Describing an image I as a square integrable

function of a domain Ω ⊂ R
d , the left action of a diffeomor-

phism γ ∈ Diff(Ω) is

γ.I = I ◦ γ −1. (109)

The corresponding infinitesimal action of a velocity field ξ

on an image is

ξ.I = −ξT ∇I (110)

and the diamond map is

(I ⋄ α)(y) = −α(y)∇I (y). (111)

Geodesic regression in this context, using an adjoint opti-

mization method, has been previously studied [31]. Using

their method, the initial momentum of a geodesic is con-

strained by horizontal: that is, Lξ1(0) = I0 ⋄ α(0). As a re-

sult, changes in base image I0 influence the behavior of the

deformation itself.

Using our method, the base velocity vectors ξi are not

constrained to be horizontal. Implementation of polynomial

regression involves the expression above for the diamond

map, along with the ad and ad∗ operators [28]

adξ X = DξX − DXξ, (112)

ad∗
ξ m = Dmξ + mdiv ξ + (Dξ)T m. (113)

Inserting this into the right Euler-Poincaré equation yields

the well-known EPDiff equation for geodesic evolution in

the diffeomorphism group [16]:

d

dt
m = −Dmξ − mdiv ξ − (Dξ)T m. (114)

For polynomials, momenta mi = Lξi are introduced and this

EPDiff equation is generalized to

d

dt
m1 = −Dm1ξ1 − m1 div ξ1 − (Dξ1)

T m1 + m2 (115)

d

dt
mi = mi+1 +

1

2

(
L(Dξ1ξi − Dξiξ1)

− Dmiξ1 − (Dξ1)
T mi − mi div ξ1

− Dm1ξi − (Dξi)
T m1 − m1 div ξi

)
(116)

d

dt
mk =

1

2

(
L(Dξ1ξi − Dξiξ1)

− Dmkξ1 − (Dξ1)
T mk − mk div ξ1

− Dm1ξk − (Dξi)
T m1 − m1 div ξk

)
(117)

The estimation of the base image I0 is simplified, as

Eq. (105) is solved in closed form using

I0(y) =

∑
j |Dγj (y)|Jj ◦ γj (y)

∑
j |Dγj (y)|

. (118)

As an example of image regression, synthetic data were

generated and geodesic regression was performed using the

adjoint method described above. Figure 7 shows the in-

put images, as well as the estimated geodesic trend, which

matches the input data well. Note that although the method

presented in [31] is similar, using our abstraction, geodesic

regression can be generalized to polynomials of any or-

der, and to data which are not necessarily scalar-valued im-

ages.

8 Discussion

The Riemannian polynomial framework we have presented

provides a general approach to regression for manifold-

valued data. The greatest limitation to performing polyno-

mial regression on a general Riemannian manifold is that

it requires computation of the Riemannian curvature ten-

sor, which is often tedious [29]. In a Lie group or homoge-

neous space, we have shown that the symmetries provided

by the group allow for not only simple integration using

parallel transport in the Lie algebra, but also simplified ad-

joint equations that do not require explicit curvature compu-

tation.

The theory of rolling maps on the sphere, introduced by

Jupp & Kent [18], offer another perspective on Riemannian

polynomials. On the sphere, this interesting interpretation is
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Fig. 7 Image regression

example. Three synthetic

images where generated (top

row) at times 0,0.5,1. Geodesic

regression was performed,

resulting in the images shown in

the second row, corresponding

to the deformations in the last

row

related to the group action described above. Given a curve

γ : [0,1] → S
2, consider embedding both the sphere and a

plane in R
3 such that the plane is tangent to the sphere at

the point γ (0). Now roll the sphere along so that it remains

tangent at γ (t) at every time, and such that no slipping or

twisting occurs. The resulting path, γu : [0,1] → R
2, traced

out on the plane is called the unwrapped curve. Remarkably,

the property that γ is a k-order polynomial on S
2 is equiva-

lent to the unwrapped curve γu being a k-order polynomial

in the conventional sense. For more information regarding

this connection to Jupp & Kent’s rolling maps, as well as a

comparison to Noakes’ cubic splines [32], the reader is re-

ferred to the literature of Leite & Krakowski [24].
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Appendix A: Numerical Integration of the Polynomial

Equations

By definition, in the limit Δt → 0, the exponential map sat-

isfies γ̇ (t) = v1(t). To see that the forward integration algo-

rithm shown in Algorithm 1 approximates the polynomial

equations, let w(t) be any vector field parallel along γ (t).

That is,

∇γ̇ (t)w(t) = 0. (119)

Denote by PΔt (t) = ParTrans(p,Δtv,w) the parallel trans-

port of a vector w ∈ TpM along a geodesic from point p for

time Δt in the direction of vector v ∈ TpM . Then

d

dt
〈w,vi〉 = 〈∇γ̇ w,vi〉 + 〈w,∇γ̇ vi〉 = 〈w,∇γ̇ vi〉 (120)

Now consider approximation of this inner product derivative

under our integration scheme:

d

dt
〈w,vi〉 ≈ lim

Δt→0

1

Δt

(〈
PΔtw(t),PΔt

(
vi(t) + Δtvi+1(t)

)〉

−
〈
w(t), vi(t)

〉)
. (121)

The parallel transport operator is linear in the vectors being

transported, so

d

dt
〈w,vi〉 ≈ lim

Δt→0

1

Δt

(〈
PΔtw(t),PΔtvi(t)

〉

+ Δt
〈
PΔtw(t), vi+1(t)

〉
−

〈
w(t), vi(t)

〉)

= lim
Δt→0

1

Δt

((〈
PΔtw(t),PΔtvi(t)

〉
−

〈
w(t), vi(t)

〉)

+ lim
Δt→0

〈
PΔtw(t), vi+1(t)

〉)
(122)
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The first line is zero, by definition of parallel transport. Also

note that limΔt→0 PΔtw = w, so that

d

dt
〈w,vi〉 = 〈w,∇γ̇ vi〉 ≈ 〈w,vi+1〉. (123)

As this holds for any parallel vector field w, this implies

that our integration algorithm approximates the polynomial

equation

∇γ̇ vi = vi+1. (124)

Appendix B: Derivation of Adjoint Equations in

Riemannian Manifolds

In this appendix we derive the adjoint system for the polyno-

mial regression problem. The approach to calculus of varia-

tions on Riemannian manifolds described here is very simi-

lar to that employed by Noakes et al. [32]. Consider a sim-

plified objective function containing only a single data term,

at time T :

E
(
γ, {vi}, {λi}

)
= d

(
γ (T ), y

)2
+

∫ T

0

〈λ0, γ̇ − v1〉dt

+

k−1∑

i=1

∫ T

0

〈λi,∇γ̇ vi − vi+1〉dt

+

∫ T

0

〈λk,∇γ̇ vk〉dt. (125)

Now consider taking variations of E with respect to the vec-

tor fields vi . For each i there are only two terms containing

vi , so if W is a test vector field along γ , then the variation

of E with respect to vi in the direction W satisfies

∫ T

0

〈δvi
E,W 〉dt =

∫ T

0

〈λi,∇γ̇ W 〉dt −

∫ T

0

〈λi−1,W 〉dt.

(126)

The first term is integrated by parts to yield

∫ T

0

〈δvi
E,W 〉dt = 〈λi,W 〉|T0 −

∫ T

0

〈∇γ̇ λi,W 〉dt

−

∫ T

0

〈λi−1,W 〉dt. (127)

The variation with respect to vi for i = 1, . . . , k is then given

by

δvi(t)E = 0 = −∇γ̇ λi − λi−1, t ∈ (0, T ) (128)

δvi(T )E = 0 = λi(T ) (129)

δvi(0)E = −λi(t). (130)

In order to determine the differential equation for λ0, the

variation with respect to γ must be computed. Let W again

denote a test vector field along γ . For some ǫ > 0, let {γs :

s ∈ (−ǫ, ǫ)} be a differentiable family of curves satisfying

γ0 = γ (131)

d

ds
γs

∣∣∣∣
s=0

= W. (132)

If ǫ is chosen small enough, the vector field W can be ex-

tended to a neighborhood of γ such that [W, γ̇s] = 0, where

a dot indicates the derivative in the ∂
∂t

direction. The vanish-

ing Lie bracket implies the following identities

∇W γ̇s = ∇γ̇s W (133)

∇W∇γ̇s = ∇γ̇s ∇W + R(W, γ̇s). (134)

Finally, the vector fields vi, λi are extended along γs via par-

allel translation, so that

∇Wvi = 0 (135)

∇Wλi = 0. (136)

The variation of E with respect to γ satisfies

∫ T

0

〈δγ E,W 〉dt =
d

ds
E

(
γs, {vi}, {λi}

)∣∣
s=0

= −
〈
Logγ (T ) y,W(T )

〉

+
d

ds

∫ T

0

〈λ0, γ̇s − v1〉dt

∣∣∣∣
s=0

+
d

ds

k−1∑

i=1

∫ T

0

〈λi,∇γ̇s vi − vi+1〉dt

∣∣∣∣
s=0

+
d

ds

∫ T

0

〈λk,∇γ̇s vk〉dt

∣∣∣∣
s=0

. (137)

As the λi are extended via parallel translation, their inner

products satisfy

d

ds
〈λi,U 〉|s=0 = 〈∇Wλi,U 〉 + 〈λi,∇WU 〉 = 〈λi,∇WU 〉.

(138)

Then applying this to each term in the previous equation,

∫ T

0

〈δγ E,W 〉dt = −
〈
Logγ (T ) y,W(T )

〉

+

∫ T

0

〈λ0,∇W γ̇ − ∇Wv1〉dt

+

k−1∑

i=1

∫ T

0

〈λi,∇W∇γ̇ vi − ∇Wvi+1〉dt

+

∫ T

0

〈λk,∇W∇γ̇ vk〉dt. (139)



50 J Math Imaging Vis (2014) 50:32–52

Then by construction, since ∇Wvi = 0,

∫ T

0

〈δγ E,W 〉dt = −
〈
Logγ (T ) y,W(T )

〉

+

∫ T

0

〈λ0,∇W γ̇ 〉dt

+

k∑

i=1

∫ T

0

〈λi,∇W∇γ̇ vi〉dt. (140)

Then using the Lie bracket and curvature identities, this is

written as

∫ T

0

〈δγ E,W 〉dt = −
〈
Logγ (T ) y,W(T )

〉

+

∫ T

0

〈λ0,∇γ̇ W 〉dt

+

k∑

i=1

∫ T

0

〈
λi,∇γ̇ ∇Wvi + R(W, γ̇ )vi

〉
dt,

(141)

which is further simplified, again using the identity

∇Wvi = 0:

∫ T

0

〈δγ E,W 〉dt = −
〈
Logγ (T ) y,W(T )

〉

+

∫ T

0

〈λ0,∇γ̇ W 〉dt

+

k∑

i=1

∫ T

0

〈
λi,R(W, γ̇ )vi

〉
dt, (142)

Using the Bianchi identities, it can be demonstrated that the

curvature tensor satisfies the identity [9]:

〈
A,R(B,C)D

〉
= −

〈
B,R(D,A)C

〉
, (143)

for any vectors A,B,C,D. The covariant derivative along

γ is also integrated by parts to arrive at

∫ T

0

〈δγ E,W 〉dt = −
〈
Logγ (T ) y,W(T )

〉

+ 〈λ0,W 〉|T0 −

∫ T

0

〈∇γ̇ λ0,W 〉dt

−

k∑

i=1

∫ T

0

〈
R(vi, λi)γ̇ ,W

〉
dt. (144)

Finally, gathering terms, the adjoint equation for λ0 and its

gradients are obtained:

δγ (t)E = 0 = −∇γ̇ λ0 −

k∑

i=1

R(vi, λi)γ̇ , t ∈ (0, T ) (145)

δγ (T )E = 0 = −Logγ (T ) y + λ0 (146)

δγ (0)E = −λ0. (147)

Along with the variations with respect to vi , this constitutes

the full adjoint system. Extension to the case of multiple data

at multiple time points is trivial, and results in the adjoint

system presented in Sect. 4.

Appendix C: Derivation of Adjoint Equations in Lie

Groups

Let G be a Lie group with Lie algebra g, equipped with a

right invariant metric. Let γ : [0,1] → G be a polynomial in

G of order k with right-trivialized velocities ξi : [0,1] → g.

Recall the equations for a perturbation Z,δξi of this poly-

nomial:

d

dt
Z = δξ1 − adξ1

Z (148)

d

dt
δξi = ∇δξ1

ξi + ∇ξ1
δξi + δξi+1. (149)

The second equation can be rewritten

d

dt
δξi =

1

2
adδξ1

ξi +
1

2
symδξ1

ξi + ∇ξ1
δξi + δξi+1 (150)

= −
1

2
adξi

δξ1 +
1

2
symξi

δξ1 + ∇ξ1
δξi + δξi+1

(151)

= (−∇ξi
+ symξi

)δξ1 + ∇ξ1
δξi + δξi+1. (152)

This suggests the following matrix form ODE:

d

dt

⎛
⎜⎜⎜⎝

Z

δξ1

...

δξk

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

adξ1
I · · · 0 0 0

0 symξ1
I · · · 0

0 −∇ξ2
+ symξ2

∇ξ1
I · · · 0

...
...

0 −∇ξk
+ symξk

0 · · · ∇ξ1

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

Z

δξ1

...

δξk

⎞
⎟⎟⎟⎠ . (153)

In order to derive the adjoint Jacobi field, one simply com-

putes the negative adjoint of the matrix in the above equa-
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tion. The adjoint of the above matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− ad
†
ξ1

0 · · · 0 0

−I − sym
†
ξ1

∇
†

ξ2
− sym

†
ξ2

· · · ∇
†

ξk
− sym

†
ξk

0 −I −∇ξ1
0 · · ·

... 0

0 0 · · · −I −∇
†

ξ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(154)

Now note that the adjoint of the ∇ξ operator is −∇ξ , since

(using Eq. (52))

2∇
†

XY = ad
†
X Y + sym

†
X Y (155)

= ad
†
X Y − adX Y + ad

†
Y X (156)

= − adX Y − symX Y (157)

= −2∇XY. (158)

Now let λ0, . . . , λk : [0,1] → g be adjoint variables repre-

senting gradients with respect to position γ and velocities

ξ1, . . . , ξk . Using the equations above, we write the reduced

polynomial adjoint equations as

d

dt
λ0 = − ad

†
ξ1

λ0 (159)

d

dt
λ1 = −λ0 − sym

†
ξ1

λ1 +

k∑

i=2

(
−∇ξk

− sym
†
ξk

)
λk (160)

d

dt
λi = −λi−1 + ∇ξ1

λi i = 2, . . . , k. (161)

The first adjoint variable, λ0, takes on jump discontinu-

ities when passing data points, which are derived identically

to the geodesic case. Also note that this derivation is for

right invariant metrics using right trivialized vectors, but the

equivalent derivation in the case of left invariance is essen-

tially identical.
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