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Abstract. In medical imaging analysis and computer vision, there is a
growing interest in analyzing various manifold-valued data including 3D
rotations, planar shapes, oriented or directed directions, the Grassmann
manifold, deformation field, symmetric positive definite (SPD) matri-
ces and medial shape representations (m-rep) of subcortical structures.
Particularly, the scientific interests of most population studies focus on
establishing the associations between a set of covariates (e.g., diagnos-
tic status, age, and gender) and manifold-valued data for characterizing
brain structure and shape differences, thus requiring a regression mod-
eling framework for manifold-valued data. The aim of this paper is to
develop an intrinsic regression model for the analysis of manifold-valued
data as responses in a Riemannian manifold and their association with
a set of covariates, such as age and gender, in Euclidean space. Because
manifold-valued data do not form a vector space, directly applying clas-
sical multivariate regression may be inadequate in establishing the rela-
tionship between manifold-valued data and covariates of interest, such
as age and gender, in real applications. Our intrinsic regression model,
which is a semiparametric model, uses a link function to map from the
Euclidean space of covariates to the Riemannian manifold of manifold
data. We develop an estimation procedure to calculate an intrinsic least
square estimator and establish its limiting distribution. We develop score
statistics to test linear hypotheses on unknown parameters. We apply our
methods to the detection of the difference in the morphological changes
of the left and right hippocampi between schizophrenia patients and
healthy controls using medial shape description.

1 Introduction

Statistical analysis of manifold-valued data has gained a great deal of attention
in neuroimaging applications [1], [2], [3], [4], [5], [6], [7], [8], [9]. Examples of
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Fig. 1. Four different manifold-valued data (from the left to the right): deformation
field reflecting brain deformation obtained from the registration of either diffusion ten-
sor images (DTIs) or T1 magnetic resonance images (T1 MRIs); principal direction
(PD) field reflecting fiber orientations obtained from DTIs; diffusion tensor field re-
flecting water diffusion along fiber tracts from DTIs; medial shape representations of
hippocampi from multiple subjects obtained from the segmented T1 MRIs

manifold-valued data that we encounter in medical imaging analysis include the
Grassmann manifold, planar shapes, deformation field, symmetric positive defi-
nite (SPD) matrices and the medial shape representations (m-rep) of subcortical
structures (Fig. 1). Some review papers on the applications of manifold-valued
data in medical imaging can be found in a recent special issue of NeuroIm-
age [10]. However, the existing statistical methods for manifold-valued data are
primarily developed to estimate intrinsic and extrinsic means, to estimate the
structure of population variability, to carry out principal geodesic analysis, and
to compare intrinsic (or extrinsic) means across two or more groups [11], [9],
[12], [13], [14], [15], [16], [17].

Little literature exists for regression analyses of manifold-valued data. The
existing parametric and nonparametric regression models for manifold-valued
data were primarily developed for 2 (or 3) dimensional directional data [6], [18].
In parametric regression of directional data, parametric distributions, such as
the Von Mises distribution, are commonly assumed for directional data, whereas
it can be very challenging to assume useful parametric distributions for other
manifold-valued data, such as SPD matrices and the m-rep, which can character-
ize the feature (e.g., shape) of real imaging data [15]. In the nonparametric anal-
ysis of manifold-valued data, although smoothing splines have been developed
for directional data and planar landmark data, it is computationally difficult to
generalize such smoothing splines to other manifold-valued data [6]. Recently,
local constant regressions have been developed for manifold-valued data, but
these regression models are defined with respect to either the Frechet mean or
the geometric median [2], [4].

According to the best of our knowledge, this is the first paper that devel-
ops a semiparametric regression model with manifold-valued data as responses
on a Riemannian manifold and a set of covariates, such as time, gender, and
diagnostic status, in Euclidean space. Our regression model are solely based
on the first-order moment, thus avoiding specifying any parametric distribu-
tions. We propose an inference procedure to estimate the regression coefficients
in this semi-parametric model. We establish asymptotic properties, including
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consistency and asymptotic normality, of the estimates of the regression coef-
ficients. We develop score statistics to test linear hypotheses on unknown pa-
rameters. Finally, we illustrate the application of our statistical methods to
the detection of the difference in morphological changes of the hippocampi be-
tween schizophrenia patients and healthy controls in a neuroimaging study of
schizophrenia.

2 Method

2.1 Review of Regression Models

We consider a dataset that is composed of a response yi and a p × 1 covariate
vector xi for i = 1, · · · , n. Responses may be continuous observations in classical
linear models, such as age, weight, income, and they may be discrete or ordinal
observations, such as differing severity of diseases and disease status (patients v.s.
healthy subjects). Covariates may be quantitative, such as age, or qualitative,
such as handiness, gender, and presence of risk factors (yes/no).

Regression models often include two key elements: a link function μi(β) =
g(xi, β) and a residual εi = yi − μi(β), where β is a q × 1 vector of regression
coefficients and g(·, ·) is an known mapping from Rp×Rq to R. Regression models
assume that

E[εi|xi] = 0 for all i = 1, · · · , n, (1)

where the expectation denotes the conditional expectation of ε given x. More-
over, nonparametric regressions include a link function μi = g(xi), in which
g(·) is an unknown function, and a residual εi = yi − g(xi), for which equation
(1) holds.

To carry out statistical inference on β (or g(·)), we need at least three statis-
tical methods. The first one is an estimation method for calculating parameter
estimate of β, denoted by β̂. Various estimation methods include maximum like-
lihood estimation, robust estimation, estimating equations, among many others.
The second is to prove that β̂ is a consistent estimator of β and has certain
asymptotic distribution (e.g., normal). The third is to develop test statistics for
testing the hypotheses:

H0 : h0(β) = b0 vs. H1 : h0(β) �= b0, (2)

where h0(·) is an r × 1 vector function and b0 is an r × 1 specified vector. In
most applications, we are interested in testing h0(β) = Hβ = b0 for a given
r × q matrix H [18], [7], [8].

2.2 Intrinsic Regression for Manifold-Valued Data

We formally develop an intrinsic regression model for manifold-valued responses
and covariates of interest from n observations. Suppose we observe a dataset
{(Si,xi) : i = 1, · · · , n}, where Si are points on a Riemannian manifold S and
xi are covariates of interest in Euclidean space.
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The intrinsic regression model first involves modeling a ‘conditional mean’ of
an manifold-valued response Si given xi, denoted by μi(β) = g(xi, β), where
g(·, ·), called link function, is a map from Rp × Rq to the manifold S. Note
that we just borrow the term ‘conditional mean’ from Euclidean space. Given
two points Si and μi(β) on the manifold M, the intrinsic regression model also
define the residual or ‘difference’ between Si and μi(β) to ensure that μi(β) is
the proper ‘conditional mean’ of Si given xi. At μi(β), we have a tangent space
of the manifold S, denoted by Tμi(β)S, which is a Euclidean space representing
a first order approximation of the manifold S near μi(β). Then, we calculate the
projection of Si onto Tμi(β)S, denoted by Logμi(β)(Si), which can be regarded
as the difference between Si and μi(β) for i = 1, · · · , n. If S is a Euclidean space,
then Logμi(β)(Si) = Si − μi(β).

The intrinsic regression model for manifold-valued data is then defined by

E[Logμi(β)(Si)|xi] = 0, (3)

for i = 1, · · · , n, where the expectation is taken with respect to the conditional
distribution of Si given xi. Model (3) does not assume any parametric distribu-
tion for Si given xi, and thus it allows for a large class of distributions [15]. In
addition, our model (3) does not assume homogeneous variance across all i. This
is also desirable for the analysis of imaging measures, such as diffusion tensors,
because between-subject and between-voxel variability in the imaging measures
can be substantial.

2.3 Estimation

We calculate an intrinsic least squares estimator (ILSE) of the parameter vector
β, denoted by β̂, by minimizing the total residual sum of squares given by

Gn(β) =
n∑

i=1

d(Si, μi(β))2 =
n∑

i=1

<< Logμi(β)(Si), Logμi(β)(Si) >>, (4)

where << ·, · >> is an inner product of two tangent vectors in Tμi(β)S and d(·, ·)
is the Riemannian distance function on S. Thus, let Gn(β) =

∑n
i=1 d(Si, μi(β))2,

β̂ solves the estimating equations given by

∂βGn(β) =
n∑

i=1

∂βd(Si, μi(β))2 = 0, (5)

where ∂ denotes partial differentiation with respect to a parameter vector, such
as β. The ILSE is closely related to the intrinsic mean μ̂IM of S1, · · · ,Sn ∈ S,
which is defined as

μ̂IM = argminμ

n∑

i=1

d(μ,Si)2. (6)

In this case, μi is independent of i and covariates of interest. Moreover, un-
der some conditions, we can establish consistency and asymptotically normality
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of β̂. A Newton-Raphson algorithm is developed to obtain β̂. Let ∂βGn(β)
and ∂2

βGn(β), respectively, be the first- and second-order partial derivatives

of Gn(β). We iterates β(t+1) = β(t) + ρ{−∂2
βGn(β(t))}−1∂βGn(β(t)), where

0 < ρ = 1/2k0 ≤ 1 for some k0 ≥ 0 is chosen such that Gn(β(t+1)) ≤ Gn(β(t)).
We stop the Newton-Raphson algorithm when the absolute difference between
consecutive β(t)’s is smaller than a predefined small number, say 10−4. Finally,
we set β̂ = β(t). In addition, because −∂2

βGn(β(t)) may not be positive defi-

nite, we use E[−∂2
βGn(β(t))] instead of −∂2

βGn(β(t)) in order to stabilize the
Newton-Raphson algorithm.

2.4 Hypotheses and Test Statistics

In medical analysis, most scientific questions of interest involve a comparison of
manifold-valued data across diagnostic groups or detecting change in manifold-
valued data across time [8], [19]. These scientific questions usually can be for-
mulated as follows:

H0 : Hβ = b0 vs. H1 : Hβ �= b0. (7)

We test the null hypothesis H0 : Hβ = b0 using a score test statistic Wn defined
by

Wn = Ln
T Î−1Ln, (8)

where Ln = n−1/2
∑n

i=1 Ûi(β̃) and Î = n−1
∑n

i=1 Ûi(β̃)Ûi(β̃)T , in which β̃

denotes the estimate of β under H0 and Ûi(β̃) is associated with ∂βGn(β). It
can be shown that Wn is asymptotically χ2 distributed.

2.5 Positive Definitive Matrices

We develop an intrinsic regression for SPDs. We introduce the tangent vector and
tangent space at any μ ∈ Sym+(m), the space of SPDs [8]. The tangent space
of Sym+(m) at μ, denoted by TμSym+(m), is identified with a copy of Sym(m),
the space of symmetric matrices. Then we consider the scaled Frobenius inner
product of any two tangent vectors Yμ and Zμ in TμSym+(m), which is defined
by << Yμ, Zμ >>= tr(Yμμ−1Zμμ−1). Given the inner product, we can formally
construct the Riemannian geometry of Sym+(m) [8].

We consider the link function μ(x, β) using the Cholesky decomposition of
μ(x, β). For the i−th observation, through a lower triangular matrix Ci(β) =
C(xi, β) = (Cjk(xi, β)), the Cholesky decomposition of μ(xi, β) equals μ(xi, β)
= μi(β) = Ci(β)Ci(β)T . We must specify the explicit forms of Cjk(xi, β) for all
j ≥ k in order to determine all entries in μi(β). As an illustration, for m = 2, we
may choose the 2×2 matrix Ci(β) with C11(xi, β) = exp(zT

i β(1)), C12(xi, β) =
0, C21(xi, β) = zT

i β(2), and C22(xi, β) = exp(zT
i β(3)), where zi = (1,xT

i )T and
β(k) for k = 1, 2, 3 are subvectors of β. We introduce a definition of ‘residuals’ to
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ensure that μi(β) is the proper ‘conditional mean’ of Si given xi. Then, we calcu-
late the residual Logμi(β)(Si) given by Ci(β) log(Ci(β)−1SiCi(β)−T )Ci(β)T .

The intrinsic regression is defined in (3).
The first- and second-order derivatives of Gn(β) are given as follows. The a-

th element of ∂βGn(β) is given by −2
∑n

i=1 tr{Ei(β)Ci(β)−1∂βaμi(β)Ci(β)−T },
where Ei(β) = log(Ci(β)−1SiCi(β)−T ) and ∂βa = ∂/∂βa. The (a, b)-th element
of ∂2

βGn(β) is given by −2
∑n

i=1 tr{∂βb
Ei(β)[Ci(β)−1∂βaCi(β) + ∂βaCi(β)T

Ci(β)−T ]} − 2
∑n

i=1 tr{Ei(β)∂βb
[Ci(β)−1∂βaCi(β) + ∂βaCi(β)TCi(β)−T ]},

where ∂2
βaβb

= ∂2/∂βa∂βb and ∂βb
Ei(β) =

∫ 1

0
h(s, β)ds, in which

h(s, β) = {[S̃i(β) − I3]s + I3}−1∂βb
S̃i(β){[S̃i(β) − I3]s + I3}−1 (9)

and S̃i(β) = Ci(β)−1SiCi(β)−T .

2.6 Median Representation

We develop an intrinsic regression for m-reps. An m-rep model consisting of k
medial atoms can be considered as the direct product of k copies of M(1) =
R3 × R+ × S(2) × S(2), that is M(k) =

∏k
i=1 M(1), where S(2) is the sphere

in R3 with radius one [5]. We introduce a tangent space TP M(1) at the point
P = (O, r,n0,n1), where O ∈ R3, r ∈ R+, and n0 and n1 ∈ S(2). The tangent
vector U ∈ TP M(1) takes the form U = (U0, Ur, Un0 , Un1), where U0 ∈ R3, Ur ∈
R, Uni ∈ R3 and UT

ni
ni = 0 for i = 0, 1. The inner product of any two tangent

vectors U (0) and U (1) in TP M(1) is defined by << U (0), U (1) >>= U (0)T U (1).
The geodesic distance between P and P1 = (O1, r1,n0,1,n1,1) in M(1) is uniquely
given by
√

(O − O1)T (O − O1)+(log(r)−log(r1))2+[arccos(nT
0 n0,1)]2+[arccos(nT

1 n1,1)]2.

To introduce an intrinsic regression for m-rep, we need to define a link func-
tion μ(x, β) = (μO(x, β), μr(x, β), μ0(x, β), μ1(x, β))T ∈ M(1), which is a
10 × 1 vector. For instance, we may set μO(x, β) = (xT β1,x

T β2,x
T β3)

T and
μr(x, β) = exp(xT β4). A link function for μk(x, β) = (μx

0k(β), μy
0k(β), μz

0k(β))
(k = 0, 1) is based on the stereographic projection given by

μx
0k

1 − μz
0k

= g5(xT β5,k) and
μy

0k

1 − μz
0k

= g6(xT β6,k), (10)

where g5(·) and g6(·) are known link functions and β5,k and β6,k are subvectors
of β. The residual Logμ(x,β)(P ) is given by

(O − μO(x, β), log(r/μr(x, β)), Logμ0(x,β)(Un0), Logμ1(x,β)(Un1)),

where Logμ0(x,β)(Un0) = arccos(μ0(x, β)T Un0)v/||v||2, in which v = Un0 −
(μ0(x, β)T Un0)μ0(x, β).



198 X. Shi et al.

Fig. 2. Results for the m-rep shape analysis result mapped to the surface of the
hippocampal schizophrenia study: the color-coded uncorrected p−value maps of the
diagnostic status effects for (a) the left hippocampus and (b) the right hippocampus;
the corrected p−value maps for (c) the left hippocampus and (d) the right hippocampus
after correcting for multiple comparisons

3 Results

To demonstrate our regression method, we applied our methods to the m-rep
shape of the hippocampus structure in the left and right brain hemisphere in
schizophrenia patients and healthy controls, collected at 14 academic medical
centers in North America and western Europe [19]. There were 56 healthy con-
trols and 238 schizophrenia patients who met the following criteria: age 16 to 40
years; onset of psychiatric symptoms before age 35; diagnosis of schizophrenia,
schizophreniform, or schizoaffective disorder according to DSM-IV criteria; and
various treatment and substance dependence conditions.

We investigated the difference of m-rep shape between schizophrenia patients
and healthy controls while controlling for other factors, such as gender and age.
The hippocampi m-rep shape at the 24 medial atoms of the left and right brain
were used as the response in our intrinsic regression model. Covariates of interest
include Whole Brain Volume (WBV), race (Caucasian, African American and
others), age (in years), gender, and diagnostic status (patient or control).

We tested the diagnostic status effect on the whole m-rep structure. We pre-
sented the color-coded p-values of the diagnostic status effects across the atoms
of both the left and right reference hippocampi in Fig 2 (a) and (b) and the
corresponding adjusted p-values using false discovery rate were shown in Fig 2
(c) and (d). We observed large significance area in the left hippocampus, and
some in the right hippocampus even after correcting for multiple comparisons.

4 Discussion

We have developed an intrinsic regression model for the analysis of manifold-
valued data as responses in a Riemannian manifold and their association with
a set of covariates. We have developed an estimation procedure to calculate the
intrinsic least square estimates. We have developed score statistics for testing
linear hypotheses on unknown parameters. We plan to apply our method to
other manifold-valued data including the Grassmann manifold, planar shapes,
and deformation field.
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