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Abstract: A general framework is laid out for principal component analysis (PCA)

on quotient spaces that result from an isometric Lie group action on a complete

Riemannian manifold. If the quotient is a manifold, geodesics on the quotient can

be lifted to horizontal geodesics on the original manifold. Thus, PCA on a mani-

fold quotient can be pulled back to the original manifold. In general, however, the

quotient space may no longer carry a manifold structure. Still, horizontal geodesics

can be well-defined in the general case. This allows for the concept of generalized

geodesics and orthogonal projection on the quotient space as the key ingredients

for PCA. Generalizing a result of Bhattacharya and Patrangenaru (2003), geodesic

scores can be defined outside a null set. Building on that, an algorithmic method to

perform PCA on quotient spaces based on generalized geodesics is developed. As

a typical example where non-manifold quotients appear, this framework is applied

to Kendall’s shape spaces. In fact, this work has been motivated by an application

occurring in forest biometry where the current method of Euclidean linear approx-

imation is unsuitable for performing PCA. This is illustrated by a data example of

individual tree stems whose Kendall shapes fall into regions of high curvature of

shape space: PCs obtained by Euclidean approximation fail to reflect between-data

distances and thus cannot correctly explain data variation. Similarly, for a classical

archeological data set with a large spread in shape space, geodesic PCA allows new

insights that have not been available under PCA by Euclidean approximation. We

conclude by reporting challenges, outlooks, and possible perspectives of intrinsic

shape analysis.
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1. Introduction

In this paper, we illustrate a new approach for applying classical statistical

methods to multivariate non-linear data. In two examples occurring in the statis-

tical study of shape of three dimensional geometrical objects, we illustrate that

the current methods of PCA by linear Euclidean approximation are unsuitable

if such data in non-linear spaces fall into regions of high curvature, or if they
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have a large spread. In the following we give an overview of the background of
relevant previous work, and an introduction to the building blocks of our work.

Euclidean and Non-Euclidean Data. Over the last century, multivariate
statistics for Euclidean data structures has been the target of intensive research,
leading mainly to linear statistical methods of analysis. More recently, a growing
demand can be observed for methods treating multivariate data on spaces with
a natural non-Euclidean structure. We mention statistical estimation problems
of and on manifolds as they arise in various applications, e.g., Kim and Koo
(2005), estimation of manifolds, e.g., de Silva and Carlsson (2004) and Bubenik
and Kim (2007), or statistical inference in shape analysis, e.g., Munk, Paige,
Pang, Patrangenaru and Ruymgaart (2007), which often require a generalization
of the underlying space to a quotient of a manifold, e.g., Kendall, Barden, Carne,
and Le (1999), or even more general structures such as semimetrical spaces, e.g.,
Schmidt, Töppe, Cremers and Boykov (2007). Mostly, such data have been dealt
with by linear approximations and quite some advances have been achieved. The
aim of this paper is to explore the limitations of such linearizations, and to
provide a methodology that may be applied when linear approximations fail to
capture the non-Euclidean nature of the data. We emphasize that we do not
claim to solve these issues in full generality, rather that we would like to direct
the interest of the readers to this ambitious research program while we restrict
our presentation to quotients of manifolds under a Lie group action.

Extrinsic, Euclidean and Intrinsic Methods. A very powerful tool of tradi-

tional Euclidian multivariate statistical analysis is principal component analysis

(PCA). It aims to reduce the dimensionality of the data, and yields a hierarchy

of major directions explaining the main sources of data variation. This raises the

question of designing a similar tool for data on non-Euclidean spaces. In Table

1 we give an overview of various methods developed in the past and proposed in

this paper to tackle that question. Following the idea of linearization this can

be done by performing PCA in a Euclidean tangent space (whenever it exists)

of an underlying space. Usually, the tangent space at an extrinsic mean (EM) is

chosen, the latter in the manifold case being an orthogonal projection of the Eu-

clidean mean onto the manifold in an ambient space, e.g., Hendriks, Landsman

and Ruymgaart (1996), as well as Hendriks and Landsman (1998) or, in a more

general case, being a Procrustes mean, cf., Gower (1975). Often it seems more

natural to define an intrinsic mean (IM), i.e., a minimizer of the squared intrinsic

distance to the data (Kobayashi and Nomizu (1969, p.109), and Karcher (1977)),

where the intrinsic distance is usually determined by the Riemannian structure

induced either by the subject matter or by the specific construction as it is the

case for shape spaces (e.g., Le (2001), Bhattacharya and Patrangenaru (2003,

2005), as well as Klassen, Srivastava, Mio, and Joshi (2004)). The relationship
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Table 1. Terminology and description of various approaches of PCA for non-
Euclidean data. For the Euclidean methods on quotients such as Procrustes
analysis, usually the tangent space of the original space with data optimally
positioned w.r.t. the mean is used. For the intrinsic methods on quotients,
we use generalized geodesics and submanifolds.

Term Description

extrinsic mean (EM) Procrustes mean or,

projection of the Euclidean mean for manifolds

intrinsic mean (IM) minimizer of expected squared intrinsic distance

Euclidean PCA (EPCA) based on the empirical covariance matrix

in a tangent space

general Procrustes analysis (GPA) EPCA of data projected to the

tangent space at an EM

principal geodesic analysis (PGA) EPCA of data mapped under the inverse

Riemann exponential to the tangent space

at the IM

geodesic PCA (GPCA) PCA based on minimization of intrinsic

residual distances to geodesics

geodesic principal components (GPCs) minimizing geodesics of GPCA

principal component mean (PM) intersection point of first and second GPC

restricted GPCA GPCA while requiring that all GPCs pass

through the IM

manifold PCA (MPCA) PCA based on non-nested submanifolds

totally geodesic (at a point) of increasing

dimension, determined by minimizing

intrinsic residual distances

between EM and IM is not obvious, and not well understood. We mention that

in our applications the EM is a fairly good approximation to the IM. Currently,

PCA in the tangent space of either mean is performed in a Euclidean manner,

either by some projection of the data to the tangent space at the EM, or by map-

ping the data under the inverse Riemann exponential map to the tangent space

at the IM. The mapped data serve as the basis for computing the empirical co-

variance matrix, and hence the PCA. The well known general Procrustes analysis

(GPA) for quotients, such as Kendall’s shape spaces, is based on this procedure

by orthogonally projecting the data to the tangent space at an EM, see Gower

(1975), Goodall (1991), Cootes, Taylor, H. and Graham (1992) and Kent (1994).

Alternatively in principal geodesic analysis (PGA), the data is mapped under

the inverse Riemann exponential at the IM, see Fletcher, Lu, Pizer and Joshi

(2004). In fact, intrinsic distances between data and mean are equal (under the

inverse exponential) or approximately equal (in case of orthogonal projection) to

the respective distances in the tangent space. When curvature is present this is

not the case for between-data distances, which carry the additional information
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extracted by PCA. Therefore extrinsic and Euclidean methods, as developed so

far, are well suited for statistical analysis focussing on the mean, but may fail to

capture the additional information required for PCA. A meaningful PCA has to

take into account potential high curvature; obviously, any method relying on a

Euclidean linearization of tangent space will not perform well in such cases. In

this paper we develop the notion of geodesic principal components (GPCs) based

on the intrinsic distance of data to geodesics that reflect the manifold curvature.

For quotient spaces this requires the notion of generalized geodesics.

Shape Spaces. In many statistical applications, data on a sub-manifold of

Euclidean or Hilbert space are considered up to an isometric smooth Lie group

action. Very prominently, this is the situation in the field of statistical shape

analysis: similarity shapes are defined modulo the group of similarity transfor-

mations, e.g., Bookstein (1978) and Kendall (1984), affine shapes modulo the

affine group, e.g., Ambartzumian (1990, Chap. 4), and projective shapes modulo

the general projective group, e.g., Goodall and Mardia (1999), as well as Mar-

dia and Patrangenaru (2001). More precisely, in order to study the shape of a

geometrical object, either a finite number of landmarks at specific locations or

a bounding contour or surface is extracted and mapped to a point in a suit-

able Euclidean or Hilbert space. When considering similarity shapes, usually

size and location information is removed by mapping onto a unit-sphere called

pre-shape-space. Then, rotation information is removed by further mapping to

elements of the quotient of the pre-shape space modulo an orthogonal group ac-

tion, cf., Section 5.1. An overview of many newly developed shape space models

can be found in Krim and Yezzi (2006). Earlier, finite dimensional, landmark-

based shape spaces have been extensively studied; we mention the monographs

of Small (1996), Dryden and Mardia (1998), as well as Kendall et al. (1999).

GPCA in Shape Analysis. One main field of application of statistical shape

analysis is the study of shapes of biological entities. Methods for Kendall’s

landmark-based similarity shape spaces have led Le and Kume (2000) to the

belief that

“biological shapes evolve mainly along geodesics”.

In joint research with the Institute for Forest Biometry and Informatics at the

University of Göttingen studying the growth of individual tree stems, the bi-

ological geodesic-hypothesis is of high interest. As we will see in Section 6.1,

Euclidean PCA is not applicable since the shapes in question come to lie in a

region of Kendall’s shape space with unbounded curvature. This is due to the

fact that shapes of tree stems are roughly degenerate long straight line segments

that are invariant under rotations orthogonal to the stem, and thus correspond to



INTRINSIC SHAPE ANALYSIS: GEODESIC PCA 5

singularities of the space. Clearly, many more objects in biological research such

as protein structures and cell filaments are nearly one-dimensional, whereas their

shape change extends into all three spatial directions. All such shapes fall into

high curvature regions of shape space rendering the current methods of Euclidean

PCA unsuitable.

In addition to high curvature effects, oscillation of geodesics may cause

Euclidean approximations to deviate considerably from the respective intrinsic

quantities. This effect is illustrated by an example in Section 6.2 of less concen-

trated data in regions of lesser curvature.

It is the objective of this work to propose geodesic principal component anal-

ysis (GPCA) that is dependent on the intrinsic structure only, and independent

of a specific linearization due to an embedding into or projection onto Euclidean

space. This can then be used in general on quotient spaces

1. to carry out PCA in high curvature regions and near locations where the

quotient space ceases to carry a natural manifold structure,

2. to include the effects of oscillation of geodesics for less concentrated data in

PCA, and

3. as a tool for detection of curvature within a data sample.

This task faces several challenges from differential geometry, statistical the-

ory, and numerical optimization. In this work, we introduce some key concepts

and major results. Many issues are beyond the scope of this paper and leave room

for further research and for discussion in Section 7. This extends in particular

to numerical performance and convergence issues of the algorithms employed. In

our implementation, we have used standard numerical methods to locate min-

ima. Further research is certainly necessary to derive specific fast-converging

algorithms.

Throughout this paper we assume that a random variable is given on a

quotient space Q = M/G that arises from the isometric action of a Lie group G

on a complete Riemannian manifold M . Since we know not of any application

involving non-Hausdorff quotients due to non-proper actions of groups, we assume

that G is compact (which is in fact somewhat more restrictive than a proper

action, cf., Section 2.2). Then the quotient carries a natural metric structure, it

is even locally a manifold away from singular locations.

The outline of this paper is as follows. In the next section we provide

some background from differential geometry: at every p ∈ M the tangent space

decomposes into a horizontal and a vertical subspace. In fact, for geodesics on

M , horizontality at one point is equivalent to horizontality at all points. Call-

ing projections of horizontal geodesics on M generalized geodesics on Q (as in



6 STEPHAN HUCKEMANN, THOMAS HOTZ AND AXEL MUNK

Kendall et al. (1999, pp.109-113) for Kendall’s shape spaces) we obtain a family

of curves qualifying for principal components. Orthogonal projection - the cor-

ner stone of GPCA - will be defined by lifting to the manifold. In Appendix A

we show that focal points, these are points with multivalent projection, and foci

form a null set on the quotient. Hastie and Stuetzle (1989, p.515) had proved this

fact for one-dimensional, and Bhattacharya and Patrangenaru (2003, p.12) for

arbitrary submanifolds of Euclidean space. Thus, geodesic projections on gener-

alized geodesics are uniquely determined up to a set of measure zero. We note

that medial axes, introduced early to shape analysis by Blum and Nagel (1978),

and currently of high interest in computer vision and in shape representation,

e.g., Pizer, Siddiqi, Székely, Damon, and Zucker (2003), as well as Fuchs and

Scherzer (2007), are taken from foci and focal points. This section is concluded

by pointing to the possible oscillating and not-everywhere minimizing nature of

geodesics.

In Section 3 we elaborate on basic statistical quantities on quotients as above.

Unlike for Euclidean geometry in which means, variance and principal compo-

nents have several equivalent characterizations that allow for an explicit compu-

tation, in general each characterization leads to an essentially different general-

ization on the quotient, which in turn leads to an optimization problem that can

only be solved numerically. We motivate our definition based on the minimiza-

tion of residual distances. Close inspection shows that the first geodesic principal

component (GPC), defined as the geodesic approximating the data best, may no

longer pass through the IM, cf., Huckemann and Ziezold (2006). This fact leads

to a third generalization of a mean which we call a principal component mean

(PM); it will play a crucial role in the sections to come.

In Section 4 we lay out how to obtain sample GPCs for general quotients

by pulling the numerical computation back to the manifold M . The algorithmic

ansatz based on Lagrange-minimization is twofold: first computing the quotient-

space distance to horizontal geodesics, thus determining optimally positioned

data points, and second, finding all horizontal directions at a given data point

and choosing a suitable iterate.

In Section 5 an implementable algorithm for Kendall’s shape spaces is pro-

vided. Along the way we give a new and constructive proof for the fact that every

singular shape can be approached by a geodesic along which some sectional cur-

vatures are unbounded. Also, we further discuss oscillating and not-everywhere

minimizing geodesics.

In the penultimate section we illustrate the effects of unbounded curvature

and oscillating, not-everywhere minimizing geodesics with some exemplary 3D

datasets. High curvature is encountered in the previously introduced dataset of

tree stems. We find near singular shapes where
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1. approximating the IM by the EM is fairly accurate; however,

2. Euclidean PCA fails to catch essential features of the shape distribution that

appear under GPCA.

A classical dataset of iron age fibulae from Hodson, Sneath and Doran (1966)

serves as an example for oscillating and not-everywhere minimizing geodesics in

lower curvature regions. As above, for this dataset the EM and the IM are rather

close to one another. Due to oscillation, however, Euclidean PCA again fails to

recognize essential features only found by geodesic PCA. This gives new results

characterizing the temporal evolution of shape of these iron age brooches.

Only when both ambient curvature is low and data concentration is high, as

is demonstrated by a third data set of macaque skulls, is the Euclidean approxi-

mation valid.

We note that Fletcher et al. (2004) have also proposed principal component

analysis for manifolds based on geodesics. However, they require GPCs to pass

through the IM and compute them by Euclidean approximation only. With our

method of GPCA, the restricted GPCs through the IM can be computed as well.

For applications in high curvature regions this constraint makes the restricted

method as unsuitable as the Euclidean approximation. It is the additional effort

to determine the location of the PM that is considerably far from the EM and

IM that is crucial to the success of our method of GPCA in such cases.

2. Lie Group Action, Horizontal Geodesics and Optimal Positioning

In this section we collect well-known facts from Riemannian geometry, (e.g.,

Abraham and Marsden (1978), Bredon (1972), Helgason (1962), and Lang (1999))

and simple consequences thereof that are necessary to introduce notation, formu-

late and build up our method of GPCA. We give a comprehensive introduction

not found elsewhere, as these results are not easily accessable for statisticians.

Throughout this paper we consider a connected Riemannian manifold M

and a Lie group G, with Lie algebra g and unit element e, acting smoothly on

M . The action will be denoted by p
g7→ gp for p ∈ M, g ∈ G. We also assume for

the entire paper that the action is effective, i.e., that for every g 6= e there is a

p = pg ∈ M with gp 6= p. As usual dM (·, ·) denotes the distance on M induced

by the Riemannian metric.

We remark in advance that in many recent shape space models (e.g., Krim

and Yezzi (2006)) infinite-dimensional Hilbert manifolds are considered. These

are limits of finite-dimensional manifolds on which numerical computations are

carried out. Even though many of the following results are also true in the general

case of an infinite-dimensional Banach Lie group acting on an infinite-dimensional

Riemannian Hilbert manifold, we note that a cornerstone of our efforts, the
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existence of geodesics of minimal length, Section 2,1 below, is false in general; a

counter-example can be found in Lang (1999, pp.226-227). In the following we

mention explictly if a result holds only for finite-dimensional manifolds.

2.1. Riemannian metric and projection to the quotient

Denote by Γ(M) the space of all maximal (w.r.t. inclusion) geodesics on

M . The Hopf-Rinow Theorem asserts that on a complete Riemannian manifold

geodesics t → γ(t) are defined for all t ∈ R. Also, if M is finite-dimensional, any

two points p1, p2 can be joined by a geodesic of length d(p1, p2).

The Riemannian metric is denoted as usual by p 7→ 〈Zp,Wp〉, p ∈ M for

Z,W ∈ T (M). Here T (M) is the module of smooth vector fields on M , and

Zp ∈ TpM is the value of Z in the tangent space TpM of M at p ∈ M . dg : TpM →
TgpM , which denotes the differential induced by the action, is an isomorphism.

The action of G is called isometric if

〈Zp,Wp〉 = 〈(dgZ)gp, (dgW )gp〉 ∀p ∈ M, g ∈ G, Z,W ∈ T (M).

Then,

γ geodesic ⇔ gγ geodesic ∀g ∈ G.

For p ∈ M let [p] = {gp : g ∈ G} be the fiber (or orbit) of p, and let

Ip = {g ∈ G : gp = p} the isotropy group at p. Then [p] is a sub-manifold of

M (locally an embedding, but in general not globally) that is diffeomorphic to

G/Ip. G is said to be acting freely on M if all isotropy groups consist of the unit

element only, i.e., [p] ∼= G ∀p ∈ M .

The tangent space TpM of M at p decomposes into a vertical subspace Tp[p],

that is the tangent space of the fiber, and an orthogonal horizontal subspace

HpM ,

TpM = Tp[p] ⊕ HpM.

A curve t 7→ γ(t) on M is called horizontal (vertical) at t0 if its derivative there

is horizontal (vertical), i.e., γ̇(t0) ∈ Hγ(t0)M (γ̇(t0) ∈ Tγ(t0)[γ(t0)]). Denote by

ΓH(M) the space of all geodesics that are horizontal everywhere.

The Riemann exponential expp maps a sufficiently small tangent vector v ∈
TpM to the point γp,v(1) ∈ M when γp,v is the geodesic through p = γp,v(0) with

initial velocity v = γ̇p,v(0), i.e.,

expp(tv) := γp,v(t).

Every point p0 on a Riemannian manifold has a normal neighborhood U , i.e.,

for all p ∈ U ∃rp > 0 such that the inverse exponential logp := (expp)
−1 is
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well defined on the geodesic ball Brp(p) := expp({v ∈ TpM : ‖v‖ < rp}) and

U ⊂ Brp(x). The Gauss Lemma asserts that expp-images of spheres in TpM are

orthogonal to geodesics through p.

Let

π : M → M/G := {[p] : p ∈ M} (2.1)

be the canonical projection to the quotient space equipped with the quotient

topology. Note that π is both open and continuous. Then

dM/G([p1], [p2]) := inf
g,h∈G

dM (gp1, hp2) ∀[p1], [p2] ∈ M/G

is a quasi-metric on M/G. In case of an isometric action we have that any

geodesic segment γ joining p1 and p2 has the same length as the geodesic segment

gγ joining gp1 and gp2. Hence in case of an isometric action, dM (gp1, gp2) =

dM (p1, p2) ∀ p1, p2 ∈ M , g ∈ G, and thus

inf
g∈G

dM (gp1, p2) = dM/G([p1], [p2]) ∀p1, p2 ∈ M.

2.2. The slice theorem and killing vector fields

In all applications we know of, M/G is a Hausdorff space which means that

all fibers [p] are closed in M . This is the case if G acts properly on M , i.e., if for

all pn, p, p′ ∈ M , gn ∈ G, n ∈ N with gnpn → p′, pn → p:

gn has a point of accumulation g ∈ G with gp = p′.

A sufficient condition for a proper action is that G is compact. Even if M/G is

Hausdorff the dimensions of the fibers may vary along M . Then, M/G will fail

to have a natural manifold structure. This is the case for Kendall’s shape spaces

of three and higher-dimensional configurations. In case of a Lie group G acting

isometrically and properly on a finite-dimensional manifold M , Mostov’s Slice

Theorem, cf., Palais (1960, p.108) and Palais (1961), asserts that for an open

disk D about the origin in Hp, the twisted product G ×Ip
D is diffeomorphic to

a tubular neighborhood of [p] in M . As a consequence,

Ip′ is a subgroup of Ip for p′ ∈ expp(D). (2.2)

Hence in case of a free action, HpM is locally diffeomorphic to M/G at [p].

Then, M/G has a unique manifold structure compatible with its quotient topol-

ogy (Abraham and Marsden (1978, p.266)), making the projection (2.1) a Rie-

mannian submersion. Moreover then, any vector field Z ∈ T (M/G) has a unique

horizontal lift Z̃ ∈ T (M), i.e., Z̃p ∈ HpM ∀ p ∈ M . Also, every smooth curve
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t → γ(t) on M/G through γ(t0) = [p] has a unique horizontal lift t → γ̃(t)

through p.

If G is compact, then any inner product on g can be extended to a bi-invariant

Riemannian metric on G making all the curves t 7→ Exp(tv) geodesics on G that

are defined for all t ∈ R. Here v ∈ g is arbitrary and Exp : g → G denotes

the Lie-exponential. In most applications G is a transformation group and g

is equipped with the standard Euclidean inner product. The Lie-exponential is

then the exponential function for matrices. Note that t → Exp(tv)p is usually

not geodesic on M .

The action of G on M gives rise to a natural mapping α : g → T (M) defined

by the homomorphism:

αp : g → Tp[p]

v 7→ d
dt

∣∣∣
t=0

(
Exp(tv)p

) .

In case of an isometric action, every α(v) is a Killing vector field on M . Since

the local flow of a Killing vector field X is isometric, one can show

d

dt

〈
Xγ(t), γ̇(t)

〉
= 0 (2.3)

for all geodesics t 7→ γ(t).

2.3. Generalized geodesics and optimal positioning

As an immediate consequence of (2.3) we have

Theorem 2.1. Let M be a Riemannian manifold and G be a Lie group acting

isometrically on M . Then a geodesic on M that is horizontal at one point is

horizontal at all points.

Due to the fact that Killing vector fields are in general not of constant mod-

ulus, a similar statement for vertical geodesics is not true. In fact, for Kendall’s

shape spaces of configurations of dimension m ≥ 3, there are geodesics that are

vertical at isolated points only (cf., Example 5.1).

As done in Kendall et al. (1999, pp.109-113) for Kendall’s shape spaces, the

concept of geodesics can thus be pushed forward also to non-manifold quotients:

Definition 2.2. Given a quotient π : M → M/G =: Q, where M is a Rieman-

nian manifold and G a Lie group acting isometrically on M , call a curve δ on Q

a generalized geodesic on Q if it is the projection of a horizontal geodesic on M .

Γ(Q) := {δ = π ◦ γ : γ ∈ ΓH(M)}
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is the space of generalized geodesics on Q. For π ◦ γ we also write [γ].

Generalized geodesics can be lifted to horizontal geodesics just as in the

submersion case: for δ ∈ Γ(Q) with δ(0) = q there is, given p ∈ q, a unique lift

γ ∈ ΓH(M) such that π ◦ γ = δ and γ(0) = p. If η ∈ ΓH(M) is any other lift

of δ, then ∃g ∈ G such that η(·) = g γ(·). Two generalized geodesics through

a common point are orthogonal there if their lifts through one (and thus any)

common point are orthogonal there.

Definition 2.3(Ziezold (1977)). Given a manifold M and a Lie group G

acting isometrically on M , points p1, p∈M , and g ∈ G, call the point gp1 in

optimal position to p2 if

dM (gp1, p2) = dM/G([p1], [p2]).

Also, gp is said to be in optimal position to a curve γ on M if

dM (gp, γ) = dM/G([p], π ◦ γ).

If G is compact then any point can be brought into optimal position to a

given point and a curve, respectively. Moreover, if gp1 is in optimal position to

p2 then g−1p2 is in optimal position to p1, and gp1 and p2 are called registered.

Note that in general, optimally positioned points will not be uniquely determined.

Moreover, the relation being in optimal position may not be transitive, see Ziezold

(1977, p.602).

Theorem 2.4. Let M be a Riemannian manifold and G a Lie group acting

isometrically on M . Then any geodesic joining two points in optimal position is

horizontal.

Proof. Suppose that there is a geodesic t 7→ γ(t) joining p = γ(0) and p′ = γ(1)

in optimal position to each other. Then, logp can be defined in a neighborhood

U containing {γ(t) : 0 ≤ t ≤ 1}. Moreover, let s → δ(s) be any smooth curve

in [p′] through p′ = δ(0). Then, the image of δ under logp is a curve outside

logp(U)∩{v ∈ TpM : ‖v‖ < d(p, p′)} touching at logp(p
′). By the Gauss Lemma,

cf., Section 2.1, the image curve of δ is hence orthogonal to the straight line

through 0 and logp(p
′) which is the image of γ. As δ was arbitrary, γ is thus

horizontal at p′, and by Theorem 2.1 it is a horizontal geodesic.

The converse, that any two points on a horizontal geodesic segment are

in optimal position, is not even true in general for arbitrarily close points, cf.,

Theorem 5.4 (b).

As a consequence of the Hopf-Rinow Theorem (Section 2.1) and Theorem

2.4 we have the following.
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Corollary 2.5. Let M be a finite dimensional complete Riemannian manifold,
and G a compact Lie group acting isometrically on M and Q = M/G. Then any
two q1, q2 ∈ Q are joined by a generalized geodesic of length dQ(q1, q2).

2.4. Orthogonal projection and principal orbit theorem

On the quotient Q = M/G of a complete Riemannian manifold we can thus
define orthogonal projection: an orthogonal projection qδ of q ∈ Q onto δ ∈ Γ(Q)
is the fiber [p′γ ] of an orthogonal projection p′γ of p′ onto γ. Here γ ∈ ΓH(M)
is an arbitrary lift of δ, p ∈ q, and p′ = gp is p put into optimal position with
respect to γ. The orthogonal projection may be multivalued at some points (e.g.,
on a sphere, when projecting a pole to the equator); these form a set of measure
zero as we shall see. Recall that a subset A ⊂ M of a finite dimensional manifold
has zero measure in M if for every local chart (u, U) of M the set u(U ∩ A) has
Lebesgue measure zero. A set B ⊂ Q has measure zero in Q if its lift π−1(B) ⊂ M
has measure zero in M .

The following theorem is a consequence of Lemma A.2 and Theorem A.5
which is stated and proven in the Appendix.

Theorem 2.6. Let G be a compact Lie group acting isometrically on a finite-
dimensional Riemannian manifold M . Given a generalized geodesic δ on Q then
the orthogonal projection qδ is unique for all q ∈ Q up to a set of measure zero.

Call M∗ := {p ∈ M : Ip = {id}} the regular space (w.r.t. the quotient
M/G = Q) and Mo := {p ∈ M : Ip 6= {id}} the singular space. Since we assume
an effective action, M∗ 6= ∅. Below, we see that M∗ is a manifold, hence by
Section 2.2 the projection to the regular quotient

π|M∗ : M∗ → Q∗ := M∗/G

is a Riemannian submersion. Some sectional curvatures of Q∗ may tend to infinity
when approaching a singular point, cf., Theorem 5.2. The assertion (a) of the
following theorem is part of the Principal Orbit Theorem, cf., Bredon (1972,
p.179); the assertion (b) follows from Lemma A.2 in the Appendix.

Theorem 2.7. Let G be a compact Lie group acting isometrically and effectively
on a finite-dimensional Riemannian manifold M . Then

(a) M∗ and Q∗ are open and dense in M , Q, respectively, and

(b) any geodesic on M that meets M∗ has at most isolated points in Mo.

2.5. Not-everywhere minimizing and oscillating geodesics

We call a generalized geodesic δ ∈ Γ(Q)

(a) everywhere-minimizing if for all two points q1, q2 on δ the generalized geodesic
segment of minimal length between q1 and q2 exists and is contained in δ,
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(b) oscillating if there is a point q ∈ Q such that t 7→ dQ(q, δ(t)) has more than

one strict local minimum,

(c) recurrent if there is a period τ > 0 such that δ(t + τ) = δ(t) for all t ∈ R,

(d) asymptotic if there is another generalized geodesic in Γ(Q) which is ap-

proached asymptotically by δ.

Examples of Riemannian manifolds embedded in Euclidean space.

1. On a sphere, all geodesics are recurrent, non-oscillating and everywhere-

minimizing.

2. On a proper ellipsoid, every meridional geodesic (from pole to pole) is not

everywhere-minimizing, as two equatorial points on it are joined by the shorter

equatorial geodesic.

3. In general, geodesics on a torus are oscillating and not-everywhere minimizing.

Infinitely many oscillating geodesics are recurrent and infinitely many are

dense.

4. On more complicated manifolds, say surfaces of revolution generated by a

function with zero curvature at a critical point, there are non-recurrent asymp-

totic geodesics approaching equatorial geodesics, cf., e.g., Borzellino, Jordan-

Squire, Petrics and Sullivan (2007).

If geodesics on M are not too ill-behaved then so are generalized geodesics

on the quotient.

Remark 2.8. If all geodesics on M are recurrent, then all generalized geodesics

on Q = M/G are recurrent.

Projections of everywhere-minimizing geodesics, however, may lose this prop-

erty near singularities, cf., Theorem 5.4.

3. PCA Based on Generalized Geodesics for Quotients Arising from

Isometric Lie Group Actions

We first ponder different approaches to principal components on a quotient

space. Then, having motivated our selection, detailed specific definitions follow.

3.1. Generalizations of PCs to non-Euclidean spaces

In a Euclidean space, principal components can be equivalently defined by

minimizing the variance of the residuals or by maximizing the variance of the

projections. Also, PCs are nested in the following sense: given a distribution in

Rm, the s-dimensional linear subspace approximating the distribution best (by

minimizing sum of squared distances) is the linear space spanned by the first s
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principal components. We note that the mean, which is the zero-dimensional

subspace approximating best, can only be found by minimizing residuals.

In a non-Euclidean space, parametric submanifolds qualify naturally as can-

didates for principal components. For one-dimensional components, geodesics

come into mind. Higher dimensional components would then be sub-manifolds

spanned by geodesics, totally geodesic at a point, as proposed by Fletcher and

Joshi (2007) and computed in approximation: eigenspaces of the respective co-

variance matrix in the tangent space at the IM are mapped to geodesics and

submanifolds totally geodesic at the IM under the Riemann exponential.

Let us now inspect which building blocks of Euclidean PCA generalize to

non-Euclidean spaces in a numerically feasible manner.

Since the straight line minimizing residual variance (the sum of squared

distances) is uniquely determined in Euclidean geometry, save for special cases,

we expect in a non-Euclidean geometry, also “some” uniqueness of (generalized)

geodesics defined by minimizing residual variance. Nestedness of PCs based on

residuals, however, cannot be expected, as the IM will in general no longer come

to lie on a first (generalized) principal component geodesic, cf., Huckemann and

Ziezold (2006).

Alternatively, let us consider straight lines and geodesics, respectively, max-

imizing the sum of squared distances of projections to a variable offset. In Eu-

clidean geometry, save for special cases, such PCs and their offsets (the projection

of the mean) are uniquely determined only up to a common translation orthog-

onal to the respective PC. In a non-Euclidean geometry, save for special cases

due to curvature, we again expect uniqueness. In case of small curvature, how-

ever, we expect poor convergence properties for numerical algorithms. Indeed,

experiments with data on unit-spheres, using algorithms based on maximizing

projected variance derived along the lines of the algorithms developed below,

often feature slow or no convergence at all. Even worse, on manifolds or quo-

tients with recurrent geodesics (e.g., a great circle on a sphere or generalized

geodesics on Kendall’s shape spaces), the desired maximum is usually local and

not global. Algorithms, moreover, may converge to the global maximum attained

at an offset near the antipode of the mean. To overcome this difficulty, nested-

ness can be required again, cf., Fletcher and Joshi (2007). To our knowledge, it

is unknown whether geodesics obtained by maximizing projection variance are

nested in general. Numerical experiments on spheres hint to the contrary, that

the intrinsic mean does not lie on the geodesic maximizing projected variance. It

would be interesting to search for an explicit example asserting this phenomenon

analytically as well.

For these reasons, we consider the minimization of the residual variance to

be the natural approach for a non-Euclidean concept of PCA. We note that in
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the manifold case, our approach locally gives manifold PCs totally geodesic at

a point, even though we minimize residual variance w.r.t. each single spanning

GPC individually and not to the whole manifold PC. The higher-order (≥ 2)

manifold PCs are then nested again.

Since the concept of generalized geodesics for quotients extends naturally to

generalized sub-manifolds (one possible definition is in Appendix A), it would

be an interesting task to develop methods for non-nested residual higher-order

manifold PCA as well.

3.2. Geodesic PCA based on residuals

Throughout this section, let π : M → M/G =: Q be the canonical projection

of a complete Riemannian manifold M on which a Lie group G acts isometrically.

With the induced quasi-metric dQ(·, ·) = d(·, ·). on Q consider, if finite,

E
(
d(X, q)2

)
and (3.1)

E
(
d(X, δ)2

)
(3.2)

for q ∈ Q, a generalized geodesic δ ∈ Γ(Q), and a Q-valued random variable X.

For Kendall’s shape spaces, cf., Section 5, these quantities are finite; we assume

this in the following.

In applications, it is often desirable to assume that X is continuously dis-

tributed on Q with respect to the projection of Riemannian volume. If M is of

finite dimension m then from any non-vanishing m-form, a Riemannian volume

can be constructed. By definition, such a non-vanishing m-form exists if and only

if M is orientable. If M is non-orientable, a Riemannian volume can be defined

locally only. If possible then, in order to have continuity, one would assume that

the support of X is contained in the projection of a subset of M which supports

a non-vanishing m-form.

A point µI ∈ Q minimizing (3.1) is called an intrinsic mean (IM) of X with

total intrinsic variance

VintX := E
(
d(X,µI)

2
)
.

Due to positive sectional curvatures, the IM may not be uniquely determined.

E.g., this is the case for a uniform distribution on a sphere. For this reason,

Kendall shapes of two-dimensional triangles with i.i. standard multi-normally

distributed landmarks have no mean, cf., Dryden and Mardia (1998, p.126). In

general on manifolds, non-positive sectional curvature or sufficient concentration

ensure the uniqueness of the IM. In particular, on a positive sectional curvature

manifold M , if the support of a distribution of a random variable Y is contained
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in a geodesic ball Br(p) for some p ∈ M , and if B4r(p) is contained in a normal

neighborhood U on which positive sectional curvatures are bounded by κ > 0,

then the condition r < (π/(2κ)) ensures that Y has a unique IM, see Karcher

(1977) and Le (2001).

Now again, let us consider a random variable X on Q. In view of Theorem

2.7, one might be tempted to neglect the part of the distribution of X near the

singularity set Q \ Q∗, in applications. However, since sectional curvatures may

be unbounded when approaching the singularity set (Section 5.2), uniqueness of

intrinsic means on Q cannot be expected in general, not even for concentrated

distributions.

Definition 3.1. A generalized geodesic δ1 ∈ Γ(Q) minimizing (3.2) is called

a first generalized geodesic principal component (GPC) of X. A generalized

geodesic δ2 ∈ Γ(Q) that minimizes (3.2) over all generalized geodesics δ ∈ Γ(Q)

that have at least one point in common with δ1 and that are orthogonal to δ1 at

all points in common with δ1 is called a second GPC of X.

Every point µP that minimizes (3.1) over all common points q of δ1 and δ2 is

called a principal component mean (PM). Given a first and a second GPC δ1 and

δ2 with PM µP , a generalized geodesic δ3 is a third GPC if it minimizes (3.2) over

all generalized geodesics that meet δ1 and δ2 orthogonally at µP . Analogously,

GPCs of higher order are minimizing generalized geodesics through the PM,

passing orthogonally to all lower order GPCs.

One main feature of non-Euclidean geometry is the fact that in general, due

to curvature, the IM will differ from the PM, cf., Huckemann and Ziezold (2006)

for a detailed discussion.

Given a generalized geodesic δ of X, denote by X(δ) the orthogonal projection

of X onto δ. We call it the marginal or the geodesic score of X on δ. By virtue

of Theorem 2.6, geodesic scores are uniquely defined up to a null set on Q. A

minimizer µ
(δ)
I on δ of the function q 7→ E(d(X(δ), q)2) on the GPC δ will be

called an intrinsic mean of X on the generalized geodesic δ.

In order to define variance, recall that variance in Euclidean space can be

obtained equivalently by considering projections or by considering residuals each

of which, in non-Euclidean geometry, yield different results, however. Suppose

we are given GPCs δ1, δ2, . . . with PM µP . Let m ∈ N∪{∞} be the dimension of

M . Then, define the geodesic variance explained by the s-th GPC, 1 ≤ s ≤ m,

s < ∞, as obtained by projection

V
(s)
projX := E

(
d(X(δs), µP )2

)
, (3.3)
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with total variance

VprojX :=
m∑

s=1

V
(s)
projX,

if finite. In the finite-dimensional case m < ∞, we also have the geodesic variance

explained by the s-th GPC as obtained by residuals

V (s)
resX := E

(
1

m − 1

m∑

j=1

d(X, δj)
2 − d(X, δs)

2

)
,

with the respective total variance

VresX :=

m∑

s=1

V (s)
resX.

Mixing both approaches yields (again for any m ∈ N ∪ {∞}) the definition

of mixed geodesic variance

VmixX := E
(
d(X(δ1), µ(δ1)

p )2
)

+ E
(
d(X, δ1)

2
)

= E
(
d(X(δ1), µ(δ1)

p )2
)

+ E
(
d(X,X(δ1))2

)
.

Finally, for m < ∞,

CX :=
VprojX − VresX

Vint
(3.4)

can be taken for a measure of curvature present in X. In a Euclidean space we

have CX = 0. On a positive sectional curvature manifold (which tends to pull

geodesics together) we expect CX ≥ 0, whereas on a negative sectional curvature

manifold (which tends to push geodesics apart) we would have CX ≤ 0. For a

distribution that mainly follows a generalized geodesic we expect CX to be small

even with high absolute sectional curvatures of the surrounding space.

4. Finding Sample GPCs: Computational Issues

In this section an algorithmic method to compute sample GPCs on a quotient

Q = M/G is proposed. We assume that the manifold M of finite or infinite

dimension is implicitly defined by

M = {x ∈ H : φ(x) = 0},
TxM = {v ∈ H : dφ(x)v = 0}, x ∈ M,

for a suitable smooth function φ : H → Rn with dφ(x) : H → Rn having full rank

for all x ∈ M . Here H denotes a suitable Euclidean or Hilbert space of dimension

> n.
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In landmark-based shape analysis, for example, usually H is a finite-dimen-

sional matrix space, n = 1, and φ defines a unit-hypersphere, cf., Section 5.1. For

the shape space of closed planar curves of Klassen et al. (2004) using direction

functions θ, H is the space of Fourier series, n = 3, and

φ(θ) =

(∫ 2π

0
cos θ(s)ds,

∫ 2π

0
sin θ(s)ds,

∫ 2π

0
θ(s)ds

)

defines a subspace of codimension 3. Here, M itself contains only shape informa-

tion, the action of G = SO(2) on M allows for different choices of initial points.

In view of landmark-based shape analysis, this corresponds to additionally fil-

ter out cyclic relabelling of landmarks on each curve separately. For numerical

feasibility, only finitely many Fourier coefficients are used.

In general, we assume that only a finite-dimensional subspace H = Rd is

considered and that φ : Rd → Rd−m, d > m, yields an m-dimensional manifold

M .

Further, let G be a Lie group of finite dimension l acting isometrically on

M . We assume that a similar representation is possible as well:

G = {g ∈ Rf : χ(g) = 0},

for a suitable smooth function χ : Rf → Rf−l, f − l > 0, and dχ of full rank on

G. In all applications, G will be a compact transformation group.

In shape analysis, H is usually the configuration space (e.g., centered config-

urations) and M the pre-shape space. The function φ is responsible for removing

size information. Sometimes, as noted above in Klassen et al. (2004), the config-

uration space and more aspects of shape invariance are also defined implicitly.

In our setup M is closed and thus complete. Therefore, cf., Section 2.1,

maximal geodesics t 7→ γ(t) are defined for all t ∈ R. Denote by 〈·, ·〉 the

Riemannian metric on TxM which is, in the case of an isometric embedding, the

standard Euclidean inner product. By γx,v denote the unique geodesic on M

determined by γx,v(0) = x, γ̇x,v(0) = v. Here (x, v) is an element of the tangent

bundle TM := ∪x∈M{x} × TxM .

Furthermore, suppose that N data points x1, . . . , xN ∈ M are given that

project to [x1], . . . , [xN ] ∈ Q = M/G. With the knowledge of the preceeding sec-

tions, finding generalized geodesics on M/G that minimize the squared distances

to [x1], . . . , [xN ] as in (3.2) is equivalent to finding horizontal geodesics on M

that minimize squared distances to optimally positioned data points.

Thus, we have to develop two separate sets of algorithms: the first puts

points into optimal position to points and horizontal geodesics; the second com-

putes minimizing horizontal geodesics. Therefore, our goal is the minimization

of an objective function under certain constraints. In this section we derive the
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corresponding Lagrange equations from which fixed point equations can be ob-

tained. Algorithms for concrete situations can be naturally derived from the

latter, as illustrated in Section 5.

4.1. Optimally positioning

Optimally Positioning with Respect to a Point. In order to bring x ∈ M

into optimal position g∗x to a given data point y ∈ M , we have to find

g∗ = argming∈GdM (gx, y)2.

Letting H : G → [0,∞) : g → d(gx, y)2, we have hence to

find g∗ ∈ Rf such that

H(g∗) = inf{H(g) : g ∈ Rf with χ(g) = 0}. (4.1)

A standard method to solve this non-linear extremal problem under constraints

consists in employing Lagrange multipliers. Every solution g ∈ Rf of (4.1) also

solves

dH + λT dχ = 0

for suitable λ ∈ Rf−l. In some cases, such as for Kendall’s similarity shape

spaces, (4.1) can be solved explicitly, cf., Section 5.3.

Optimally Positioning with Respect to a Geodesic. Here we are given a

data point x ∈ M and a geodesic γ on M . In order to find g∗ ∈ G placing g∗x

into optimal position to γ, minimize the objective function

H1(g) := dM (gx, γ)2

for g ∈ Rf under the constraint χ(g) = 0. This will again be achieved using the

method of Lagrange multipliers by solving

dH1 + λT dχ = 0

for g ∈ Rf and λ ∈ Rf−l. Alternatively, by solving (4.1), a two-stage minimiza-

tion is possible: for every t find

g(t) := argming∈GdM (gx, γ(t))2;

minimize

H2(t) := dM

(
g(t)x, γ(t)

)

over t in a suitable interval such that the geodesic t → γ(t) is traversed once.
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4.2. The vertical space at a given offset

In order to determine all horizontal geodesics it is necessary to find all hor-

izontal directions at a given offset, i.e., all directions that are orthogonal to

the vertical subspace there. To this end, we explicitly determine an orthogonal

base for the vertical space Tx[x] at a given point x ∈ M . Recall the homomor-

phism αx : g → Tx[x] from Section 2.2, suppose that lx = dim(G/Ix), and that

e1, . . . , el is an arbitrary but fixed base for g. In general, even in case of a free ac-

tion, the image of an orthogonal base in g will no longer be orthogonal for Tx[x].

Hence determine an independent system w1 := α−1
x (v1), . . . , wlx := α−1

x (vlx) in

g where v1, . . . , vlx are obtained from αx(e1), . . . , αx(elx) by a Gram-Schmidt

ortho-normalization:

v1 :=
αx(ek1

)

‖αx(ek1
)‖ , where k1 is the smallest index s.t. αx(ek1) 6=0

...

vlx :=
αx(eklx

)−
Plx−1

j=1 〈αx(eklx
),vj〉vj

‖αx(eklx
)−

Plx−1
j=1 〈αx(eklx

),vj〉vj‖
where klx is the smallest index s.t. αx(eklx

) 6∈
span{v1, . . . , vlx−1}

The result will be denoted by the homomorphism βx : g → Tx[x] defined by

βx(ekj
) = vj = αx(wj) j = 1, . . . , lx. (4.2)

Furthermore, define the mapping ψ : TM = ∪x∈M{x} × TxM → Rlx by

ψ(x, v) :=




〈βx(ek1), v〉
...

〈βx(eklx
), v〉


 . (4.3)

Then we have that a geodesic γx,v is horizontal if and only if ψ(x, v) = 0.

4.3. Minimizing horizontal geodesics

We derive three different types of Lagrange equations, one for the first, one

for the second, and one for all subsequent geodesics. In passing, we also give an

equation for the intrinsic mean not involving the Riemann exponential function,

as opposed to the algorithm of Le (2001). In order to compute the variance by

projection (3.3) we also compute the intrinsic mean on a geodesic.

First Sample GPC. Define the objective function by parameterizing (3.2) with

F (x, v) :=

N∑

i=1

dM/G(π ◦ γx,v, [pi])
2 =

N∑

i=1

dM (γx,v, g
∗
i pi)
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for suitable g∗i ∈ G, i = 1, . . . , N , placing pi into optimal position w. r. t. γx,v.

Every unit speed horizontal geodesic γx,v on M is uniquely determined by

an offset x ∈ M , an initial direction v ∈ TxM of unit length, i.e., 〈v, v〉 = 1, and

the horizontality condition ψ(x, v) = 0. Hence, define the constraining function

Φ1 : Rd × Rd → R2d−2m+lx+1

(x, v) 7→




φ(x)

dφ(x)v

〈v, v〉 − 1

ψ(x, v)




. (4.4)

Finding a first GPC on M/G is thus equivalent to solving the extremal problem

find (x∗, v∗) ∈ Rd × Rd such that

F (x∗, v∗) = inf{F (x, v) : x, v ∈ Rd with Φ1(x, v) = 0}.

Again, employ a Lagrange multiplier λ ∈ R2d−2m+lx+1 and obtain from

dF + λT dΦ1 = 0 (4.5)

two fixed point equations which naturally yield an algorithm to determine the

solution (x∗, v∗), cf., Section 5.4.

Second Sample GPC and Sample PM. Given a horizontal lift t 7→ γx,v(t) of

a first GPC, a suitable horizontal lift of a second GPC must pass through a point

y = γx,v(τ) with an initial direction w ∈ HyM orthogonal to γ̇x,v(τ). Hence, with

Φ2 : R × Rd → Rd−m+lx+2

(τ, w) 7→




dφ
(
γx,v(τ)

)
w

〈γ̇x,v(τ), w〉
〈w,w〉 − 1

ψ(γx,v(τ), w)




and F2(τ, w) := F (γx,v(τ), w), finding a second GPC is equivalent to solving the

extremal problem

find (τ̂ , ŵ) ∈ R × Rd such that

F2(τ̂ , ŵ) = inf{F2(τ, w) : τ ∈ R, w ∈ Rd with Φ2(τ, w) = 0}.

This will again be achieved by the method of Lagrange multipliers by solving

dF2 + λT dΦ2 = 0 (4.6)
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for τ ∈ R, w ∈ Rd, and λ ∈ Rd−m+lx+2. For convenience, having found τ̂ and ŵ,
let v2 := ŵ and rewrite γx,v as γx̂,v1 where x̂ := γx,v(τ̂) and v1 := γ̇x,v(τ̂). Note
that [x̂] is a sample PM on Q.

Higher Order Sample GPCs. All GPCs on Q of order r, 3 ≤ r ≤ m, pass
through the sample PM [x̂] ∈ Q, i.e., each is determined only by a horizontal
initial direction vr ∈ Rd at offset x̂. In particular, vr is perpendicular to the
horizontal lifts of all lower order GPCs at x̂.

Suppose now that we have already found suitable r − 1 ≥ 2 horizontal lifts
γx̂,v1 , . . . , γx̂,vr−1 through x̂ of GPCs on Q. Then, defining

Φr : Rd → Rd−m+lx+r

v 7→




dφ(x̂)v

〈v, v1〉
...

〈v, vr−1〉
〈v, v〉 − 1

ψ(x̂, v)




and F3(v) := F (x̂, v), finding a suitable horizontal lift of a j-th GPC is equivalent
to solving the extremal problem

find vr ∈ Rd such that

F3(vr) = inf{F3(v) : v ∈ Rd with Φr(v) = 0}.
As before, this leads to the task of solving the equation

dF3 + λT dΦr = 0 (4.7)

for v ∈ Rd and λ ∈ Rd−m+lx+r.

Sample IM. In a similar fashion, a representative x of an IM can be found. For
this purpose consider

T (x) :=

N∑

i=1

dQ([x], [pi])
2 =

N∑

i=1

dM (x, h∗
i pi)

2

with suitable h∗
i ∈ G for i = 1, . . . , n, putting h∗

i pi into optimal position to x.
Then, finding a representative of an IM is equivalent to solving the extremal
problem

find x ∈ Rd such that

T (x) = inf{T (x) : x ∈ Rd with φ(x) = 0}.
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The method of Lagrange multipliers yields

dT + λT dφ = 0

for x ∈ Rd and λ ∈ Rd−m.

Sample IM on a GPC. Here, given a horizontal lift t 7→ γ(t) := γx,v(t) of a

GPC π◦γ on Q, we want to find a representative xγ = γ(t) of a point [xγ ] on π◦γ

best approximating the orthogonal projections [qi] of the data points [pi] onto

π ◦ γ (i = 1, . . . , N). Bringing pi into optimal position g∗i pi with respect to γx,v,

observe that the orthogonal projections q∗i of g∗i pi onto γx,v are representatives

of [qi], i = 1, . . . , N . Their intrinsic mean xγ on γx,v is obviously a representative

for the intrinsic mean of [qi] (i = 1, . . . , N) on [γ]. This leads to an unconstrained

extremal problem for

T1(t) :=

N∑

i=1

dM (γx,v(t), q
∗
i )

2

in one variable t ∈ R.

5. Application: Kendall’s Shape Spaces

We will now illustrate the generic method developed by explicitly determin-

ing functions H, H1, etc., and suitable χ, φ and ψ for Kendall’s shape spaces;

those are defined in the beginning. Then we apply the method of PCA based on

generalized geodesics and give explicit algorithms.

5.1. Kendall’s shape space

Kendall’s shape spaces are spheres in a matrix space modulo similarity trans-

formations; in some ways they are generalizations of complex projective spaces.

Denote by

M(m, k) all real matrices having m rows and k columns with the Euclidean struc-

ture of Rmk, i.e., the inner product 〈a, b〉 := tr(abT ), ‖a‖ :=
√

〈a, a〉,
gl(m) := M(m,m), the Lie algebra of the general linear group GL(m); the

Lie exponential is then simply the matrix exponential Exp(A) = eA for

A ∈ gl(m),

O(m) the orthogonal group in GL(m),

o(m) the Lie algebra of O(m), i.e., the skew symmetric matrices in gl(m),

SM(m) the orthogonal complement of o(m), i.e., the symmetric matrices in

gl(m),

SO(m) := Exp(o(m)), the special orthogonal group in GL(m) of dimension

(m(m − 1))/2,



24 STEPHAN HUCKEMANN, THOMAS HOTZ AND AXEL MUNK

im := diag(1, . . . , 1) ∈ SO(m), the identity matrix (the unit element).

Labelled landmark-based shape analysis is based on configurations consisting of

k ≥ m + 1 labelled vertices in Rm called landmarks that do not all coincide. A

configuration is thus a matrix with k columns, each an m-dimensional landmark

vector. Disregarding center and size, these configurations are mapped to the

pre-shape space sphere

Sk
m :=

{
x ∈ M(m, k − 1) : ‖x‖ = 1

}
.

This can be done by, say, multiplying by a sub-Helmert matrix, cf., Dryden and

Mardia (1998) for a detailed discussion of this and other normalization methods.

The pre-shape sphere will be equipped with the natural spherical Riemannian

metric, i.e., TxSk
m is identified with the Euclidean space {v ∈ M(m, k − 1) :

〈x, v〉 = 0}.
In order to filter out rotation information, define on Sk

m a smooth action of

SO(m) by the usual matrix multiplication Sk
m

g→ Sk
m : x 7→ gx for g ∈ SO(m).

The orbit [x] = {gx : g ∈ SO(m)} is the shape of x ∈ Sk
m. The quotient

π : Sk
m → Σk

m := Sk
m/SO(m)

is called Kendall’s similarity shape space. Since SO(m) is compact, this is a Haus-

dorff space, cf., Section 2.2. Horizontal and vertical subspace can be explicitly

determined: v ∈ HxSk
m if and only if tr(vxT hT ) = 0 ∀ h ∈ o(m), i.e.,

v ∈ Hx ⇔ vxT ∈ SM(m),

cf., Kendall et al. (1999, p.109). The complete situation is given by

gl(m) = o(m) ⊕ SM(m)

↓ ·x ↑ ·xT

TxSk
m ⊕ NxSk

m = Tx[x] ⊕
︷ ︸︸ ︷
HxSk

m ⊕ NxSk
m .

(5.1)

Here, NxSk
m := {λx : λ ∈ R} is the normal space of the pre-shape sphere. The

first map is surjective, and for rank(x) ≥ m− 1, i.e., Ix = {im}, the second map

is also surjective.

Note that the differential mapping of tangent spaces dg : TsS
k
m → TgsS

k
m is

given by

dgv = gv, v ∈ TxM, g ∈ SO(m). (5.2)

Unit speed geodesics on the pre-shape sphere are precisely the great circles

γx,v(t) := x cos t + v sin t (5.3)
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through an offset x = γx,v(0) ∈ Sk
m with initial velocity v = γ̇x,v(0) ∈ Sk

m,

〈x, v〉 = 0. For any p, q ∈ Sk
m, the spherical distance is given by

0 ≤ dSm
k

(p, q) = 2 · arcsin

(√
〈p − q, p − q〉

2

)

= arccos〈p, q〉 = arccos
(

tr(pqT )
)
≤ π.

The distance of a point p ∈ Sk
m to the great circle γx,v is given by

0 ≤ d(p, γx,v) = arccos
√

〈p, x〉2 + 〈p, v〉2 ≤ π

2
, (5.4)

and the orthogonal projection of p onto γx,v by

〈x, p〉x + 〈v, p〉v√
〈x, p〉2 + 〈v, p〉2

.

Let us now return to the action of SO(m) on Sm
k , cf., Kendall et al. (1999) for a

detailed discussion.

In case of m = 1 the action is trivial, i.e., Σk
1
∼= Sk

1 .

In case of m = 2 the action of SO(m) on Sk
2 is just the scalar action of SO(2) ∼=

S1 ⊂ C on the (2k − 3) - dimensional pre-shape sphere naturally embedded in

complex vector space

Sk
2
∼= S2k−3 ⊂ Ck−1.

The quotient map is then the well known Hopf fibration, leading to complex

projective space of dimension k − 2:

Σk
2
∼= S2k−3/S1 = PCk−2.

In case of m ≥ 3 a pre-shape s ∈ Sk
m with 0 < rank(s) = r < m − 1 will be

invariant under some rotation group, a non-trivial isotropy group of dimension

r − m − 1. For this reason, cf., Section 2.2, the shape spaces Σk
m (m ≥ 3) have

no natural manifold structure.

Rotating a pre-shape p′ ∈ Sk
m into optimal position to a given pre-shape

p ∈ Sk
m can be accomplished via pseudo singular value decomposition

p′pT = uµvT

where u, v ∈ SO(m) and µ = diag(µ1, . . . , µn) with µ1 ≥ . . . µm−1 ≥ |µm| ≥ 0.

Then

g∗ := vuT

puts p′ into optimal position g∗p′ to p (e.g., Kendall et al. (1999, p.114)). We

note that the rotation g∗, and thus g∗p′, is uniquely determined up to a set of
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measure zero. More precisely: only in case of p′, p regular and µn+1 + µn > 0 is

the rotation g∗ uniquely determined (cf., Kendall et al. (1999, p.121)).

5.2. The generalized geodesics of Kendall’s shape spaces

Recall Theorem 2.7 to note that SO(m) acts freely on the open regular pre-

shape sphere

S∗k
m :=

{
x ∈ Sk

m : rank(x) ≥ m − 1
}

,

which is open and dense in Sk
m, making the projection to regular shape space

S∗k
m → Σ∗k

m := S∗k
m/SO(m) ⊂ Σk

m

a Riemannian submersion. Generalized geodesics in shape space restricted to

regular shape space are geodesics in the usual sense. In shape space, a generalized

geodesic through a regular shape [x] ∈ Σ∗k
m is either a single geodesic in Σ∗k

m,

or the union of geodesics in Σ∗k
m and isolated singular shapes in Σk

m \ Σ∗k
m (cf.,

Lemma A.2. in the Appendix). For planar shape spaces Σk
2, the fibers of Sk

2 are

spanned by single vertical geodesics. In general this is not the case.

Example 5.1. For 3 ≤ m < k, a geodesic may be vertical only at an isolated

point. Consider

x =
1√
m

(im|0), v =
1√
2
(w|0) ∈ Sk

m with w =




0 − 1

1 0
0

0 0


 ∈ o(m),

and the geodesic t 7→ γx,v(t) = x cos t+v sin t. By (5.1), this is vertical if and only

if ∃wt ∈ o(m) with v cos t−x sin t = wt(x cos t+v sin t). w0 = w yields verticality

at t = 0. For 0 < t < π however, verticality would imply −
√

2im =
√

mwtw, and

this is impossible.

As [x] ∈ Σ∗k
m tends to [y] ∈ Σk

m \ Σ∗k
m, some sectional curvatures at [x]

tend to infinity, see Kendall et al. (1999, pp.149-156). We give a new, short, and

constructive proof for this fact.

Theorem 5.2. In shape space Σk
m, k > m > 2, every singular shape can be

approached from regular shape space Σ∗k
m by a generalized geodesic along which

some sectional curvatures are unbounded.

Proof. In the situation of a Riemannian submersion S∗k
m → Σ∗k

m we have

O’Neill’s formula (Lang (1999, p.393)) for the respective curvatures and, in par-

ticular, in case of sectional curvatures at [x] ∈ Σ∗k
m of any two orthonormal vector
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fields X,Y ∈ T (Σ∗k
m),

curvΣ∗(X,Y )[x] = curvS∗(X̃, Ỹ )x +
3

4

∑

1≤r<l≤m

〈
Vrl, [X̃, Ỹ ]

〉2

x

= 1 +
3

4

∑

1≤r<l≤m

〈
Vrl, [X̃, Ỹ ]

〉2

x
. (5.5)

Here X̃ and Ỹ denote the horizontal lifts as in Section 2.2, [·, ·] denotes the

Lie bracket and the Vrl (1 ≤ r < l ≤ m) constitute a base system for T ([x])

orthonormal at x. For any vector fields V , G, H we have the well-known (Lang

(1999, pp. 126-127))

〈V, [G,H]〉 = ω[G, H]

= G〈V,H〉 − H〈V,G〉 − 2dω(G, H),

where ω is the one-form dual (w.r.t. the Riemannian structure) to V , and dω

denotes its exterior derivative. The above reduces to

〈V, [G, H]〉 = −2dω(G, H)

if V is vertical and G, H are horizontal. In view of (5.5), in order to prove the

theorem it suffices thus to provide on S∗m
k for

(a) a horizontal geodesic x(t) = p cos t + v sin t, x(t) ∈ S∗m
k for 0 < t < π,

p ∈ Sm
k \ S∗m

k , and

(b) unit length vector fields V , G, H such that V is vertical and G, H are

horizontal along x(t) such that

(c) limt→0 dω(G,H) → ∞ for the dual ω of V .

In fact it suffices to give an example for Σ∗4
3, as this can be embedded isometrically

in all higher dimensional shape spaces, cf., Kendall et al. (1999, p.29). For any

singular shape [p] ∈ Σ4
3 \ Σ∗4

3 all landmarks are on a single line segment, hence

we pick w.l.o.g. a pre-shape representative of the form

p =




0 0 0

0 0 0

α β γ


 ,

with 0 6= γ, α2 + β2 + γ2 = 1. In the following, in order to verify the respective

properties “horizontal” and “vertical” we make repeated use of the decomposition
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(5.1). First note that

v =
1√

α2 + γ2




γ 0 − α

0 0 0

0 0 0




is a unit length horizontal vector at p, hence x(t) = p cos t + v sin t satisfies the

requirement (a). Requirement (b) is met by the unit length vertical field

V =
1√∑k−1

j=1(x2
1j + x2

2j)

k−1∑

r=1

(x1r∂2r − x2r∂1r)

and the two constant vector fields

G = a∂11+∂12+b∂13, H = a∂21+∂22+b∂23, a = − βα

α2 + γ2
, b = − βγ

α2 + γ2
,

horizontal along x(t). In order to verify (c), consider the exterior derivative of

the dual to V :

dω = −
∑k−1

j=1(x1jd
1j + x2jd

2j)
√∑k−1

j=1(x2
1j + x2

2j)
3 ∧

k−1∑

r=1

(x1rd
2r − x2rd

1r) +
2

∑k−1
r=1(d1r ∧ d2r)√∑k−1
j=1(x2

1j + x2
2j)

.

Along x(t) we have

dω =
1

(α2 + γ2)3/2 sin t

(
(2α2 + γ2)d11 ∧ d21 + αγ(d11 ∧ d23 + d13 ∧ d21)

+2(α2 + γ2)d12 ∧ d22 + (2γ2 + α2)d13 ∧ d23
)
,

yielding, as required,

dω(G, H) =
1

(α2 + γ2)3/2 sin t
→ ∞.

We note that V as introduced above is, in case of dimension m = 2, the only

(up to the sign) vertical unit length vector field. The exterior derivative of its

dual is then simply

dω = 2

k−1∑

j=1

d1j ∧ d2j ,

and hence 0 ≤ |dω(G,H)| ≤ 1 for any unit length horizontal fields G, H. Then

(5.5) yields the sectional curvature of the complex projective spaces: Σk
2 has for
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k = 3 constant sectional curvature 4, whereas for k ≥ 4, the sectional curvatures

assume all values between 1 and 4. Observe that only the complex curvature of

Σk
2 is constantly 4 also for k ≥ 4.

In order to determine the space of (generalized) geodesics Γ(Σk
m), introduce

for any m, k ∈ N, k > m,

O2(m, k) := {(e1, e2) ∈ M(m, k) × M(m, k) : 〈ei, ej〉 = δij , 1 ≤ i, j ≤ 2}, an

orthonormal Stiefel manifold of dimension 2mk − 3,

OH
2 (m, k) := {(e1, e2) ∈ O2(m, k) : e2e

T
1 ∈ SM(m)} a sub-manifold of dimen-

sion [2mk − 3 − (m(m − 1))/2].

We thus have surjective mappings O2(m, k − 1) → Γ(Sk
m), OH

2 (m, k − 1) →
ΓH(Sk

m) : (x, v) 7→ γx,v. Under the action of O(2) from the right, given by

(e1, e2)

(
a − b

εb εa

)
= (ae1 + εbe2,−be1 + εae2), a2 + b2 = 1 = ε2,

pairs defining the same great circle are mapped onto each other. This action is

free on both O2(m, k − 1) and OH
2 (m, k − 1), hence we can identify Γ(Sk

m) with

the Grassmannian G2(m, k − 1) := O2(m, k − 1)/O(2), and ΓH(Sk
m) with the

sub-manifold

GH(m, k − 1) := OH
2 (m, k − 1)/O(2)

of dimension 2m(k − 1) − 4 − m(m − 1)/2. On OH
2 (m, k − 1) there is also a free

action of SO(m) from the left, defined component-wise,

g(e1, e2) = (ge1, ge2),

that commutes with the right action of O(2). (5.2) and (5.3) imply that if

(x, v) ∈ OH
2 (m, k − 1) determines a horizontal geodesic γx,v on Sk

m projecting

to a generalized geodesic δ on Σk
m, then the horizontal geodesic determined by

(gz, gv) ∈ OH
2 (m, k − 1) for given g ∈ SO(m) projects to the same δ. For even

dimensions m, {id,−id} is contained in every isotropy group on GH(m, k − 1).

Choosing suitably a regular pre-shape e1 and a singular pre-shape e2, we see that

on GH(m, k − 1) we have an effective action, of SO(m)/{id,−id} for m even,

and of SO(m) for m odd, respectively. Furthermore, the action is free for m = 2.

Hence by Sections 2.2 and 2.4, we have the following.

Theorem 5.3. The space of all (generalized) geodesics on Kendall’s shape space

Σk
m can be given the structure of the canonical quotient

Γ(Σk
m) ∼= GH

2 (m, k − 1)/SO(m),

with manifold part of dimension 2m(k − 1) − 4 − m(m − 1). For m = 2, Γ(Σk
2)

is a manifold.
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We now turn to the properties of (generalized) geodesics described in Section

2.5. Not all the pathological cases may occur on Kendall’s shape spaces.

Theorem 5.4. The following hold:

(a) for m < k, all (generalized) geodesics on Kendall’s shape spaces Σk
m are

recurrent;

(b) any generalized geodesic t → δ(t) on Σk
m, 2 < m < k, with horizontal lift of

the form γ : t → x cos t + v sin t with x ∈ Sk
m \ S∗k

m, v ∈ S∗k
m, and δ(t) =

[γ(t)] 6= [γ(−t)] = δ(−t), is not everywhere-minimizing in any neighborhood

of [x];

(c) on Kendall’s planar shape spaces Σk
2 (k ≥ 3), all geodesics are everywhere-

minimizing as well as non-oscillating.

Proof. The first assertion (a) is a consequence of the fact that (generalized)

geodesics on Σk
m are projections of horizontal great circles which are recurrent

on the pre-shape sphere, cf., Remark 2.8.

For the second assertion (b), consider y = x cos t+ v sin t and z = x cos t− v sin t,

[y] 6= [z], for t 6= 0 arbitrary small. Then it suffices to show that z is not in

optimal position w.r.t. y, since then dΣk
m

([y], [z]) < 2t and δ is not everywhere-

minimizing. W.l.o.g. we may assume that

x =




αT
1

...

αT
m


 , v =




βT
1

...

βT
m


 ,

with αi 6= 0 and αT
i βj = αT

j βi for 1 ≤ i, j ≤ r ≤ m−2, αi = 0 for i = r+1, . . . ,m,

and with β1, . . . , βm−1 non-vanishing. Then yzT is symmetric with diagonal

vector 


‖α1‖2 cos2 t − ‖β1‖2 sin2 t

...

‖αr‖2 cos2 t − ‖βr‖2 sin2 t

−‖βr+1‖2 sin2 t

...

−‖βm‖2 sin2 t




.

By hypothesis, for all 0 < |t| < π, at least one of the entries is negative, hence y

and z cannot be in optimal position w.r.t. one another.
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To prove assertion (c), let t 7→ γ(t) = x cos t + v sin t be a horizontal great

circle on the pre-shape sphere Sk
2 ∋ x, v. In order to see that [γ] is everywhere-

minimizing, it suffices to show that dΣk
2
([x], [p]) = t for p = xc + vs, c = cos t,

s = sin t, and t ∈ (0, π/2). With the notation of Huckemann and Hotz (2009),

the fiber [x] of x is given by the points αx + βix ∈ Sk
2 , α2 + β2 = 1 (ix denotes

a distinct unit vector spanning the vertical space at x). Then,

dΣk
2
([x], [p]) = min

α2+β2=1
dSk

2
(αx + βix, cx + sv) = min

α2+β2=1
arccos(αc) = t.

From this, and the fact that [γx,v(t)] = [−γx,v(t)] = [γx,v(t+π)], we infer at once

that [γ] is of length π.

To see that the projection of γ to Σk
2 is non-oscillating consider, for arbitrary

p ∈ Sk
2 ,

(
cos

(
dΣk

2
([p], [γ(t)])

))2

= max
α2+β2=1

(
cos

(
dSk

2
(αp + βip, x cos t + v sin t)

))2

= max
α2+β2=1

(
α
(
〈x, p〉 cos t + 〈v, p〉 sin t

)
+ β

(
〈x, ip〉 cos t + 〈v, ip〉 sin t

))2

=
(
〈x, p〉 cos t + 〈v, p〉 sin t

)2
+

(
〈x, ip〉 cos t + 〈v, ip〉 sin t

)2
,

which is either constantly zero or a π-periodic function.

Remark 5.5. Numerical examples (cf., also Section 6.2) for 3 ≤ m < k show

that generalized geodesics on Σk
m are usually oscillating and not-everywhere min-

imizing.

As a consequence of Theorem 5.4, intrinsic means feature some similarities

to intrinsic means on a cone.

Corollary 5.6. The intrinsic sample mean µ̂I of two non-degenerate shapes [y]

and [z], with sufficiently close mirrored locations to a degenerate shape [x], is

closer to [x] but unequal to [x]:

0 < dΣk
m

(µ̂I , [x]) < dΣk
m

([z], [x]) = dΣk
m

([y], [x]).

Proof. W.l.o.g we use the notation of y and z as in the proof of (b) in Theorem
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5.4. Then for 0 < t = dΣk
m

([z], [x]) = dΣk
m

([y], [x]) sufficiently small,

gz =




αT
1 cos t − βT

1 sin t

...

γT
r cos t − βr sin t

βT
r+1 sin t

...

βT
m−1 sin t

ǫβT
m sin t




with ǫ = (−1)m−r−1, is z brought into optimal position w.r.t. y. Since, for two
configurations only, the extrinsic sample mean coincides with the intrinsic sample
mean, a pre-shape w ∈ µ̂I is given by

y + gz

‖y + gz‖ =
1√

cos2 t + β2 sin2 t




αT
1 cos t

...

γT
r cos t

βT
r+1 sin t

...

βT
m−1 sin t

1+ǫ
2 βT

m sin t




with indeed

0 < dΣk
m

(µ̂I , [x]) = arccos
cos t√

cos2 t + β2 sin2 t
< t,

where, by hypothesis,

0 < β2 := ‖βr+1‖2 + · · · + ‖βm−1‖2 +
1 + ǫ

2
‖βm‖2 < 1.

5.3. Optimally positioning w.r.t. horizontal great circles

The maximal shape distance of any two shapes [p], [p′] ∈ Σk
m is given by π/2.

Incidentally this is also the maximal possible distance of a shape to a generalized
geodesic as the example

p =

(
1 0 0

0 0 0

)
, x =

(
0 1 0

0 0 0

)
, v =

(
0 0 1

0 0 0

)
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teaches: dΣ4
2
([p], [γx,v(t)]) = π/2 is constant.

Now, given a pre-shape p ∈ Sk
m and a unit speed horizontal geodesic γx,v

on Sk
m, we adapt the methods of Section 4.1 to obtain g∗ ∈ SO(m) putting g∗p

into optimal position to γx,v. According to (5.4), the objective function to be
minimized is given by

H1(g) = arccos

√(
tr(gpxT )

)2
+

(
tr(gpvT )

)2
.

Equivalently, the simpler

H̃1(g) :=
(

tr(gpxT )
)2

+
(

tr(gpvT )
)2

will be maximized. For odd dimensions m we may equivalently maximize over
O(m), since H̃1(g) = H̃1(−g) and for g ∈ O(m) either g or −g ∈ SO(m).
Alternatively, with g(t) in optimal position to γx,v(t),

H̃2(t) := tr
(
g(t)pxT

)
cos(t) + tr

(
g(t)pvT

)
sin(t)

can be maximized over [0, 2π) for odd m, and over [0, π) for even m. Since

H̃2(t) ≤
(

cos dS(g(t)p, γx,v(t))
)2

= H̃1

(
g(t)

)
,

we obtain at once that if g∗p is in optimal position to γx,v then it is also in
optimal position to its orthogonal projection onto the geodesic.

Theorem 5.7. Given p ∈ Sk
m and a horizontal geodesic γx,v on Sk

m, let g∗ =
g(t∗) ∈ SO(m) put p in optimal position g∗p to γx,v, as well as in optimal position
to γx,v(t

∗) for some t∗ ∈ [0, 2π). Then

tan(t∗) =
tr(g∗pvT )

tr(g∗pxT )
.

The corresponding algorithm alternates between orthogonal projection and
pairwise optimally positioning.

Basic algorithm to put p into optimal position to a horizontal great
circle γx,v:

Starting with a suitable t(0) compute, for n ≥ 0,

g(n+1) := uvT ,

where u and v are from a pseudo singular value decomposition of
pγx,v(t

(n))T = uµvT , and update

t(n+1) := arctan
tr(g(n+1)pvT )

tr(g(n+1)pxT )
.
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In general H̃2 has several local maxima that can be accessed by choosing different

suitable starting values t(0). As correct optimal positioning is crucial to the

validity of the algorithms for computing GPCs, diligent care has to be taken to

obtain a global maximum.

In order to jump out of local maxima we propose to add another optimization

step to the algorithm.

Diagonal-optimization algorithm to put p into optimal position to a

horizontal great circle γx,v:

Starting with a suitable t(0) compute, for n ≥ 0,

g(n+1) := uǫ∗vT

where, as before, u and v are from a pseudo singular value decompo-

sition of pγx,v(t
(n)) = uµvT and

ǫ∗ ∈ Em =
{

ǫ = diag(ǫ1, . . . , ǫm) : det(ǫ) = 1, ǫj ∈ {−1, 1}

(j = 1, . . . ,m)
}

is chosen to minimize dS(uǫvT p, γx,v). Then set

t(n+1) := arctan
tr(g(n+1)pvT )

tr(g(n+1)pxT )
.

Note that there are four elements in E3 and, in general,
∑

0≤j<m/2

(
m
2j

)
elements

in Em.

Numerical experiments show that the diagonal-optimization algorithm con-

verges to the global maximum in the majority of cases. Further research is

necessary to develop a faster and more reliable method.

5.4. Algorithms for GPCA and means for Kendall’s shape spaces

In this section we compute sample GPCs and sample means algorithmically

from a data sample. For brevity we omit the prefix “sample” in the following.

Throughout this section suppose we have N m-dimensional configurations,

each with k landmarks. We map these to the pre-shapes p1, . . . , pN ∈ Sk
m. For

most experimental situations we may assume with probability 1 that the isotropy

groups in question are trivial, i.e., Ix = {im} at pre-shapes x where iterations

are performed, cf., Theorem 2.7. Hence, the dimension of the fiber is maximal:

lx = l. In the general case of varying lx, the dimension of the vertical space will

have to be computed anew for every iteration step.
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Picking an arbitrary but fixed base e1, . . . , el, l = (m(m−1))/2, for o(m) note

that αx(v) = vx for the mapping defined in Section 2.2 Defining βx as in (4.2),

obtain a base w1 := w1(x), . . . , wl := wl(x) for o(m) mapping to an orthogonal

base w1x, . . . , wlx for the vertical space Tx[x]. With these, define the function ψ

as in (4.3). For every offset x = x0 the base w1, . . . , wl will be computed anew.

When taking derivatives with respect to x at an offset x0 we assume w1, . . . , wl

to be constant (still being a base in an open neighborhood of x0) and mapping

to an orthogonal base at offset x0.

The First GPC. Recall (5.4) to observe that the objective function from (4.5)

is given by

F (x, v) :=

N∑

j=1

dSk
m

(qj , γ(x,v)) =

N∑

j=1

arccos2
√

〈x, qj〉2 + 〈v, qj〉2

for x, v ∈ M(m, k − 1), where qj ∈ [pj ] are in optimal position to γx,v. The

constraining function (4.4) can be taken as

Φ1(x, v) =




〈x, x〉 − 1

2〈x, v〉
〈v, v〉 − 1

2〈w1x, v〉
...

2〈wlx, v〉




.

Abbreviate ζj :=
√

〈x, qj〉2 + 〈v, qj〉2, ξj := (arccos ζj)/(ζj

√
1 − ζ2

j ), and let ξ :=

1 for ζ = 1. We assume that the optimally positioned data qj do not have the

maximal distance π/2 to γx,v, which means that ζi 6= 0. Computing (4.5) we

have, with a Lagrange multiplier λ = (λ1, . . . , λl+3), that

N∑

i=1

ξi〈x, qi〉qi = λ1x + λ2v +

l∑

j=1

λj+3w
T
j v, and

N∑

i=1

ξi〈v, qi〉qi = λ2x + λ3v +

l∑

j=1

λj+3wjx,



36 STEPHAN HUCKEMANN, THOMAS HOTZ AND AXEL MUNK

where

N∑

i=1

ξi〈x, qi〉2 = λ1,

N∑

i=1

ξi〈x, qi〉〈v, qi〉 = λ2,

N∑

i=1

ξi〈v, qi〉2 = λ3, and

N∑

i=1

ξi〈v, qi〉〈wjx, qi〉 = λj+3 for 1 ≤ j ≤ l.

Letting

Ψ1(x, v) :=
N∑

i=1

ξi〈x, qi〉qi − λ2v −
l∑

j=1

λj+3w
T
j v

Ψ2(x, v) :=

N∑

i=1

ξi〈v, qi〉qi − λ2x −
l∑

j=1

λj+3wjx

we obtain the following.

Algorithm for (x∗, v∗) determining a first GPC:

Starting with initial values, e.g.,

x(0) := p1, v(0) := unit horizontal projection of p2 − p1 at x(0),

obtain
x(n+1), v(n+1) from x(n), v(n) for n ≥ 0

by computing qj ∈ [pj ], 1 ≤ j ≤ N , in optimal position with respect
to γx(n),v(n) according to Section 5.3, and by setting

x(n+1) :=
Ψ1(x

(n), v(n))

‖Ψ1(x(n), v(n))‖ ,

v(n+1) := unit horizontal projection of Ψ2(x
(n), v(n)) at x(n+1).

The unit horizontal projection of v at x ∈ Sk
m is, of course, given by

z

‖z‖ where z := v − 〈x, v〉x −
l∑

j=1

〈
wj(x)x, v

〉
wj(x)x.
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The Second GPC and PM. Given a horizontal great circle γ1 = γx,v mapping

to a first GPC determined by x, v ∈ Sk
m, Φ1(x, v) = 0, suppose that γ2(t) =

γy,w(t) = y cos t + w sin t, with

y = y(τ) = x cos τ + v sin τ = γ1(τ)

for some suitable τ ∈ R, is a horizontal great circle projecting to a second GPC.

According to Section 4.3, the second GPC is then obtained by minimizing the

objective function

F (τ, w) :=

N∑

j=1

d2(qj , γ(y,w)) =

N∑

j=1

arccos2
√

〈y, qj〉2 + 〈w, qj〉2

over (τ, w) ∈ R × M(m, k − 1), where qj ∈ [pj ], i = 1, . . . , N , are in optimal

position to γy,w. Defining

z = z(τ) = v cos τ − x sin τ = γ̇1(τ)

and inspecting the first two rows of the constraining condition Φ2(τ, w) = 0,

observe that we may alternatively employ

Φ2(τ, w) =




2〈w, x〉
2〈w, v〉

〈w,w〉 − 1

2〈w1y, w〉
...

2〈wly, w〉




.

As before, abbreviate ζj :=
√

〈y, qj〉2 + 〈w, qj〉2, ξj := (arccos ζj)/(ζj

√
1 − ζ2

j ),

and compute (4.6) with a Lagrange multiplier λ = (λ1, . . . , λl+3):

∑N
i=1 ξi〈w, qi〉qi = λ1x + λ2v + λ3w +

∑l
j=1 λj+3wjy,

∑N
i=1 ξi〈y, qi〉〈z, qi〉 =

∑l
j=1 λj+3〈wjz, w〉

}
. (5.6)

Also abbreviating

G(a, b) :=

N∑

i=1

ξi〈a, qi〉〈b, qi〉, and A(a, b) :=

l∑

j=1

λj+3〈wja, b〉,
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we have, for the Lagrange multipliers,

G(w, x) −
l∑

j=1

λj+3〈wjy, x〉 = λ1,

G(w, v) −
l∑

j=1

λj+3〈wjy, v〉 = λ2,

G(w,w) −
l∑

j=1

λj+3〈wjy, w〉 = λ3, and

G(w,wjy) − λ1〈x,wjy〉 − λ2〈v, wjy〉 − λ3〈w,wjy〉 = λj+3, 1 ≤ j ≤ l.

It seems convenient to alter the algorithm such that for every step, τ is set to

zero, i.e., x and v are updated for every step to y and z. Then λj+3 = G(w,wjy)

and we consider, corresponding to (5.6),

Ψ1(x, v, w) :=
N∑

i=1

ξi〈w, qi〉qi − G(w, x)x − G(w, v)v

−
d∑

j=1

G(wjx,w)wjx,

Ψ2(x, v, w) := the τ of smallest absolute value satisfying

G(x, v) cos 2τ +
sin 2τ

2

(
G(v, v) − G(x, x)

)

= A(v, w) cos τ − A(x, w) sin τ.

By definition, Ψ2(x, v, w) is orthogonal to x and v and it is horizontal. This leads

to the following.

Algorithm for determining a second GPC:

Starting with some initial values, e.g.,

x(0) := x, v(0) := v, w(0) :=
z

‖z‖ where w := (p2 − p1) and

z := w − 〈x(0), w〉x(0) − 〈v(0), w〉v(0) −
l∑

j=1

〈wjx
(0), w〉wjx

(0),

obtain

x(n+1), v(n+1), w(n+1) from x(n), v(n), w(n) for n ≥ 0



INTRINSIC SHAPE ANALYSIS: GEODESIC PCA 39

by computing qj ∈ [pj ], 1 ≤ j ≤ N , in optimal position with respect

to γx(n),w(n) according to Section 5.3, and by setting

τ := Ψ2(x
(n), v(n), w(n)),

x(n+1) := x(n) cos τ + v(n) sin τ,

v(n+1) := v(n) cos τ − x(n) sin τ, and

w(n+1) :=
Ψ1(x

(n), v(n), w(n))

‖Ψ1(x(n), v(n), w(n))‖ .

Having thus found x∗, v∗ and w∗, recall from Section 4.3 that x̂ := x∗ is a

representative of a PM on Σm
k . With v1 := v∗ and v2 := w∗, we have the two

horizontal geodesics

γ1 := γx̂,v1 , γ2 := γx̂,v2

projecting to a first and a second GPC on Σm
k . For simplicity set x := x̂.

Higher Order GPCs. Suppose that we have found horizontal great circles

γx,v1 , . . . , γx,vr−1 , 3 ≤ r ≤ m, mapping to GPCs on Σk
m. Then the Lagrange

equation (4.7), for a horizontal great circle γx,v projecting to a r-th order GPC

on Σk
m, is given by

N∑

i=1

ξi〈v, qi〉qi = λ0x +

r−1∑

s=1

λsvs + λrv +

l∑

j=1

λr+3wjx

with ζi :=
√

〈x, qi〉2 + 〈v, qi〉2, qi in optimal position to γx,v, ξi := (arccos ζi)/

(ζi

√
1 − ζ2

i ), and suitable Lagrange multipliers λ0, . . . , λr+l+1 ∈ R that are com-

puted as before. We then have the following.

Algorithm for determining an r-th order GPC, r ≥ 3:

Starting with an initial value, e.g.,

v(0) :=
z

‖z‖ where w := (p2 − p1) and

z := w − 〈x,w〉x −
r−1∑

s=1

〈vs, w〉vs −
l∑

j=1

〈wjx, w〉wjx,

obtain

v(n+1) from v(n) for n ≥ 0
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by computing qj ∈ [pj ], 1 ≤ j ≤ N , in optimal position with respect

to γx,v(n) according to Section 5.3, and by setting

z(n+1) :=
N∑

i=1

ξ
(n)
i 〈v(n), qi〉qi,

λ0 := 〈z(n+1), x〉,
λs := 〈z(n+1), vs〉, 1 ≤ s < r,

λr :=

N∑

i=1

ξ
(n)
i 〈v(n), qi〉2,

λj+r+1 := 〈z(n+1), wjx〉, 1 ≤ j ≤ l, and

v(n+1) := sign(λr)
z(n+1) − λ0x − ∑j−1

s=1 λsvs −
∑l

j=1 λj+r+1wjx

‖z(n+1) − λ0x − ∑j−1
s=1 λsvs −

∑l
j=1 λj+r+1wjx‖

.

The IM and the IM on a GPC. The computation of an IM according to Section

4.3 can be carried out analogously. With ζj := 〈x, qj〉, ξj =(arccos ζj)/(
√

1 − ζ2
j ),

∑N
j=1 ξj〈qj , x〉 = λ and Ψ(x) := sign(λ)

∑N
j=1 ξjqj , we have the following algo-

rithm:
x(n) 7→ x(n+1)

x(n+1) = Ψ(x(n))

‖Ψ(x(n))‖



 .

For every iteration, all qj ∈ [pj ] are rotated into optimal position to x(n).

Computing an IM on a GPC is equivalent to computing an IM on a horizon-

tal great circle on a sphere with respect to projections of optimally positioned

points according to Section 4.3. The corresponding algorithm can be found in

Huckemann and Ziezold (2006).

6. Data Examples

In conclusion, we apply our methods to three typical data sets. The first ex-

ample, from forest biometry, features concentrated and nearly degenerate shapes.

In the second and third examples we consider classical data sets: regular, less

concentrated shapes from an archaeological site, and regular concentrated shapes

of macaque skulls. For all data sets we computed

GPCA as laid out in this paper, and compared it with

restricted GPCA by restricting the GPCs to pass through the sample IM with

our algorithms accordingly simplified,
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Euclidean PCA at the IM (PGA) by computing the covariance matrix of the

data mapped under the inverse Riemann exponential to the tangent space

at the sample IM, cf., Fletcher et al. (2004),

Euclidean PCA at the EM (GPA) by computing the covariance matrix of

the data orthogonally projected to the tangent space of the Procrustes sam-

ple mean, cf., Dryden and Mardia (1998, Chap. 5).

Again for brevity we omit the prefix “sample” in the following. All GPCs,

means and variances found below are in fact sample GPCs, sample means and

sample variances.

6.1. Nearly degenerate shapes

In collaboration with the Institute for Forest Biometry and Informatics at

the University of Göttingen, the influence on the shape of tree stems of certain

external and internal factors is studied. Of particular interest is the influence

by competition with nearby trees that commences when the crowns meet. We

consider here a dataset of tree stems of five Douglas fir trees collected at an

experimental site in the Netherlands, cf., Gaffrey and Sloboda (2000) and Table

5 in Appendix B. Since crown competition will be less reflected by lower tree

rings, tetrahedral shapes have been extracted by placing landmarks at the top

of the tree, as well as on the center of the stem-disk at middle height, and at

the maximal and minimal radius of this disk, cf., Figure 1. Since the heights in

questions are about 10 meters and the radii around 10 centimeters, all shapes

are close to one-dimensional line segments. Shape change, however, occurs in all

three spatial directions. As is visible in Table 2, relative data variation along

the respective PCs, and distances of the data to the first PC differ considerably

between GPCA, restricted GPCA and Euclidean PCA.

Thus, with this data-set we are very close to the situation described in The-

orem 5.2: the shape space is locally spanned by vector fields (among others)

whose sectional curvatures tend to infinity when approaching the singularity.

Moreover, note that the difference between “variance explained by projection”

and distances to generalized geodesics (corresponding to “variance explained by

residuals”) can be taken as a measure for curvature present in the data. As the

data is concentrated on a geodesic (93.58% of the variation is along the first

GPC), the empirical value of CX (2.466) must be generated by a high curvature

of the surrounding space, cf., (3.4). The overall variance rmiv (the root of the

total intrinsic variance divided by sample size) of the data-set is small. Still,

for the same reason, the PM xP is considerably far away from the EM xE and

the IM xI , the latter three being rather close to each other, in fact the distance
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Figure 1. Extracting a tetrahedral shape from a Douglas fir tree stem.
Distorted view.

between PM and IM is about of the size of rmiv. This means that the PM is well

within the data spread:

rmiv = 0.00342, dΣ4
3
(xP , xI) = 0.002126, dΣ4

3
(xE , xI) = 2.107e − 08.

Therefore the classical methods of GPA, Euclidean PCA at the EM, and Eu-

clidean PCA at the IM are practically identical. Also, when considering residuals

and projections to generalized geodesics, Euclidean PCA and GPCA restricted to

the IM are almost equivalent. On the other hand, due to the flexibility of GPCA

in choosing the PM, the first GPC approximates the data far better than the first

PCs of the other methods; in fact the approximation of the data by the first PC

of restricted GPCA is worse by a factor larger than 3. Most notably, however,

Euclidean PCA and the almost equivalent GPCA restricted through the IM fail

to recognize the non-trivial fact that shape change for this data set is apparently

one-dimensional. This finding suggests that shape variation of nearby trees of the

same kind in interaction, is essentially one-dimensional, cf., Hotz, Huckemann,

Gaffrey, Munk, and Sloboda (2009).

6.2. Non-concentrated regular shapes

In a second illustration, consider a data-set of 28 brooches (fibulae) from an

Iron Age grave site in Münsingen, Switzerland, closely studied by Hodson et al.

(1966) among others. As the cemetery grew over a large period of time, it is

reasonable to believe that brooches at different locations originated in different

time epochs. Thus, five individual temporal groups have been proposed. In order

to study shape change, at each of the three-dimensional brooches, four landmarks

have been assigned to specific “anatomical” locations. Small (1996, Section 3.5)
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Table 2. Displaying for five shapes of Douglas fir trees the percentages of
variance explained by PCA based on generalized geodesics (first box), PCA
based on generalized geodesics while requiring that all GPCs pass through
the intrinsic mean (second box), PCA by computing the covariance matrix in
the tangent space of the IM under the inverse Riemann exponential (third
box), and PCA by computing the covariance matrix of the data orthogo-
nally projected to the tangent space of the EM (bottom box). In the first
two boxes, the line labelled “by projection” gives the percentages of vari-
ance obtained by projection, cf., (3.3); the line labelled “rmssd” reports the
square-root of the mean of the squared shape-distances of the data to the
respective generalized geodesic. In the lower two boxes the values obtained
by “Euclidean projection” are the precentages of eigenvalues of the respec-
tive covariance matrices under the inverse Riemann exponential at the IM
(Euclidean PCA at IM), and under orthogonal projection to the tangent
space at the EM (Euclidean PCA at EM). Under “geodesic projection” the
variances obtained by projection (as above) to the respective generalized
geodesics corresponding to the eigenvectors of the respective covariance ma-
trices are reported. No values are reported for the ultimate eigenvectors as
they point no longer into horizontal space. Similarly “rmssd” gives again
the square-root of the mean of the squared shape-distances of the data to
the respective generalized geodesics.

GPCA GPC1 GPC2 GPC3 GPC4 GPC5

by projection 93.58 % 6.38 % 0.04193 % 5.309e-06 % 2.505e-06 %

rmssd 0.0002818 0.00183 0.002405 0.002420 0.002420

GPCA through the IM GPC1 GPC2 GPC3 GPC4 GPC5

by projection 50.23 % 49.50 % 0.2744 % 2.197e-05 % 2.390e-07 %

rmssd 0.0009775 0.001077 0.003392 0.0034 0.0034

Euclidean PCA at IM PC1 PC2 PC3 PC4 PC5

Euclidean projection 67.33 % 32.43 % 0.24 % 5.366e-06 % 4.295e-15 %

geodesic projection 50.98 % 48.62 % 0.4076 % 6.041e-05 %

rmssd 0.001046 0.001240 0.003388 0.0034

Euclidean PCA at EM PC1 PC2 PC3 PC4 PC5

Euclidean projection 67.33 % 32.43 % 0.2401 % 5.597e-06 % 1.494e-31 %

geodesic projection 50.98 % 48.62 % 0.4073 % 6.157e-05 %

rmssd 0.001046 0.001240 0.003388 0.0034

has applied principal coordinate analysis to Procrustes innerpoint distances of

a planar lateral view of the landmarks. Table 3 displays the relative variances

explained by the respective five PCs in Kendall’s shape space Σ4
3.

As visible, the results of the two geodesic methods, which are this time very

similar, differ from the results of the two Euclidean approaches, which are again

almost identical. Euclidean PCA leads to the belief that the variation of brooch

shape is essentially explained by two PCs.

Two dominating components (minimizing residual variance) can also be
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Table 3. Displaying for the Münsingen brooch data-set the results of the
various methods of PCA with the notation of Table 2.

GPCA GPC1 GPC2 GPC3 GPC4 GPC5

by projection 29.16% 13.48 % 48.69 % 8.152 % 0.5145 %

rmssd 0.1178 0.1270 0.1586 0.1681 0.1720

GPCA through the IM GPC1 GPC2 GPC3 GPC4 GPC5

by projection 28.12% 12.72 % 51.59 % 7.085 % 0.4866 %

rmssd 0.1193 0.1266 0.1554 0.1685 0.1709

Euclidean PCA at IM PC1 PC2 PC3 PC4 PC5

Euclidean projection 48.95% 37.96 % 10.11 % 2.236 % 0.7397 %

geodesic projection 8.932% 51.29 % 34.14 % 0.4577 % 5.173 %

rmssd 0.1228 0.1241 0.1567 0.1703 0.1711

Euclidean PCA at EM PC1 PC2 PC3 PC4 PC5

Euclidean projection 49.53% 37.11 % 10.32 % 2.287 % 0.7598 %

geodesic projection 8.95% 50.99 % 34.27 % 0.4671 % 5.326 %

rmssd 0.1228 0.1355 0.1631 0.1704 0.1717

Figure 2. Shape distance (vertical axis) to shapes of the second (left) and the
twenty-second (right) fibula (the sample has 28 fibulae), to shapes along the
generalized geodesic δ(t),−π ≤ t ≤ π, (horizontal axis) determined by the

second Euclidean PC at the EM. The dashed line marks the global minimum,
its horizontal location gives the score.

found by the two geodesic methods; however, the corresponding GPCs point

in directions different from the directions of the Euclidean PCs in the tangent

space of the EM (or IM, resp.) and approximate the data w.r.t. the intrin-

sic metric better. This fact can be explained by curvature, and even more by

oscillation and the not-everywhere minimizing property of the respective gen-

eralized geodesics corresponding to the Euclidean PC directions, cf., Figure 2.

There, for two fibulae, oscillation of the generalized geodesic corresponding to

the second Euclidean PC is visible. The left image shows a score close to zero,

the right image depicts a score close to π though there is a local (slightly higher)
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Figure 3. Scores of the five groups of the Münsingen brooch data on the
first two PCs. Top: Euclidean PCA at the EM, bottom: geodesic method.

The oldest group is depicted by filled circles, the second oldest by stars, the
middle group by crosses, the second youngest by diamonds and the youngest
by circles. The scaling on the coordinate axes is depicted in Euclidean pro-

jection (top image) and arclength on shape space (bottom image, the largest
distance in shape space is π/2). Note the different scaling on the axes.

minimum close to zero. For this reason, variance explained by projection may in-

crease with higher order PCs for all methods, even though higher order PCs have

higher residual variance. This hints again at a smaller explanatory significance of

variance obtained by projection, in particular for the Euclidean approximations.

Analysis of residuals will then add to the significance of the findings.

In the Euclidean approximations a trend of temporal evolution can be identi-

fied as the strongest component, see Figure 3: shapes move in time from right to

left along the first PC, cf., also Small (1996, p.94). Using the geodesic method,

this trend is also visible in the second component: shapes move in time from

top to bottom. As the stronger first principal component, however, a tempo-

ral increase in shape diversification can be identified. This latter observation is

validated by a plot of residual distances in Figure 4.

In conclusion of this example, we note that the curvature estimate (3.4) for

this data set is CX = 0.1217, much smaller than in the previous example. For

this reason, as visible in Table 3, GPCA restricted through the IM approximates

unrestricted GPCA rather well. Equivalently, in relation to the data spread

(rmiv) and the again comparatively small distance between EM and IM, the PM

is relatively closer to both IM and EM than in the previous example:

rmiv = 0.1734, dΣ4
3
(xP , xI) = 0.01936, dΣ4

3
(xE , xI) = 0.002291.
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Figure 4. Residual distances to the first two GPCs for the five groups from
Figure 3 of the Münsingen brooch data-set.

6.3. Concentrated regular shapes

In a final example we consider a data set of seven anatomical landmarks

chosen on the skulls of nine male and nine female macaque specimen, cf., Dry-

den and Mardia (1998). Male specimen show a greater variance, the difference

between mean shapes (EM) of both sexes is not significant, however, cf., Dryden

and Mardia (1998, p.159). As in the previous examples, Table 4 reports the

results of the various methods of PCA. In this example we observe no difference

between the three approaches, rendering the Euclidean approximation valid. In

fact, the curvature estimate (3.4) takes the very small value CX = 0.0001924,

and the root of the total intrinsic variance divided by sample size is also of small

size, rmiv = 0.05954. Due to these facts, all means are nearly coincident and the

various methods of PCA give (almost) identical results, cf., Table 4.

7. Discussion

With this paper, we aimed at providing a method that allows one to perform

non-linear multivariate statistics in cases where the data live on spaces with a

non-Euclidean intrinsic structure. Furthermore, we wanted this method to rely

on the given intrinsic structure alone, thereby avoiding any linear approximation.

We were particularly interested in a rather general quotient space occurring from

an isometric action of a Lie group on a Riemannian manifold. For such spaces,

we proposed a method as desired, namely a PCA based on the spaces’ intrinsic

structure. A typical application lies in the statistical analysis of shapes which

has until now been performed almost exclusively by linear approximations. An
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Table 4. Displaying for a data set of macaque skulls the results of the various
methods of PCA with the notation of Table 2.

GPCA GPC1 GPC2 GPC3 GPC4 GPC5

by projection 31.15 % 20.10 % 14.67 % 10.57 % 6.223 %

rmssd 0.06158 0.06636 0.06858 0.07021 0.0719

GPCA through the IM GPC1 GPC2 GPC3 GPC4 GPC5

by projection 31.15 % 20.10 % 14.67 % 10.57 % 6.223 %

rmssd 0.06158 0.06636 0.06858 0.07021 0.0719

Euclidean PCA at IM PC1 PC2 PC3 PC4 PC5

Euclidean projection 31.18 % 20.10 % 14.67 % 10.58 % 6.216 %

geodesic projection 31.15 % 20.10 % 14.67 % 10.57 % 6.223 %

rmssd 0.06158 0.06636 0.06858 0.07021 0.0719

Euclidean PCA at EM PC1 PC2 PC3 PC4 PC5

Euclidean projection 31.13 % 20.11 % 14.68 % 10.59 % 6.223 %

geodesic projection 31.15 % 20.10 % 14.67 % 10.57 % 6.223 %

rmssd 0.06158 0.06636 0.06858 0.07021 0.0719

approach respecting the non-linearity of the intrinsic metric leads to non-linear

optimization problems, which pose specific numerical challenges. The methods

derived in this work are applicable to a wide variety of non-manifold shape spaces

which usually occur when studying three- and higher-dimensional shapes. Taking

Kendall’s shape spaces as an example we have illustrated how this methodology

provides for explicit algorithms.

We have presented PCA based solely on the intrinsic structure in contrast

to the current methods of PCA by embedding into and projecting to Euclidean

space; our motivation was threefold. First, the intrinsic approach may be the

only method available nearsingularities of the quotient. On Kendall’s shape

spaces this is the case when mean shapes are nearly singular. Recall from the

remarks following Theorem 5.2 that this cannot happen with planar shapes, i.e.,

for Σk
2. It is, however, the case when samples of three-dimensional objects fall

into high curvature regions of the regular shape space, as happens in biological

applications. This phenomenon which we encountered in the study of shapes of

individual tree stems (cf., Section 6.1) was the initial motivation for this research.

Second, our approach may serve as a basis for a larger study to compare the

validity of the much simpler linear approximation methods. Such a study was

carried out by Huckemann and Hotz (2009) for Kendall’s planar shape spaces.

Third, we consider our work a preliminary basis for further development of non-

linear statistical analysis working exclusively intrinsically.

At this point let us sum up our results on quotients with singularities such

as Kendall’s shape spaces concerning GPCA, restricted GPCA through the IM,

Euclidean PCA at the IM (PGA), and Euclidean PCA at the EM (general Pro-

crustes analysis), cf., Section 6. We found the following.
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1. Due to the vicinity of IM and EM and the proximity of Euclidean and intrin-

sic distances, Euclidean PCA at the IM and Euclidean PCA at the EM are

practically equivalent.

2. Due to unbounded curvature and oscillations of generalized geodesics, Eu-

clidean PCA may fail to recognize data features that occur under GPCA.

This is the case for

(a) large data-spread, even with little curvature present: then GPCA may

well be approximated by restricted GPCA; and

(b) data within high curvature regions: then restricted GPCA may also fail

to recognize data features that occur under GPCA due to the fact that

IM and PM may differ considerably when high curvature is present.

3. Curvature within the data can be estimated by CX from (3.4).

We view our methods and results as an early contribution to the ambitious

task of carrying over statistical methods from linear Euclidean spaces to mani-

folds and more general spaces. We would like to conclude by pointing out open

problems and research directions we consider to be of high importance.

Exploring Effects of Non-Euclidean Geometry. As we have seen, the geo-

metric structure of generalized geodesics for Kendall’s shape spaces for three-

dimensional configurations is far more complicated than it is for two-dimensional

configurations. In particular, the location and the descriptive nature of the PM

deserves to be studied more closely. Also, studying oscillation effects certainly

requires more research. In case of Kendall’s shape spaces, an upper bound on

the number of local minima of the distance of a given shape to shapes along

a generalized geodesic depends linearly on dim(SO(m)/Iγ(t)) with the isotropy

group Iγ(t) at γ(t). Note that by Lemma A.2 this dimension is constant a.e. on

t ∈ [0, 2π). In general, conditions on geodesics and the data support D (the

geodesic convex hull of the data, say) can be found that ensure that geodesics

and geodesic segments in D are everywhere minimizing.

Computing Curvature Present in the Data. Even with good numerical al-

gorithms, GPCA will be computationally more costly than Euclidean PCA. It

would be helpful to develop diagnostic tools for the evaluation of the benefit

of GPCA over Euclidean PCA. CX as introduced in (3.4) is such an indicator;

however, CX is available only after computing the GPCA. An alternative could

be a numerical method to compute intrinsic sectional curvature, say at a mean

of the data sample, using suitable horizontal and vertical vector fields.
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Degenerate Means. Sample means of non-degenerate shapes grouping around

a degenerate shape may move closer to the degenerate shape, cf., Corollary 5.6.

It would be interesting to determine under what circumstances (e.g., symmetry

conditions on the distribution) the intrinsic population mean of concentrated

non-degenerate shapes may be unique and/or degenerate.

Numerics. Crucial to the success of GPCA is a reliable method for optimal

positioning w.r.t. a horizontal geodesic. The results of this paper have been vali-

dated by highly time consuming brute force methods to ensure that local minima

found are in fact global. In order to undertake larger studies in the future, con-

siderable improvement of the numerical methods is essential. The numerical

problem can be attacked either by travelling along a goedesic i.e., essentially

along S1, or by optimizing over SO(m); both are problems of non-convex opti-

mization, cf., Section 5.3. The objective function corresponding to the former

can be non-differentiable, thus posssibly leading to very narrow minima; the ob-

jective function corresponding to the latter can be expressed as a multivariate

polynomial. To the knowledge of the authors these problems encountered have

found little attention in numerical analysis in the past.

Extensions to Other Shape Spaces. Obviously, the methods developed here

extend to many other shape spaces as well. If horizontal geodesics and distances

to them are given analytically, then our method can be applied directly. Our

approach may be applicable as well if geodesics and distances to geodesics can

only be computed numerically. Such numerical methods have been proposed,

e.g., by Miller, Trouvé, and Younes (2006) or Schmidt, Clausen and Cremers

(2006), for general models, such as e.g., Michor and Mumford (2006) or Klassen

et al. (2004), for closed 2D curves, or closed 2D and 3D contours based on medial

axes, e.g., Pizer et al. (2003), Fletcher et al. (2004), as well as Fuchs and Scherzer

(2007).

Manifold PCA. On the conceptual side, as pointed out in Section 3.1, non-

nested intrinsic PCA based on (generalized, cf., Appendix A) manifolds appears

as a natural extension of our methods. One might consider manifolds totally

geodesic at a point as well as manifolds totally geodesic at all points. In particular

for Kendall’s shape spaces of three- and higher-dimensional objects, the former

may be numerically hard to compute, and the latter may be available only for

some dimensions. We also note that parametrized spaces obtained thereby may

be manifolds only locally.



50 STEPHAN HUCKEMANN, THOMAS HOTZ AND AXEL MUNK

Inference. In this paper we did not address the issue of inference. Classical and

functional PCA allows for manifold inferential tools, such as tests and confidence

bands on the components (see e.g., Kneip and Utikal (2001) or Munk et al.

(2007)). These approaches are all asymptotic in nature and a linearization of the

underlying estimator typically leads to satisfactory results, often for quite small

samples. This does not seem to be the case anymore in the present context,

rather high curvature effects suggest that (first order) asymptotic considerations

will fail. Model selection, as it is used for the automatic selection of the number

of required components (see e.g., Hsieh (2007) in the context of nonlinear PCA),

is another related issue. It would be of great importance to transfer these ideas

to GPCA. Finally, we believe that there is much room for sharp risk bounds

for the geodesic principal components as it has been investigated e.g., by Zwald,

Bousquet and Blanchard (2004) in the context of kernel PCA.
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Appendix A: Foci and Focal Points

In this section we use the notation and hypotheses of Section 2: a compact

Lie group G acts isometrically on a complete finite-dimensional and connected

Riemannian manifold M giving rise to the canonical quotient π : M → M/G =:

Q. In order to define generalized submanifolds on Q as well as foci and focal

points, we introduce some additional notation and results, cf., Bredon (1972,

p.182).

A point p ∈ M is of orbit type (G/H) if Igp = H for some g ∈ G. This is

equivalent to saying that all isotropy groups in the fiber [p] are conjugates of H.

The union

M (H) := {p ∈ M : Igp = H for some g ∈ G}

of all points of equal orbit type (G/H) - if not void - is a submanifold of M , and

M (H) \ M (H) consists of points of smaller orbit type, i.e., H ⊂ Igp′ , H 6= Igp′
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for every p′ ∈ M (H) \ M (H) with suitable g = gp′ ∈ G. In particular, Q(H) :=

M (H)/G is a manifold. Recall that Q({id}) = Q∗ is the manifold part of Q.

It is well-known that every point has a neighborhood in which only finitely

many orbit types occur. This can easily be seen by an inductive argument relying

on the Slice Theorem (cf., Section 2.2) and Lemma A.2 below. Since manifolds

are separable (i.e., contain a countable dense set) there are only countably many

orbit types on M .

Definition A.1. We call K ⊂ Q a generalized submanifold of Q if K ∩ Q(Ip) is

a submanifold of Q(Ip) for every [p] ∈ K.

Since π|M(Ip) : M (Ip) → Q(Ip) is a Riemannian submersion, L(Ip) := π−1(K ∩
Q(Ip)) ⊂ M (Ip) is a submanifold of M for all [p] ∈ K, for a generalized submani-

fold K. In particular, every submanifold K of Q∗ is a generalized manifold. The

notion of generalized submanifolds includes generalized geodesics.

Lemma A.2. The point set L of a horizontal geodesic contains a point p of

maximal orbit type. Then LIp := L∩M (Ip) = {p′ ∈ L : Ip′ = Ip} is a submanifold,

L \ LIp is contained in M (Ip) \ M (Ip), and consists only of isolated points.

Proof. Assume that γ(t) = expp0
(tv) with p0 = γ(0) and suitable v ∈ Hp0M

is a parametrization of the point set L of a horizontal geodesic. Moreover let

Ht := Iγ(t). From (2.2) we obtain Ht ⊂ H0 for t sufficiently small. Since

g
(

expp0
(tv)

)
= expgp0

(tdgv),

we have at once g ∈ Ht for t 6= 0 sufficiently small if and only if dgv = v.

Hence Ht = Ht′ for all sufficiently small non-zero t, t′. This yields that the

orbit type on L near p0 is constant and maximal, except for at most the isolated

point p0. W.l.o.g assume that p0 = p is of locally maximal orbit type. Since

γ(t) = expp(tv) is a global parametrization of L, we have that H0 ⊂ Ht for all

t ∈ R. This argument can be applied to any point of locally maximal orbit type,

hence H0 = Ht for all t ∈ R except for at most isolated points.

Now, consider an arbitrary submanifold L of M and an arbitrary generalized

submanifold K of Q. Recall the normal bundle NL = ∪p∈L{p} × NpL of L in

M . With the Riemann exponential of M we have the well defined endpoint map

φ : NL → M

(p, v) 7→ φ(p, v) = expp(v).

Also, we have the set of orthogonal projections

K[p] :=
{

[p∗] ∈ K : dQ([p], [p∗]) = inf
[p′]∈K

dQ([p], [p′])
}
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of [p] ∈ Q \ K onto K.

Definition A.3. Call

p ∈ M \ L a focus of L if ∃(p′, v′) ∈ NL such that expp′(v
′) = p

and (dφ)(p′,v′) is singular,

[p] ∈ Q \ K a focal point of K if |K[p]| > 1.

Note that foci are points with locally stationary distance to a subset of L.

If G = {id} and M = Rm, then these definitions agree with Bhattacharya and

Patrangenaru (2003, p.2 and p.12). Also for M = Rm, foci have been introduced

as “focal points” by Milnor (1969, p.32) and Hastie and Stuetzle (1989, p.514)

call the focal points of a one-dimensional submanifold of Euclidean space the

ambiguity set. We first give some illustrations in the Euclidean plane.

1. The center of a circle is both a focus and a focal point to that circle; the

“foci” of a non-circular ellipse are its foci, the open line segment between them

constitute its focal points, none of which is a focus.

2. Consider a suitably smoothed version of the union of a circular segment

and a line segment

{
− 1√

2

}
×

[
− 1√

2
,

1√
2

]
∪

{
(x, y) ∈ R2 : x ≥ − 1√

2
, x2 + y2 = 1

}
.

Then the origin is its focus, the minimal distance to the origin, however, is

attained at (−1/
√

2, 0), from which the origin is reached by the endpoint map

with non-singular derivative.

3. In order to see that the set of foci of a closed manifold is not necessarily

closed, consider a suitably smoothed version M of the union ∪∞
n=2(Kn ∪ Ln) of

circular segments Kn and line segments Ln defined by

Kn :=

{
(x, y) ∈ R :

(
x − 1

n

)2
+ y2 = R2

n, x > 0, |y| ≤ 2

}
, Rn := n − 1

n

Ln :=





{
(x,−2) :

1

n
+

√
R2

n − 4 ≤ x ≤ 1

n + 1
+

√
R2

n+1 − 4
}

n odd
{

(x, 2) :
1

n
+

√
R2

n − 4 ≤ x ≤ 1

n + 1
+

√
R2

n+1 − 4
}

n even.

Then, all pn = (1/n, 0) with n ≥ 2 are foci of M ; the origin, their limit point,

however is not a focus.

We are concerned with minimizing foci which form a closed subset for closed

manifolds as we shall see.
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Definition A.4. A focus p of L will be called minimizing if there is (p′, v) ∈
NL such that expp′(v) = p, (dφ)(p′,v) is singular and dQ(p, L) = ‖v‖.

The following is a generalization of Theorem 3.2 of Bhattacharya and Pa-

trangenaru (2003, p.12), which is a generalization of Proposition 6 of Hastie and

Stuetzle (1989, p.515).

Theorem A.5. Let G be a compact Lie group acting isometrically on a complete

finite-dimensional Riemannian manifold M , and let L be an arbitrary submani-

fold of M, K an arbitrary generalized submanifold of Q = M/G. Then

(a) the set of foci and focal points of L has measure zero in M ,

(b) if L is closed then the set of minimizing foci and focal points of L is closed

in M ,

(c) the set of focal points of K has measure zero in Q.

Proof. Throughout the proof we use the notation introduced above. Moreover

let
L0 be the set of foci of L,

L00 be the set of minimizing foci of L,

L be set the of focal points of L, and

K be set the of focal points of K.

From the following Claims I and II we obtain the assertion (a). Claims III and

IV yield assertion (b), and Claim V assertion (c).

Claim I: L0 is of measure zero. By definition, L0 is the set of critical points

of the endpoint map φ : NL → M . As in Milnor (1969, p.33), Sard’s theorem

ensures that the critical points have measure zero in M .

Claim II: L1 := L \ L0 is of measure zero. From every focus p ∈ L we have the

set of orthogonal projections Lp. Conversely, for every point p′ ∈ Lp ⊂ M , there

is a unique normal vector v = v(p, p′) such that p = expp′(v). If p′ ∈ Lp1 ∩ Lp2

for focal points p1 6= p2, then obviously v(p1, p
′) and v(p2, p

′) cannot be collinear.

Hence, there is a subset A ⊂ CL of the cylindrical manifold

CL := {(q, v) ∈ NL : ‖v‖ = 1}

around L in NL and a mapping ψ : A → NL, (q, v) → (q, t(q, v)v) such that

χ := φ ◦ ψ : A → L1 is surjective. We show that χ is locally homeomorphic.

Then, L1 ⊂ M is the locally homeomorphic image of a subset A of a set of

measure zero CL in NL with dim(NL) = dim(M); hence L1 is a set of measure

zero in M .
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Continuity of χ follows from continuity of t: let A ∋ (qn, vn) → (q, v) ∈ A and

tn = tn(qn, vn) → t0 with focal points L1 ∋ pn := expqn
(tnvn) → expq(t0v) = p.

By continuity of distance, dM (p, q) = dM (p, L). By hypothesis p̃ = expq(t(q, v)v)

is focal with dM (p̃, L) = d(p̃, q). This yields t0 = t(q, v).

Moreover, χ−1 = ρ ◦φ−1|L1 is locally well defined and continuous as it is the

composition of the continuous projection

ρ :
{

(q, v) ∈ NL : ‖v‖ 6= 0
}
→ CL, (q, v) 7→

(
q,

v

‖v‖

)
,

and a locally diffeomorphic inverse branch φ−1 around L1; by hypothesis we stay

away from the singularity set L0 of φ.

Claim III: L00 is closed. Consider sequences pn ∈ L00, p′n ∈ L, and vn ∈ Tp′nL

such that pn = expp′n
(vn) and dφ(p′n,vn) is singular. If pn → p ∈ M then, as we

are considering minimizing foci only, ‖vn‖ is bounded. As a consequence, p′n has

a point of accumulation p′ ∈ M which is in L if the latter is closed. By continuity

there is a v ∈ Np′L with expp′(v) = p and ‖v‖ = dM (p, L). Again by continuity,

dφq,v is singular, proving that p ∈ L00.

Claim IV: L00 ∪ L is closed. In order to complete the argument that the set

of minimizing foci and focal points is closed, we consider a non-focal limit point

p ∈ M of a sequence of focal points pn ∈ M and show that it is a minimizing

focus. Indeed if qn, q′n ∈ Lpn , qn 6= q′n, we may assume that qn, q′n ∈ L have a

common point of accumulation q ∈ L (since p is non-focal) and that

expqn
(tnvn) = pn = expq′n

(tnv′n) (A.1)

for suitable unit length vn ∈ NqnL, v′n ∈ Nq′nL, and tn = dM (qn, L) > 0. Again,

tn has a point of accumulation t and vn, v′n have a point of accumulation v such

that

expq(tv) = p, t = dM (p, L).

Hence, from (A.1) we infer at once that dφ(p,tv) is singular and thus p is a mini-

mizing focus.

Claim V: K is of measure zero in Q. Since there are only countably many orbit

types in M , by hypothesis there is an index set I ⊂ N such that K = ∪i∈IKi, with

submanifolds Ki := K ∩ Q(Hi) of Q(Hi) and closed subgroups Hi of G for i ∈ I.

As noted in the beginning of this section, the inverse projection Li := π−1(Ki)

of each of these is a submanifold of M . Moreover, every point p ∈ [p], where [p]
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is focal for K, is focal for Li ∪Lj with suitable indices i, j ∈ I. As the argument

of claim II is local in nature, it can be applied to every Li with

L̃1
i :=

{
p ∈ L1 \ L0

i : Lp ∩ Li 6= ∅
}

instead of L1
i \ L0

i ; here L = ∪i∈IL
i and L0

i , L1
i denote the foci and focal points,

resp. of Li. This yields that the set of focal points for L = ∪i∈ILi is of measure
zero in M . As this is the inverse projection of K, the latter is of measure zero in

Q.

Appendix B: Tree-Stem Data Set

Table 5. Tetrahedral configurations from the stems of 5 Douglas fir

trees. Units are given in meters.

Landmarks 1 2 3 4

27 14 14 14

Tree 1 0 0 0.05662873 -0.09531028

0 0 -0.0674875 0.03469011

29.7 17.6 17.6 17.6

Tree 2 0 0 -0.07479217 0.0587687

0 0 -0.04318128 0.1017904

32.5 18.2 18.2 18.2

Tree 3 0 0 0.1427532 -0.1581646

0 0 -3.496329e-17 0.09131639

28 18 18 18

Tree 4 0 0 0.05264516 0.01673678

0 0 -0.06274006 0.094919

24.3 16.1 16.1 16.1

Tree 5 0 0 -0.0591466 0.04722901

0 0 -0.03414831 0.08180305
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COMMENT

Rabi N. Bhattacharya

University of Arizona

The authors Huckemann, Hotz, and Munk should be commended for their

mathematically elegant and substantial theory of geodesic principal components

analysis (GPCA) based on the novel idea of generalized geodesics. A particularly

important aspect of this theory is its ability to overcome some of the vexing

technical problems associated with Kendall’s shape space Σk
m for m > 2. We

expect this theory to be further developed into an effective statistical tool for

feature selection and classification.

We here discuss mainly certain aspects of the paper as they relate to statis-

tical analysis on shape manifolds with landmarks-based data-a field pioneered by

Kendall (1977, 1984), and Bookstein (1978). The problem of identifying a shape

distribution, or discriminating between two or more shape distributions, arises in

many fields including morphometrics (Bookstein (1978)), archaeology (Kendall
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(1984)), medical imaging and diagnostics (Bandulasiri, Bhattacharya and Pa-

trangenaru (2009), Hufnagel, Pennec, Ehrhardt, Ayache and Handels (2008)),

and machine vision or robotics (Munk, Paige, Pang, Patrangenaru and Ruym-

gaart (2008), and Patrangenaru, Liu and Sugathadasa (2010)). A fairly com-

prehensive account of the parametric statistical theory is provided in Dryden

and Mardia (1998), where important contributions due to these authors, as well

as Kent (1992), Goodall (1991), and Prentice (1984), and many others, may

be found. Our focus here is on nonparametric methods based on the so-called

Fréchet means of the distributions. Recall that a Fréchet mean of a distribution

on a metric space is the minimizer, if unique, of the expected squared distance

from a point. On a manifold, two appropriate distances are (1) the extrinsic dis-

tance, the Euclidean distance induced from a proper equivariant embedding in a

vector space, and (2) the intrinsic distance, the geodesic distance on a manifold

endowed with a natural Riemannian metric. The respective Fréchet minimizers

are called the extrinsic mean and the intrinsic mean. Since (a) the question

of uniqueness of the Fréchet minimizer is more easily resolved for the extrin-

sic distance than the intrinsic distance, and (b) computations for the intrinsic

analysis are harder than those for the extrinsic analysis, one may sometimes pre-

fer statistical tests based on the sample extrinsic mean. Our main references

for this theory are Bhattacharya and Patrangenaru (2003, 2005), Hendriks and

Landsman (1998, 2007), Mardia and Patrangenaru (2005), Bhattacharya and

Bhattacharya (2008) Bhattacharya (2009), and Bandulasiri et al. (2009).

The main objective of the article under discussion by Huckemann, Hotz and

Munk is to develop an intrinsic analog of the Euclidean principal components

analysis (PCA) on the quotient of a Riemannian manifold M by the isometric

action of a Lie group G. Among important examples are Kendall’s shape spaces

Σk
m of k-ads in Rm. Recall that a k-ad in Rm is a set of k points, or landmarks,

in Rm, excluding those where all k points are the same. One may identify the

pre-shape of a k-ad as a centered and scaled (to unity) k-ad, i.e., a point in Sd,

with d = m(k − 1) − 1. The shape of the k-ad is then the orbit of the preshape

under rotation in Rm. Thus in this case M = Sd and G = SO(m), the special

orthogonal group of rotations in Rm. The most important cases are the planar

shape space of k-ads (m = 2), and the 3D shape space of k-ads (m = 3). The

planar shape space Σk
2, with the plane identified as the complex plane, is then

the complex projective space CP k−2 - a familiar and important example of a

compact manifold in differential geometry. Nonparametric statistical analysis

may be carried out for distributions on this space following Bhattacharya and

Patrangenaru (2003, 2005), and Bhattacharya and Bhattacharya (2008). For the

case m = 3, however, the action of the group SO(3) is not free (Small (1996), and

Kendall, Barden, Carne and Le (1999)). Indeed, if a k-ad consists of collinear
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points in R3, then its preshape lies on a line, and all rotations around this line keep

the k-ad fixed. But no nonlinear k-ad is left fixed by a rotation other than the

identity. Thus in this case M is not a differential manifold; the orbits of preshapes

have different dimensions at different points, so that the horizontal tangent spaces

on M do not have the same dimension everywhere. This problem gets worse

with higher dimensions m. This difficulty has impeded statistical analysis of 3D

shapes in the past, although a proper embedding for extrinsic analysis has been

found recently by Bandulasiri and Patrangenaru (2005) and Bandulasiri et al.

(2009), switching to the full orthogonal group O(m) in place of SO(m). The

embedding was also obtained independently in Dryden, Kume, Le and Wood

(2008). The extrinsic mean for this so-called Schoenberg embedding was obtained

by Bhattacharya (2009), who carried out nonparametric analysis for the two-

sample problem on this space referred to as reflection shape space. For intrinsic

analysis the problem is not resolved by taking out collinear points from the space.

For, whether one considers SO(m) or O(m) as the group G, the quotient space

is then incomplete with respect to the geodesic distance, and the curvature of

the manifold tends to infinity near the holes created by taking out exceptional

points. Thus standard results on the existence and uniqueness due to Karcher

(1977) do not hold (also see Kendall et al. (1999)).

Although a general theory of intrinsic means is still not available for such

manifolds, the article by Huckemann et al. shows that one can still consider

the original compact space Σk
m, or more generally the quotient of a complete

Riemannian manifold with respect the action of an isometric Lie group G on

it, construct generalized geodesics on it as images under the projection map

of horizontal geodesics on the ambient manifold. It would be interesting to

explore extensions on such quotient spaces for (i) a Karcher type theory for the

existence of a (unique) Fréchet mean, and (ii) intrinsic analysis of one-sample

and two-sample problems developed in Bhattacharya and Patrangenaru (2005)

and Bhattacharya and Bhattacharya (2008). In any case, however that endeavor

turns out, Huckemann, Hotz and Munk have provided a generalization of the

theory of principal components (PC) on these quotient spaces in general. The

detailed application of this theory to Kendall’s shape spaces Σk
m is a particularly

important contribution of these authors. The merits and some limitations of this

theory developed so far are discussed below.

For an absolutely continuous distribution Q on a complete Riemannian man-

ifold, let Q̃ denote the image of Q under the exponential map at the intrinsic

mean IM (assumed unique) of Q. Fletcher (2004) considered an analog of PCs

given by images under the exponential map of the principal components of the

covariance matrix of Q̃. Huckemann et al. have pointed out that on manifolds

(and more generally, on quotients of manifolds with respect to isometric Lie
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group actions), a more natural procedure might be to define the first generalized

principal component (GPC) as the generalized geodesic whose expected squared

(pseudo-) distance from the random X (with distribution Q) is the smallest. As

a justification, it has been pointed out that the intrinsic mean may not lie near

this first GPC, as some examples show. Hence from the point of view of either

a generalization of Euclidean PCA, or feature selection on manifolds, it may be

more natural to define the first GPC as the one closest to the mass distribution

Q. The second GPC is then defined to be the generalized geodesic that minimizes

the (pseudo-) squared distance among all those intersecting the first one orthog-

onally. A principal component mean (PM) is then defined to be a point which,

among all points of intersection of the first two GPCs, minimizes the expected

squared (pseudo-) distance from X. The subsequent GPCs minimize expected

squared (pseudo-) distance from X among all GPCs orthogonal to the preceding

ones, and passing through the PM.

Huckemann et al. have shown that, outside of null sets, the GPCs are

uniquely defined. In contrast, the intrinsic mean is not known to be uniquely

defined except under restrictive support conditions on Q. However, the definition

of the PM depends only on the first two GPCs and, therefore, seems a bit arbi-

trary in the general case. Of course, all Euclidean PCs go through the (intrinsic)

mean; but that need not be the general model when considering manifolds. From

this point of view the approach of Fletcher (2004) and Fletcher and Joshi (2007)

seems more natural. Partly because of this, it is not clear to us if the so-called

“total variance” and its decomposition is quite natural. By the way, is it ob-

vious that the “geodesic variances” VresX “explained by the s-th GPC” are all

nonnegative?

Huckeman el. al. develop innovative algorithms, to compute the GPC’s by

assuming that the orbifold M/G is defined in terms of a submanifold M of a

Hilbert space H as the set of zeroes of a differentiable function φ : H → Rk, with

a differential of maximal rank on M. They derive their computations using a two-

stage minimization for the optimal positioning of a point x ∈ M with respect to a

geodesic on M, based on previous work by Huckemann and Ziezold (2006). Their

computations are carried out in detail in the case of Kendall’s shape spaces, in

the line of theory developed in Small (1996). Huckeman et. al. compare their

PC methods for two types of data: the “brooch data” (Small (1996)), located

around a regular point on an shape orbifold, and the “fir tree” data, located a

region closer to a singular point on a shape orbifold. We will call these “regular

data” and “singular data”. We do not agree with the authors’ view that in the

“brooch” example their approach is better in analyzing variability of the data.

Perhaps from the point of feature selection, their approach fares better here (as

it does in the “fir tree” example), but not from the point of view of dimension

reduction for purposes of prediction.
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A more serious issue is the complete lack of consideration of problems of

statistical inference based on samples, namely, an asymptotic distribution theory

for sample GPCs, and the corresponding geodesic variances.
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COMMENT

Sungkyu Jung, Mark Foskey and J. S. Marron

The University of North Carolina at Chapel Hill

This paper proposes a novel PCA scheme for variables on a manifold. The

authors tackled an interesting problem. In particular when the mass of a random

quantity or a set of data is mostly aligned along a sufficiently long arc of a

geodesic, the intrinsic and extrinsic mean no longer provide a useful notion of

the center of mass due to the curvature of the manifold. The authors defined a

new notion of mean, the Principal Component mean (PM), as the point where the

first and second geodesic PCs meet. Regardless of the curvature of the manifold,

this Geodesic PCA (GPCA) works well when most of the mass is along a geodesic.

file:rabi@math.arizona.edu


64 STEPHAN HUCKEMANN, THOMAS HOTZ AND AXEL MUNK

Figure 1. Sampling variation of the S2-valued variable in m-reps and pro-
jections on various PCs. (i) The data points are mostly along a small circle,

which is not a geodesic. (ii) The method of GPCA: A set of data in (i) is
projected to the tangent space at PM together with the two Geodesic PCs.
(iii) Alternative method: The data set is projected on circles δ1 and δ2. The

proportion of variance explained by the first PC is shown as ratios.

The manifold data we encounter are typically S2 (and (S2)d). In the data

that we work with, we have noticed a tendency towards variation along smaller

circles than geodesics, so we point out variations of the PCA method of this

paper that better capture variation along a non-geodesic curve on manifolds.

The medial representations of shapes (m-reps, see e.g., Siddiqi and Pizer

(2008), Fletcher, Lu, Pizer and Joshi (2004)) lie in direct products of S2, S1,

R, and R+. In particular, in an example of randomly generated m-reps, that

resemble human organs, from a simulator discussed in Jeong, Stough, Marron

and Pizer (2008), we have observed S2-valued variables distributed along a small

circle, which is not a geodesic (left panel of Figure 1.) The projection of the

S2-valued data on geodesic PCs (center panel of Figure 1) results in a curvy

form, where the first PC captures only approximately 95% of the variation. The

method of PCA at IM (Fletcher et al. (2004)) also shows similar performance for

this data set. We suggest an improvement, due to Gray, Geiser and Geiser (1980),

that captures 100% of the variation of the first PC. This allows a non-geodesic

curve to be a principal curve.

To illustrate this idea, let the simple manifold S2 be our space. Let x1, . . . , xn

∈ S2 be the data points. We wish to consider the principal modes of variation that

are not necessarily along a geodesic, where the constraint of δ1 being geodesics is

relaxed to include all circles. Then a small circle δ1 minimizing residual variance∑
i d(xi, δ1)

2, where d is the metric on S2, is defined to be the first mode of vari-

ation, i.e., the first PC. Furthermore, in the spirit of Definition 3.1, sequentially

find δ2 to minimize
∑

i d(xi, δ2)
2 subject to orthogonally crossing δ1. This entails
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that δ2 is a geodesic. Then we can define a new center of mass as the intersection

of δ1 and δ2, say p, which minimizes
∑

i d(xi, p)2. The last plot in Figure 1 shows

the projection of the data onto δ1 and δ2, where the projection on δ2 is not an

orthogonal projection, but a projection along the direction of δ1.

These ideas, including extension to important manifolds such as (S2)d, will

be further developed in Jung, Foskey and Marron (2009).
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University of Leeds

1. Introduction

Modern statistical shape analysis started with the seminal papers by Kendall

(1984) and Bookstein (1986). The subject has greatly developed over the past
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20+ years and in many ways is now a mature area of Statistics, especially

landmark-based shape analysis. It has applications spanning biology (morpho-

metrics), computer vision, robotics, archaeology, and medical imaging. However,

as demonstrated in the paper by Huckemann, Hotz and Munk (2009) (referred to

below as HHM), there are still substantial issues to be tackled in shape analysis.

In this contribution, we look at some of the suggestions in HHM for principal

component analysis (PCA) in more detail. First, these ideas are made more

concrete through some simple illustrations, and then their implications for the

tree crown data are explored through a re-analysis of that data. Finally some

general points are made about the statistical modelling of shape data.

One of the main points made by HHM is that on manifolds and related

spaces, dimension reduction is more subtle than it is in Euclidean space. In

Euclidean space there is just one way to do PCA: find the mean vector and the

covariance matrix of the data and represent the variability about the mean in

one (or a small number of) dimensions.

On manifolds there are two distinct idealized types of PCA, which can be

illustrated most easily on the usual unit sphere in R3.

• Type I. This type of PCA mimics Euclidean PCA. The data are concentrated

about a mean direction on the sphere with a roughly elliptical pattern of

variability. The more eccentric the ellipse, the more successfully can the data

be reduced to a one-dimensional summary.

• Type II. This type of PCA has no equivalent in Euclidean PCA. The data are

concentrated on or near a great circle such as the equator and are uniformly

distributed around this circle. In this case there is no mean direction; but,

treating a great circle as a one-dimensional object, there is again a reduction

to a one-dimensional summary of the data.

Figure 1 illustrates the two types of behavior. HHM point out that small

circles about a singularity point in shape space Σk
m, m ≥ 3, will form geodesics.

Thus they effectively argue that if data are clustered about a singularity point,

it may be the case that Type II PCA will be more appropriate than a Type I

PCA. See the next section for an example.

2. Application to Tree Crowns

For the “tree crown” data, each configuration can be represented as a 3 × 4

matrix of 3 coordinates for 4 landmarks. The first row represents the vertical

component z of each landmark, and the second and third rows represent the

east-west and north-south directions, x and y, say. The four columns represent

the four landmarks. The first landmark is the crown itelf, assumed to lie on the

vertical axis x = y = 0, say, of the tree, and the remaining 3 landmarks lie in a
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Figure 1. Two examples of data on the sphere: (a) data concentrated with
an elliptical pattern of variation; (b) data concentrated near the equator

with a uniform distribution around the equator, where “×” denotes data on
the front of the sphere, and “+” data on the back.

horizontal planar cross-section of the trunk z = 0, say, given by the center of the

tree rings and points on the circumference of the trunk minimally and maximally

distant from the center, respectively.

This description is already standardized in terms of location and partially

standardized in terms of rotation. To finish the standardization of rotation, rotate

the horizontal plane z = 0 about the origin so that the landmark representing the

minimal radius of the trunk lies on the positive x axis (with y = 0). Finally scale

the configuration so that the crown has vertical value z = 1. This standardization

is not quite a Procrustes registration: in particular, the centroid is not at the

origin and the centroid size is not quite equal to 1. However, it lets us understand

the structure of the data more intuitively.

Thus the shape of each configuration can be represented as a matrix




1 0 0 0

0 0 ǫ δ1

0 0 0 δ2


 ,

where ǫ > 0, and where ǫ, δ1, δ2 are small and vary from one tree to another.

There are n = 5 configurations in the dataset. Plots of landmarks 2, 3, 4 in

the plane z = 0 are shown in Figure 2. Note that the angle at the origin between

landmarks 3 and 4 is clockwise for configurations 1, 2, 5 and counterclockwise

for configurations 3, 4.

Figure 3(a) shows the first two principal component scores for a PCA in

Procrustes tangent coordinates. As noted by HHM, the proportion of variance
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Figure 2. Cross-section of the trunk for each of the 5 trees. Landmark 2

lies at the center of the tree; landmark 3 indicates the shortest radius to
the circumference of the tree, rotated to lie on the positive horizontal axis;
landmark 4 lies on the longest radius.

Figure 3. Principal component scores for the tree crown data based Pro-
crustes tangent coordinates: (a) original data; (b) data modified by reflecting
configurations 3 and 4.

explained by the first two components is 67.3 + 32.4 = 99.8%. Note that con-

figurations 1,2,5 approximately lie on one line, and configurations 3 and 4 on a



INTRINSIC SHAPE ANALYSIS: GEODESIC PCA 69

parallel line. With a bit more imagination we can regard all the configurations as

lying approximately uniformly dispersed around the circumference of a circle cen-

tered at the origin. Thus, we can see why a Type I PCA needs two components

to explain the data, whereas a Type II PCA needs only 1 principal component.

These observations help us understand why HHM have recommended a Type II

PCA for this dataset.

3. Reservations about Shape Analysis on Tree Crown Data

The tree crown example provides a nice illustration of what can happen near

a singular point in shape space. However, there are several limitations in using

this example as a serious example of statistical shape analysis.

(a) Data are not configurations. Shape analysis is not really appropriate for this

sort of data. In particular, the “crown” is not a true 3-dimensional landmark,

but only a one-dimensional height.

(b) Form vs. shape. Further, removing size removes the relationship between

crown height and trunk measurements. A study of form (= size + shape) is

likely to be of more scientific interest than a study of shape.

(c) Reflection shape. Two of the configurations (3 and 4) are roughly reflec-

tions of the other three (1, 2, and 5). In particular, the angles between the

maximal and minimal radii in degrees are −150◦, −150◦, 150◦, 130◦, −150◦,

respectively. Aligning configurations with respect to reflection as well as sim-

ilarity transformations removes much of the variability seen in the data and

removes the need for a Type II PCA. A Type I PCA with one retained compo-

nent now suffices; see Figure 3(b). Further the PC score is highly correlated

with relative trunk size (r = −0.99), where relative trunk size is defined by√
ǫ2 + δ2

1 + δ2
2.

4. Data Analysis vs. Statistical Models

The paper focuses on data analysis — dimension reduction in the context of

a particular set of data. Alternatively, we can look at statistical models which

accommodate some degree of concentration in lower dimensions. Note that the

sphere is an important special case of shape space since, up to a factor of 2, it

can be identified with the shape space Σ3
2 of triangles in the plane.

• Sphere, Type I PCA: FB5 distribution (analogous to bivariate normal).

• Sphere, Type II PCA: Bingham distribution (girdle case).

• Σk
m, m = 2, Type I PCA: CBQ distribution (analogous to multivariate nor-

mal).
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• m > 2 (Types I and II models) or m ≥ 2 (Type II models): more work to be

done.

Details about standard distributions for directional data, such as the 5-

parameter Fisher-Bingham (FB5) and the Bingham distributions, can be found

in Fisher, Lewis and Embleton (1987) and Mardia and Jupp (1999). See Kent,

Mardia and McDonnell (2006) for the complex Bingham-quartic (CBQ) distri-

bution.

5. Longitudinal (Growth) Data

HHM focus on samples of independent, identically distributed data, where

only the scatter of the data is of interest. However, for longitudinal data, the

path through shape space is also important. HMM suggest such data will often

lie on a geodesic, but such models are too simplistic in many practical situations.

For example, consider a set of rat growth data in the plane R2, described and

analyzed in Bookstein (1991) and Kent, Mardia, Morris and Aykroyd (2001). The

data are obtained from a two-dimensional midsagittal section of the calvarium

(the skull without the lower jaw). There is complete information on N = 18 rats

at H = 8 times (or ages) on K = 8 landmarks. To facilitate the model fitting,

we replace the actual age by a “pseudo-age” given by the average centroid size

at each age and ignore any differences between the individual rats.

One possible growth model in Procrustes tangent space takes the tensor

product form

vjt =

p∑

α=1

q∑

β=1

aαβf(α)(µj)g(β)(t).

Here vjt ∈ R2 denotes the Procrustes tangent coordinates for landmark j at time

t about a mean configuration µ with landmarks µj . The functions f(α) and g(β)

represent modes of change in space and time. In this example we used principal

splines; these functions are analogous to polynomials of increasing degree. In

particular, the first two principal splines in space correspond to a linear trans-

formation of the plane. The first principal spline in time corresponds to linear

growth, and the second principal spline in time is approximately quadratic.

Figure 4 illustrates an analysis of the rat data, with the growth in parts

(a), (b), and (c) exaggerated by a factor of 5 for visibility. Note the raw data

in (a) show curvature in their growth paths at each landmark. A geodesic in

shape space (part (b)) implies a constant speed straight line growth path at each

landmark which does not capture this curvature. The best-fitting model, labelled

a “special model”, is illustrated in part (c) and can be described as

(general space × linear time) + (linear space) × (quadratic time).
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Figure 4. Analysis of the rat data: (a) raw data, (b) geodesic growth model,
(c) special growth model. Each “*” represents a landmark of the the Pro-
crustes mean shape µ, and each closed circle represents the position of a

landmark at the initial time. Part (d) shows the grid deformation, without
an expansion factor, between the initial and final times for the special model.
For parts (a), (b), (c), the growth patterns have been expanded by a factor

of 5 for clarity.

6. Conclusions

This has been a fascinating paper. New types of data on manifolds and

quotient spaces are of growing interest. Dimension reduction, especially near

singularities in shape space, provides interesting challenges. In this setting it is

important to emphasize the distinction between Type I and Type II PCA.
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COMMENT

Peter T. Kim and Ja-Yong Koo

University of Guelph and Korea University

Modern statistics is undergoing an evolution as data are being realized in

ways that have not been realized before. The current paper under discussion is

an example of such an evolution and, therefore, as a profession we have to face

such challenges. What we would like to bring forth in this discussion is whether

statistics can adapt to this evolution by keeping some elements of how the subject

has functioned in the past while, at the same time, being amenable to modern

data that are increasingly complicated. In particular, we would like to note

that the normal distribution is central to statistics and permeates the teaching

of statistics through the fundamental frequentist notion, i.e., the Central Limit

Theorem, and as a way of performing statistical estimation through maximum

likelihood estimation. This is certainly well-defined in the case of Euclidean

space, but once we leave such a structure, the situation quickly becomes unclear.

This is apparent in directional statistics where the sample space is the unit

sphere. Statisticians have looked for reasonable ways of expressing the “normal”

file:j.t.kent@leeds.ac.uk
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distribution for estimation and inference on the sphere. Indeed, early attempts by

Fisher (1953) led to the von Mises–Fisher distribution; this resulted in many pa-

pers exploring the idea of a mean direction and concentration. Other directional

distributions have been introduced to model various peculiarities associated with

directional data and a very compelling formalism was put forward by Beran

(1979) in which the author demonstrates that all these distributions are special

cases of exponentiating spherical harmonic expansions on the sphere. Neverthe-

less, the idea of a normal distribution was not satisfactorily resolved. A formal

treatment was explored in Hartman and Watson (1974) where this very question

is detailed in the title of their paper. What we learn from there is that if we

define a normal, or Gaussian, distribution on the sphere to mean a diffusion on

the sphere, then the von-Mises–Fisher distribution is not it. In fact, Kim and

Koo (2000) demonstrates in what way they are different.

We ask what one could mean by the normal distribution so that it fits the

classical definition and can adapt itself to a more modern environment. We begin

with the Euclidean case and use the notation Gt(x) to mean the Gaussian density

with mean 0, and variance t. The Gaussian density satisfies the so called heat

equation
∂

∂t
=

1

2

∂2

∂x2
, (1.1)

where t > 0 and x ∈ R. A solution to (1.1) is a function u : (0,∞)× R → R and

u(x, 0) = f(x) is the initial condition. It is then straightforward to show that the

solution has the form u(x, t) = Gt ∗ f(x) where, for two functions f and h, the

convolution is f ∗h(x) =
∫

f(x−y)h(y)dy. If we then specify f(x) = δµ(x), where

δµ is the Dirac delta function centered at µ, then the symbolic way of writing a

normal distribution with mean µ ∈ R and σ > 0 as N(µ, σ), is Gσ2 ∗ δµ(x).

The above is the argument used in Hartman and Watson (1974) for the

case of the sphere and it can be extended to more general structures. Consider

the same question on a Riemannian manifold M. By following their implicit

argument, we are led to the Laplacian

∆ =
1√
|g|

∑

j,k

∂j(g
jk

√
|g| ∂k), (1.2)

where ∂j is in reference to the partial derivative with respect to the j−th coor-

dinate, g = (gjk) are the metric tensors, whose inverse is written (gjk), and |g| is

its determinant for a fixed x ∈ M. The corresponding heat equation on M is

∂

∂t
=

1

2
∆, (1.3)

where again we have as its fundamental solution the Gaussian density Gt(x),

for x ∈ M. Now if the manifold is equipped with a group structure so that it
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is a Lie group, as in the paper under discussion, then one can further mimic

the Euclidean version. In particular consider a solution u : (0,∞) × M → M

with initial condition u(x, 0) = f(x). The solution can be written as Gt ∗ f(x),

where here for f and h, the convolution is f ∗ h(x) =
∫

f(xy−1)h(y)dy to reflect

the possible non-commutative group structure. Therefore on a Lie group we

can define the normal distribution with unknown mean µ ∈ M and σ > 0 by

Gσ2 ∗δµ(x), where now δµ(x) is the Dirac delta function on M centered at µ ∈ M.

Can we live with such a definition? First the fact that we need a group

structure may seem restrictive, a second point is that we do not know whether

there are central limit theorems available, and third, there is the question of how

to do estimation, in particular, maximum likelihood estimation.

As a short answer to the first, we note that most manifolds we encounter

are homogeneous spaces of Lie groups. In fact if one has a transitive group of

isometries on a manifold, the manifold is a homogeneous space of the Lie group.

In fact, the sphere is a homogeneous space of the Lie group of rotation matrices.

Consequently, one can work over the covering space and project down to the

homogeneous space where things should be manageable.

As to the second issue there have been past attempts to generalize central

limit theorems in ways so that the limiting distribution is the Gaussian density

as described in the more general setting. This has mainly centered on the space

of positive definite symmetric matrices that can be realized as the homogeneous

space of GL(m), the Lie group of m × m non-singular matrices, modulo O(m),

the m × m group of orthogonal matrices. By taking matrix products of iid

random matrices and spectrally rescaling by
√

n, one can show convergence in

distribution to the Gaussian distribution on GL(m)/O(m). Consequently, non-

Euclidean central limit theorems abound. See Terras (1988), Richards (1988)

and Graczyk (1992).

Perhaps the most difficult question is how does one do maximum likelihood

estimation. What is crucial to realize in this question is the rather delicate point

that, although Gσ2 ∗ δµ can be written down in closed form for R, such is not

the case for a general M. The only characterization of the Gaussian density

that permeates across different structures is the notion that if {(ϕλ, λ), λ ∈ Λ}
is the spectral resolution of the Laplacian ∆, i.e., ∆ϕλ = λϕλ, then the Fourier

transform of the Gaussian density has a specific formulation,

Ĝt(λ) =

∫

M

Gt(x)ϕλ(x)dx = e(λ/2)t, (1.4)

where λ ∈ Λ, and overline means complex conjugation. Furthermore, under

certain conditions for two functions f, h : M → R,

f̂ ∗ h(λ) = f̂(λ) ĥ(λ). (1.5)
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Thus in the case of what we are calling the Gaussian density

Ĝσ2 ∗ δµ(λ) = Ĝσ2(λ) δ̂µ(λ) = e(λ/2)σ2
ϕλ(µ). (1.6)

Let us see if this makes sense in the more familar Euclidean setting of R. In

particular ∆ = ∂2/∂x2 and ϕλ(x) = e−ikx for k ∈ R. Now ∆e−ikx = −k2e−ikx,

therefore λ = −k2, for k ∈ R. Applying this to (1.6), it turns out that

Ĝσ2 ∗ δµ(λ) = eikµ−(k2/2)σ2
, (1.7)

for k ∈ R, which is precisely the characteristic function of Gt ∗ δµ(x) or a N(µ, σ)

probability density.

Now based on the fact that if we have a random sample X1, . . . , Xn from the

Gaussian density Gσ2 ∗ δµ, one can form the empirical characteristic function

Ĝn
σ2(λ) =

1

n

n∑

j=1

ϕλ(Xj) (1.8)

for λ ∈ Λ along the lines of what is done for the Euclidean case, see Bhat-

tacharya and Patrangenaru (2003). This then allows one to construct maximum

likelihood estimation procedures based on the empirical characteristic function,

and this is laid out in Beran and Fisher (1998); Bhattacharya (2008), Bandu-

lasiri, Bhattacharya and Patrangenaru (2009) and more generally in Anotoniadis,

Feuerverger and Goncalves (2006). Therefore it is evident that, even though we

cannot write the normal distribution down in closed form on M, it is still possible

to have that concept with unknown mean and variance, and to perform maxi-

mum likelihood estimation through the empirical characteristic function. One

can then consider issues related to such things as efficiency.

In summarizing this discussion, it is encouraging to see that statistical tech-

niques beyond the case of Euclidean space are gaining momentum. As in the

paper being discussed, they are contributing to the evolution of statistics. Our

discussion is an attempt to bridge the evolving nature of statistics with some

“bread and butter” tools of statistics in the hope that statistics can adapt to the

changing environment.
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COMMENT

Manik C Mukherjee and Atanu Biswas

Netajinagar Vidyamandir and Indian Statistical Institute

In the present discussion we discuss the transition from principal component

analysis (PCA) to geodesic principal component analysis (GPCA) – the path of

the journey from geometry to Lie group topology.

A primary goal of statistical shape analysis is to describe the variability of

a population of geometric objects. A standard technique for computing such de-

scriptions is PCA. However, as PCA is limited in that it only works for data lying

in a Euclidean vector space, this is certainly sufficient for geometric models that
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are parameterized by a set of landmarks or a dense collection of boundary points,

but it does not handle more complex representations of shape. PCA was extended

to nonlinear PCA (NLPCA) in different directions (see, e.g., Kramer (1991), and

Lawrence (2005)), but still that is under the usual Euclidean geometry set-up.

Principal geodesic analysis is a generalization of PCA to a non-Euclidean, non-

linear setting of manifolds suitable for use with shape descriptors such as medical

representations. Huckemann, Hotz and Munk provided an extremely informative

discussion on various aspects of GPCA including the procedure to find different

ordered GPCs. They illustrated that their approach outperfoms the usual PCA.

A notable ommission in their study is any resampling technique. Dam, Fletcher,

Pizer, Tracton and Rosenman (2004) carried out prostate shape modeling based

on principal geodesic analysis bootstrapping. Surely, resampling is a practical

possibility, and it would be quite useful to find some comparison with that, along

with some theoretical study.

Fletcher, Lu, Pizer and Joshi (2004) laid an excellent platform to discuss the

GPCA. The underlying philosophy, set-up, analysis, and the required mathemat-

ics are very different!! Huckemann, Hotz and Munk explained basic mathematical

preliminaries in great details but, as a reader, one would like to have not only

the changed technology but an account of the flow of that change that might

help a statistician appreciate the use of topology in GPCA. It is not only about

Lie groups as a tool, the philosophy should be blended with the philosophy of

GPCA. Next we focus on going from geometry to topology in order to appreciate

the journey from PCA to GPCA.

Mathematics is the language of ‘Nature’. Biostatistics mainly deals with

the application of different statistical methods to data collected from a biological

frame of reference in a systematic way. We always try to handle the collected data

through a rigorous analytical system. ‘Mathematical Analysis’ (real, complex,

functional, numerical) wants a minute observation and scrutiny on the desired

results. For this purpose, knowledge of Calculus, algebra (linear and abstract),

and geometry are essentially needed. In order to analyze the characteristics of a

sample in sample space we first have to locate its position, and hence geometrical

sense is required. The basic concepts of Euclidean space helps. As research is a

continuous process, our views are extended from one stage to another and this is

done by different kinds of operators (raising/maximizing or lowering/minimizing)

transformations (viz. translation, shifting, rotation or helocoidal (mixed) form).

This comes from the notion of orphism (homomorphism, isomorphism, auto-

morphism, heomorphism, diffeomorphism, etc.). From finer to finest form, we

are moving from Euclidean space to non-Euclidean space, Riemannian space to

non-Riemannian space.

In order to broaden our outlook we give more emphasis on ‘structure’. So the

place of geometry is occupied by topology. To measure the distance between two
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objects ‘metric’ has appeared. As a consequence, we observe that by means of the

usual metric a topology on Rn (n-dimensional real Euclidean space) is defined

that allows us to regard it as a Hausdorff space (where distinct points will get

distinct images). We consider a topological space and then we take a non-empty

open subspace of Rn. This homomorphism is called a ‘chart’ in the topological

subspace. A topological space is called locally Euclidean at a point if there exists

a chart on a neighborhood of that point. So a Hausdorff space which is locally

Euclidean at each point is called a ‘manifold’. Evidently, homeomorphism gives

us the guarantee of continuity. The notion of analytic function (smooth) comes

which is infinitely differentiable. In this way in a topological space the concept

of continuity, differentiability, connectedness, etc., are developed. On a curved

surface the smallest distance between two points is calculated by ‘geodesic’.

For analyzing GPCA, the idea of manifold is not sufficient. We extend it

into differentiable manifold just to make our journey complete through continuity.

Lie groups appear in differential manifolds with algebric form. In our literature,

the tree of differential geometry which takes birth from the basic ideas of two

pioneers, Gauss and Riemann, has blossomed with many beautiful flowers on

different branches of tensor analysis (Riemannian, Ricci, Einstein tensor, etc.).

The concepts of tangent bundle, fiber (path) bundle are developed in the

tangent space of Rn. The tangent bundle of a manifold, embedded manifold,

and c∞ manifold are explained by means of projection maps (orthogonal) by

many eminent mathematicians. In the modern phase, ideas of Euclidean classi-

cal concept are developed by new techniques and notations. These tools (both

theoretical and practical) are frequently used in stochastic processes also. In

Abraham and Marsden (1978), applications of differential geometry are available

to explain the uniqueness of the intrinsic and extrinsic mean as measures of loca-

tion of probability measures on Riemannian manifolds. Asymptotic dispersions

are obtained for distribution on the direction spaces, real projective spaces, and

planar shape spaces accepting the notion of PCA on a linear system of Euclidean

data. But in Ambartzumian (1990) mainly, the idea was extended by GPCA on

nonlinear systems with high curvature.

We finally observe that from Darwin to Kendall shape analysis, from Dalton

to Dirac space, everywhere accepts the new thoughts and ideas which are cast on

the screen of development of our society. Theoretical and classical methods are

well-served by the new practical approach. Today we are echoing the Aristotelian

postulate on Euclidean space: what applies to the whole applies also to the parts.
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COMMENT

Vic Patrangenaru

Florida State University

1. Introduction

In their paper “Intrinsic Shape Analysis: Geodesic PCA For Riemannian
Manifolds Modulo Isometric Lie Group Actions”, Huckemann, Hotz, and Munk
study a class of principal curves of random objects on orbifolds that are quotients
of Riemannian manifolds by actions of group of isometries. These principal curves
are least expected square distance generalized geodesics that explain the overall
location of a data set on such an orbifold. Algorithms for computing generalized
principal components are designed and carried out on Kendall’s shape spaces Σk

m

for m > 2 (Kendall (1984)).

2. Discussion

We discuss mainly aspects of the paper from the perspective of statistics on
manifolds. The article requires a reasonable knowledge of Riemannian geometry

file:maniknnv@gmail.com
file:atanu@isical.ac.in
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including geodesic and curvature computations at the level of Kobayashi and

Nomizu (1969), and basic knowledge of PCA and statistical shape analysis.

Recall that an orbifold is a space of orbits of a group action on a manifold.

In the paper the action is that of a group of isometries of a Riemannian manifold,

and the resulting quotient orbifold can be thought of as a manifold with some

well-behaved singularities. One of the most important contributions in the paper

is on the behavior of generalized principal components for distributions around

singular points.

In the following, all manifolds are assumed to be connected. Let ρ be a

distance on a complete manifold M and Q = PX be a probability measure

associated with a random object on M. Ziezold (1994) defined the Fréchet mean

set of X as the set of minimizers of the Fréchet function Fρ(x) = E(ρ2(X,x)) =∫
M ρ2(y, x)Q(dy), assuming the integral is finite. Note that a point x ∈ M can

be regarded as a 0-dimensional submanifold of M, leading to the following.

Definition 2.1. Let S(M, p) be the set of all closed p−dimensional connected

submanifolds of M, and the p-dimensional Fréchet function, FQ,p : S(M, p) →
[0,∞], be

FQ,p(N) = E(ρ2(X,N)) =

∫

M
ρ2(x,N)Q(dx). (2.1)

A submanifold N0 ∈ S(M, p) is said to be a principal submanifold if N0 is a

minimizer of FQ,p. If X1, . . . , Xn is a random sample from Q, a sample principal

submanifold is a submanifold N̂0 ∈ S(M, p), minimizer of FQ̂n,p, where Q̂n is the

empirical distribution of X1, . . . , Xn.

Note that when p = 1, principal submanifolds correspond to principal curves

in the sense of Hastie and Stuetzle (1989). The notion of principal submanifold

is nevertheless too general; indeed, given a sample x1, . . . , xn, of observations

from Q, for any p ≥ 1 there are infinitely many sample principal submanifolds

N̂ , since there are many submanifolds N̂ containing the set {x1, . . . , xn}, and

for any such submanifold FQ̂n,p(N̂) = 0. It follows that this definition does

not insure consistency. It is then preferable to restrict FQ,p to convenient types

of submanifolds, satisfying certain second order (partial) differential equations,

so that such families of manifolds depend continuously on a finite number of

parameters, and consistency follows. For example in the Riemannian case, for

p = 1, one may consider principal geodesics on M, and for p = 2, one may

consider principal minimal surfaces or principal totally geodesic surfaces if M is

a symmetric space, etc.

Remark 2.1. Note that if (M, ρ) is the Euclidean space (Rp, ρ0), geodesics are

straight lines, totally geodesic surfaces are planes, etc. From the Pythagorean

theorem, it follows that for any random vector X on Rp, principal lines, principal
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planes, etc. are spanned by principal components and they all go through the

mean vector µX (for a proof, see for example Hastie and Stuetzle (1989)).

Nevertheless, the common Euclidean thinking that PC’s go through the mean

vector of a distribution (see Remark 2.1), led Fletcher, Lu, Pizer and Joshi (2004)

to assume, by definition, that principal geodesics lines go through the intrinsic

mean. On an arbitrary Riemannian manifold however, unlike in Euclidean ge-

ometry, the Pythagorean theorem fails, therefore there is no reason to believe

that a principal geodesic contains the intrinsic mean. This was the starting

point of principal geodesic analysis on Riemannian manifolds in Huckemann and

Ziezold (2006), where a first example of a principal geodesic that does not go

through the intrinsic mean was given. Huckemann et al. now build on the idea

of principal geodesic on a manifold in Huckemann and Ziezold (2006), expand it,

and give additional data-driven examples of geodesic PCA on Kendall’s shape

spaces (in 3D). Note that in shape analysis, the Kendall shape space Σk
3, the

set of direct similarity shapes of nontrivial k-ads ( configurations of k labeled

nonidentical points ) in R3, is often described as the quotient of the preshape

sphere S3k−4 ⊂ R3k−1
by the diagonal isometric action of the orthogonal group

SO(3). Since the isotropy groups of shapes of configurations of collinear k-ads

are notrivial, such shapes are singular points on the shape orbifold Σk
3. Bearing

in mind that this type of orbifold arises in statistical shape analysis, the authors

consider in general the geometry of a quotient M/G of the canonical projection

π : M → M/G, (2.2)

of a complete Riemannian manifold M by a Lie group G that acts by isometries.

Note that if d is the Riemannian distance on M , the distance between two orbits

(fibers of π), dM/G(Gx, Gy) =: inf{z∈Gy}dM (x, z) is well defined, and horizontal

geodesics on M (orthogonal to the fibers) project onto a so-called generalized

geodesic on M/G. The authors define a first generalized principal component of

a probability measure Q on the orbifold M/G in (2.2) as minimizer of a Fréchet-

like function FQ,1 defined on the set G(M/G, 1) of generalized geodesics, given

by

FQ,1(N) = E(d2
M/G(X,N)) =

∫

M
d2

M/G(x,N)Q(dx). (2.3)

A first generalized principal component (GPC) is a minimizing generalized geo-

desic of FQ,1 in (2.3). Its sample counterpart is a generalized geodesic that

yields the least sum of square residuals to the sample points. The second GPC

is a generalized geodesic minimizing FQ,1 in (2.3) over all generalized geodesics

meeting orthogonally the first GPC. A principal component mean (PM) µP is

a minimizer of the expected square distance to the points of intersection of the
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first and second GPC. An example of a distribution on an orbifold M/G for

which the first two GPC’s meet at more than one point would been helpful here.

The m − th GPC, for m > 2, is defined inductively as a minimizing generalized

geodesic of FQ,1 in (2.3) over all generalized geodesics going through µP that are

orthogonal on the first m − 1 GPC’s.

The authors show that the PM and GPC’s are well defined outside null

sets. In the Euclidean case the intrinsic mean and the PM coincide, and, given

that Huckemann et al.’s definition, although technical, falls under the general

characterization of principal submanifolds, we find it more natural than that of

Fletcher et al. (2004).

An interesting concept introduced by Huckeman et al. is that of curvature

CX present in a random object X, given in their equation (7). Note that planar

Kendall shape spaces have positive constant holomorphic curvature. It would

be useful if the authors would prove their conjecture claiming that on a positive

sectional curvature manifold CX ≥ 0, while on a manifold of negative sectional

curvature CX ≤ 0, at least in the case M/G = Σk
2 = CP k−2.

Much of the paper is dedicated to computations of generalized geodesics,

and in particular of sample GPC’s in Kendall’s shape spaces. Huckemann et

al. assume that M is a submanifold of a Hilbert space H, which is globally

defined as set of zeroes of a submersion φ : H → Rk. Generalized geodesics on

M/G are represented by horizontal geodesics on M that are orthogonal to the

orbits of K. Their computations are based on a two-stage minimization for the

optimal positioning of a point x ∈ M with respect to a geodesic on M , following

ideas in Small (1996) or in Kendall, Barden, Carne and Le (1999). In particular

a result in Kendall et al. (1999) on the unboundedness of the curvature along a

geodesic approaching a singular point on a shape space in 3D, is given an elegant

proof here.

Huckemann et al. apply their GPC methodology to data analysis on 3D

shape orbifolds for both data on the regular part of the shape space, as well as

for data that is closer to the singular part of this orbifold. Their methodology

fares better than competing PCA techniques on manifolds, especially for data

close to singular points on shape spaces, shapes of almost collinear landmarks in

R3.

Historically, statistical shape analysis, including inference, was based on an

equivariant embedding of the shape manifold in an Euclidian space of matrices.

Unlike for intrinsic means, there are necessary and sufficient conditions for exis-

tence of the Fréchet means with respect to such extrinsic distances (see Goodall

(1991), Kent (1992), Dryden and Mardia (1998), Bhattacharya and Patrange-

naru (2003, 2005), Bhattacharya and Bhattacharya (2008), Bhattacharya (2008)

and Bandulasiri, Bhattacharya and Patrangenaru (2009)). This remark is also
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valid for directional and axial data analysis ( Watson (1983), Prentice (1984),

Fisher, Hall, Jing and Wood (1996), Beran and Fisher (1998)). In view of Def-

inition 2.1, which can be formulated for any distance, the authors could have

had pursued an extrinsic GPCA on manifolds. Such an approach would not be

restricted to concentrated data on manifolds. An extrinsic approach might be

also instrumental in developing in general an asymptotic theory for GPC’s on

manifolds.
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REJOINDER

Stephan Huckemann, Thomas Hotz and Axel Munk

Georgia Augusta Universiät Göttingen

1. Introduction

The authors wish to thank the discussants for their very interesting and

stimulating contributions indicating various directions for future research and

clarifying issues raised in our contribution. It seems that the following three

major topics

1. “Simple and Parsimonious Descriptors for Shape Data”,

2. “Shape Space Geometry”, and

3. “Statistical Inference for Shape Spaces”

emerge from the ample comments provided by the discussants. These comments

have been given from the individual perspectives of expertise in quite different

fields which interestingly allow to connect originally disjoint strains of thoughts.

For this reason we organize our rejoinder by following these specific issues and

perspectives, rather than by addressing each contribution separately and thus

loosing valuable aspects of this stimulating discussion.

file:vic@stat.fsu.edu
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1. Simple and Parsimonious Data-Descriptors

One goal of classical Euclidean statistics is to effectively describe data us-

ing low dimensional descriptors, not least to make them more interpretable. To

such ends principal components analysis (PCA) is often employed, as its vari-

ance decomposition yields zero-dimensional (means), one-dimensional (first PC),

and higher dimensional data descriptors. We emphasize that simplicity of data-

descriptors is of value in itself, e.g., linear models may not model real life situa-

tions satisfactorily but their use for understanding and handling by a practitioner

are beyond doubt.

As J.T. Kent elaborated upon in his comment, for some shape data, variance

decomposition, dimension reduction, and arbitrary dimensional data-descriptors

may be inappropriate concepts, and tools likewise. Thus for most data ap-

plications on a torus, almost every (w.r.t. the induced canonical Riemannian

measure on the space of geodesics) “one-dimensional” geodesic data-descriptor

is dense, i.e. is two-dimensional in effect, so hardly giving a “parsimonious”

description of the data. Thus, for data sufficiently spread out on a torus, mean-

ingful one-dimensional data descriptors may prove difficult to define. Hence, as

a general phenomenon on arbitrary shape spaces, there may not be meaningful

data-descriptors of any desired dimensionality. Moreover as demonstrated by

our contribution, for a given data-set, data-descriptors of varying dimensionality

may have little in common. In the second subsection, we follow and extend the

classification of data proposed by J.T. Kent in his contribution.

Beforehand, however, we elaborate on the first issue, namely, that a rea-

sonable objective of (intrinsic) data analysis consists in finding parsimonious

data-descriptors that allow for the essential tasks of statistics to be performed;

in particular, R.N. Bhattacharya in his contribution asked for feature selection,

classification, and prediction – dimension reduction might also be added. Clearly,

whether a descriptor is indeed parsimonious depends on one’s aims. This well-

known fact has been recently discussed in mathematical rigour by Yang (2005)

among many others, viewing model selection as the search for a parsimonious

model. This dependence will resurface when we discuss inference. An alterna-

tive intrinsic approach, based on directly adapting the geometry itself to suit the

data, is proposed in Section 2.5.

Our contribution may be seen as proposing that, when working in a specific

non-Euclidean geometry, parsimony is most naturally achieved by using data-

descriptors based on the space’s intrinsic geometry, most prominently based on

geodesics. Choosing such intrinsic descriptors can be justified when the data

at hand are in some way congruent to the underlying geometry. Since obvi-

ously some data – e.g., as presented by S. Jung, M. Foskey, and J. S. Marron
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– are incongruous to the underlying geometry, a thorough investigation of this

assumption is necessary.

1.1. Data-descriptors

In our contribution we used generalized geodesics to obtain parsimonious

data descriptors. These generalized geodesics were taken from an underlying

canonical geometric structure. Often, there is a unique canonical structure stem-

ming from the subsequent immersions and submersions defining the shape space,

e.g. for Kendall’s shape spaces; this structure is given by immersing a hyper-

sphere in a Euclidean space and subsequently submersing it w.r.t. the special

orthogonal group action. Sometimes, however, there is more than one canon-

ical structure, e.g., for the spaces of geodesics on Kendall’s shape spaces (cf.,

Theorem 5.3) at least two different canonical structures come to mind. For the

first structure, the Grassmannian involved is viewed as a quotient of a Stiefel

manifold; for the other more simple structure, only quotients w.r.t. orthogonal

groups are considered (cf., Edelman, Arias, and Smith (1998)). As remarked on

by many discussants, one can generalize to other geometries as well.

A very interesting approach by S. Jung, M. Foskey and J.S. Marron is to

retain the original spherical geometry but include arbitrary circles for principal

components. While computationally not much harder to obtain than great cir-

cles, arbitrary circles allow for more flexibility in adapting to data on spheres

and direct products thereof, which are not only the common ingredients of me-

dial axes based shape manifolds (e.g Pizer, Siddiqi, Székely, Damon, and Zucker

(2003), Fuchs and Scherzer (2008), as well as Sen, Foskey, Marron, and Styner

(2008)), but can also be used to model prealigned landmark-based shape data

(cf., Dryden (2005) as well as Hotz, Huckemann, Gaffrey, Munk, and Sloboda

(2009)). We note that circles on spheres are curves of constant curvature thereby

generalizing great circles which are curves with constant curvature zero. Extend-

ing this approach is a challenging project; one may as well investigate curves

of constant non-zero curvature on general shape spaces, and build a principal

component analysis on them.

J.T. Kent also proposed allowing more freedom for choosing one-dimensional

descriptors. In particular, he demonstrated how time series of shape data showing

the growth of rats can be successfully modeled by employing tensor products of

e.g., principal splines. Kume, Dryden, and Le (2007) also model higher-order

curves on manifolds to describe shape data by splines. We remark, however, that

these models serve a different primary purpose, namely to describe longitudinal

data as opposed to i.i.d. observations for which PCA is usually employed.
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In the Appendix we touched on a third approach to parsimony based on sim-

ple descriptors, namely considering totally geodesic submanifolds or submanifolds

totally geodesic at least at a point. We emphasize that the former may not exist

for arbitrary dimension, the latter may only locally be manifolds. Noting this

idea of employing higher-dimensional submanifolds, V. Patrangenaru suggested

considering principal submanifolds, as introduced by Hastie and Stuetzle (1989),

e.g., from the class of minimal surfaces and their higher dimensional analogs.

This challenging topic certainly deserves further research.

1.2. Limitations to dimension reduction

Depending on their distribution, not all data on manifolds may warrant

descriptions of any desired dimension. In order to facilitate discussions about

which descriptors are appropriate for what data sets, J.T. Kent distinguished

between Type I and Type II data. Data of Type I can effectively be analyzed by

mimicking Euclidean PCA; in particular, the first principal component describing

the main direction of data variation passes through the mean. In contrast on

compact spaces, data may be spread along recurrent geodesics; for such Type II

data, the concept of a data mean is meaningless and the first principal component

is the most parsimonious data descriptor. A typical example of Type II data

is given by a sample of a girdle distribution around the equator of a sphere.

Obviously, the means, i.e. the north- and south-pole, constitute no reasonable

(zero-dimensional) summaries of the data.

In his discussion, J.T. Kent re-analyzes our crown data in a fascinating and

simple manner. While the impact of unbounded curvature for data near singular

shapes is quite dramatic when the data involve reflections, i.e. symmetries w.r.t.

a singular shape, J.T. Kent correctly points out that if this symmetry is removed,

the impact of curvature may be considerably reduced; for the “tree-crown” data

at hand, Type II data thus are transformed into Type I data. Nonetheless,

whether the symmetry may be removed is a question of the research’s aims;

often, identifying symmetric objects is not permissible.

We believe that introducing the distinction between Type I and Type II is a

very enlightening clarification of the fundamentals of our endeavor. While being

inspired by J.T. Kent’s classification, we would like to distinguish more subtly

between flat data (his Type I), curved data, and looped data, as we feel that

for data on general manifolds there are more than two types of situations to be

treated distinctly. We note that J.T. Kent’s definition of data of Type II is a

special case of our definition of looped data. Also, data – be they Euclidean or

on a manifold – may be incongruous with the geometric structure of the space.

Typical data sets of the four types are depicted in Figure 1.
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(a) Flat data. (b) Curved data.

(c) Looped data. (d) Incongruous data.

Figure 1. Visualizing typical data types on a cone-like surface with un-
bounded curvature.

Flat data are concentrated enough such that one can treat them as if they were

observed on a flat (i.e. Euclidean) space; clearly, the higher the curvature in

this region, the more concentrated the data set needs to be. For this kind of

data, all means (Procrustes mean, IM and PM) are close to one another and

the first GPC passes nearly through the IM. In consequence within some

approximation, the total variance decomposes, mimicking Euclidean PCA.

This type of data has been characterized as Type I by J.T. Kent. In this

situation, general Procrustes analysis (GPA), principal geodesic analysis

(PGA), and geodesic principal component analysis (GPCA) yield similar

results.

Curved data spread further than flat data, so the space’s curvature needs to

be taken into account. Such data have their Procrustes mean and IM much

closer to one another than to the PM, and are considerably distant from

the first GPC. Still, the means represent meaningful zero-dimensional data
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descriptors. For this type of data, however, a decomposition of total variance

into variances explained by geodesics is inappropriate.

Looped data are more severely affected by the space’s curvature than curved

data. While curvature is more of a local feature in curved data, for looped

data global effects of curvature play a dominant role. In consequence, such

data may not feature parsimonious data descriptors in a meaningful way

for any given dimensionality, e.g., a meaningful mean may not exist because

the data are spread around an equator of a sphere or because data “loop”

around a singularity of the space. Often, the IM and the Procrustes mean

can still be computed and they are far from the PM. Then GPA and PGA

can be performed as well, usually yielding similar results yet very different

from the results obtained by GPCA.

Incongruous data possess features that are not easily modelled using descrip-

tors derived from the space’s (intrinsic) geometry. One might as well say

that geometry-based models do not fit the data. Similar to looped data,

parsimonious data descriptors may not exist in a meaningful way for any

given dimensionality. In contrast to looped data however, this is not a con-

sequence of the geometry of the underlying space, rather the data do not

conform to the given geometry. A typical example of incongruous data is

given by clusters, e.g., isotropically arranged w.r.t. their common center

such that only the zero- and the full-dimensional data descriptor are mean-

ingful, or by data along a circle in a two-dimensional Euclidean space (only

the zero- and two-dimensional data descriptor are meaningful).

In a way, for flat data one may work and think Euclidean, for curved data

one must abandon the Euclidean concept of nested variance decomposition, while

for looped data, one has to additionally give up the quest for reduction to ar-

bitrarily low dimension. As clearly illustrated by S. Jung, M. Foskey, and J.S.

Marron, incongruous data cannot be tackled well with models based on the in-

trinsic geometry alone. Note that curved and looped data can only occur on

non-flat spaces.

Examples for flat, looped and incongruous data. The classical data set

of “macaque skulls” (Dryden and Mardia, 1993) is a typical example for flat

data, intrinsic variance (data dispersion) and data curvature (CX) both are low,

as illustrated in Section 6.3 of our contribution. Flat Kendall shapes of two-

dimensional objects can be modelled well by complex Bingham distributions (cf.,

Kent (1994)) if the dispersion is small (cf., Huckemann and Hotz (2009)). More

realistic models are achieved by using quartic complex Bingham distributions (cf.,
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Kent, Mardia, and McDonnell (2006)) of low dispersion. Low dispersion and low

curvature distinguish flat from looped data, as the latter feature a notably high

data curvature.

While for looped data there is no need for low intrinsic variance – e.g. for

a girdle distribution around a sphere as pointed out by J.T. Kent – small in-

trinsic variance with high data curvature indicates proximity to a singularity as

in our “tree crown” example. Recall that shape spaces may feature unbounded

curvature in regions of bounded diameter. In Figure 1(c) we illustrate the latter

situation of low intrinsic variance for looped data in a simplified two-dimensional

geometry (Σ4
3 is five-dimensional). Note the subtle difference from incongruous

data on the same surface, depicted in Figure 1(d). For the former, the singu-

larity is surrounded by the data which lie “intrinsically along a straight line”

(i.e. along a geodesic); it is the space that generates the loop. The latter data

surround a regular region of the surface where the looped structure is not caused

by the space’s geometry. Typical examples of incongruous data modelled with

non-geodesic descriptors are illustrated in the contribution of S. Jung, M. Foskey,

and J.S. Marron, as well as by Hastie and Stuetzle (1989).

The “brooch” data are curved. Let us now reconsider the brooch data from

Section 6.2. Again, the IM or the Procrustes mean serve well as one-dimensional

data-descriptors. Recall that the first GPC captures the dominant mode of data-

variation, namely diversification that is found neither by GPA nor PGA. The

differences between these methods’ results show the data not to be flat; this is

also visible from the considerable data curvature (CX).

In some way, the second GPC seems “parallel” to the generalized geodesic

determined by the covariance matrix obtained from GPA or PGA, as it catches

precisely that mode of data-variation. Since every single brooch shape is closer

to any other brooch shape than to its reflected shape, this data-set contains “no

reflections” as opposed to the crown data which are indeed looped. We conclude

that this data set is curved.

2. Shape Space Geometry

In this section we remark on the very profound comments in the contribu-

tions of R.N. Bhattacharya and V. Patrangenaru concerning the role of means

and geodesic variance. As is well known (cf., Karcher (1977)), uniqueness of in-

trinsic means can only be assured under restrictive conditions involving bounds

on curvature. In effect, for data in high curvature regions as in our “tree-crown”

example, a theoretical argument giving the uniqueness of intrinsic means that

we naively computed presents quite a challenge. It seems even more difficult,
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yet similarly important for a thorough foundation of analysis of nearly degen-

erate data to derive general conditions on the uniqueness of geodesic principal

components and their intersection point, the principal component mean.

Inspired by V. Patrangenaru, we first establish that the data curvature CX

has the same sign as the sectional curvature on constant curvature manifolds.

As a consequence, MANOVA cannot directly be applied to data on manifolds,

rather we propose a combination of local variance decomposition coupled with

parallel transport in the second subsection.

The third subsection addresses the concern of R.N. Bhattacharya that geodesic

variances explained by the s-th GPC may be negative.

In the fourth subsection we take up the non-trivial issue of variance obtained

by projection on Kendall’s shape spaces. At this point we would like to clarify

that principal geodesic analysis (PGA), as introduced by Fletcher and Joshi

(2004), which has been cited by R.N. Bhattacharya as well as by M.C. Mukherjee

and A. Biswas, is almost equivalent to general Procrustes analysis (PGA). In both

approaches the eigenvectors of the covariance matrix computed from the data

mapped to the tangent space at some mean determine the principal components;

the difference is that PGA employs the IM whereas GPA uses the Procrustes

mean. The similarity of the approaches follows from the fact that the means

are usually very close to one another. However, Fletcher and Joshi (2004) also

suggested that one could define GPCs by maximizing the projected variance. The

fourth section is also intended to clarify why we consider this problematic; we

rather agree with V. Patrangenaru that minimizing the residual variance under

no constraining condition appears far more natural.

In the concluding two subsections we suggest altering the Riemannian struc-

ture, based on the comments of P. T. Kim and J.-Y. Koo; finally, leaving Rieman-

nian geometry altogether, we propose a version of extrinsic PCA, as triggered by

V. Patrangenaru’s comments.

2.1. Data curvature estimated by CX

Here we consider data on a manifold M of constant positive or constant neg-

ative sectional curvature, i.e., on a sphere or on a hyperbolic space, respectively.

Recall that spherical shape spaces have been studied by Dryden (2005) as well as

Hotz et al. (2009); for hyperbolic shape spaces we refer to studies of Bookstein

(1991), Le and Small (1999), Le and Barden (2001), as well as Kume and Le

(2002). The situation underlying the following lemma is depicted in Figure 2.

Lemma 2.1. (Spherical and Hyperbolic Theorem of Pythagoras). Suppose that

two geodesics γ1 and γ2, on a constant sectional curvature manifold M with
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(a) Hyperbolic disk. (b) Two-sphere.

Figure 2. Pythagoras Theorem on constant sectional curvature manifolds.

intrinsic metric d, meet orthogonally at µ ∈ M , and that p ∈ M is contained

in the surface spanned by γ1 and γ2. For j = 1, 2, let aj = d(p(γj), p), Aj =

d(p(γj), µ), and c = d(µ, p) where the orthogonal projection of p to γj is p(γj)

assumed to be well defined. Then

a2
1 + a2

2 ≤ c2 ≤ A2
1 + A2

2

on spheres, whereas

a2
1 + a2

2 ≥ c2 ≥ A2
1 + A2

2

on hyperbolic spaces. The inequalities are strict unless p lies on γ1 or γ2.

Proof. First note that

y sin x ≤ sin(yx), 0 ≤ x ≤ π , (2.1)

y tanx ≥ tan(yx), 0 ≤ x ≤ π

2
, (2.2)

y tanx ≤ tan(yx),
π

2
≤ x ≤ π , (2.3)

y sinh z ≥ sinh(yz), z ≥ 0 , (2.4)

y tanh z ≤ tanh(yz), z ≥ 0 , (2.5)

for all 0 ≤ y ≤ 1. The inequalities are strict unless y = 0, 1 or x = 0 (for (2.1)

and (2.2)) or z = 0 (for (2.4) and (2.5)). This can be seen by verifying equality

at y = 0, 1 and by verifying that the r.h.s. of (2.1) and (2.5) are strictly concave

in y, while the r.h.s. of (2.2) and (2.4) are strictly convex. For (2.3) note that the

r.h.s. is strictly concave for π/2 ≤ yx ≤ π, and y tanx < 0 < tan(yx) otherwise.

Now for j = 1, 2, denote by αj ∈ [0, π/2] the angle between the geodesic γj and

the geodesic from µ to p. Note that sin α1 = cos α2.
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Assume that M is a sphere. From the spherical law of the sine we have

sin aj

sinαj
= sin c ,

giving with (2.1) (e.g. for the first term set x = c and y = sinα1, and for c > π/2

use the monotonicity of arcsin at (π − x)y instead)

a2
1 + a2

2 = arcsin2(sin α1 sin c) + arcsin2(sinα2 sin c)

≤ c2 sin2α1 + c2 cos2α1 = c2 ,

as desired. Note that equality holds if and only if c = 0 or sinα1 = 0, 1, i.e. iff p

lies on one of the two geodesics. From the spherical law of the cosine we have

cos A1 =
cos c

cos a2
=

cos c√
1 − sin2c cos2α1

, cos A2 =
cos c√

1 − sin2c cos2α2

giving

A2
1 + A2

2 = arccos2

(
cos c√

1 − sin2c cos2α1

)
+ arccos2

(
cos c√

1 − sin2c cos2α2

)

≥ c2 sin2α1 + c2 sin2α2 = c2 .

Here, we used

cos2 c

1 − sin2c cos2αj
=

cos2 c

cos2c + sin2c sin2αj

=
1

1 + sin2αj tan2c

≤
≥

}
cos2(c sinαj) for

{
0 ≤ c ≤ π

2
π
2 ≤ c ≤ π

,

which is a consequence of (2.2) and (2.3). Equality holds again if and only if p

lies on one of the two geodesics.

Now suppose that M is a hyperbolic space. We have the hyperbolic laws of

sine and cosine:

sinh aj

sin αj
= sinh c, cosh Aj =

cosh c

cos aj′
, {j, j′} = {1, 2} .

Then with the argument above, accordingly modified using (2.4), we have at

once a2
1 +a2

2 ≥ c2. The other inequality, A2
1 +A2

2 ≤ c2, follows from an analogous

argument using

cosh aj′ =
√

1 + sinh2aj′ =
√

1 + sinh2c cos2αj ,
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cosh2c

1 + sinh2c cos2αj

=
cosh2c

cosh2c − sinh2c sin2αj

=
1

1 − sin2αj tanh2c

≤ cosh2(c sinαj) ,

which is a consequence of (2.5). Equality holds again if and only if p lies on one

of the two geodesics.

We say that a random variable X on a quotient space Q = M/G admits

a unique GPCA if all population GPCs and the population PM exist and are

uniquely determined, and if the orthogonal projections X(δ) to all GPCs δ are

a.s. well defined.

As a consequence of Theorem 2.6 of our contribution, every random variable

absolutely continuous w.r.t. the measure induced by the Riemannian measure

on M features a.s. well defined orthogonal projections to a given generalized

geodesic.

Recall that every submanifold of a constant curvature manifold spanned

by geodesics through a common point is totally geodesic. Hence, an inductive

argument relying on Lemma 2.1 gives at once the following.

Theorem 2.2. Suppose that a random variable X on a constant curvature man-

ifold M admits a unique GPCA. Then CX = 0 for zero sectional curvature,

CX ≥ 0 for positive sectional curvature, and CX ≤ 0 for negative sectional cur-

vature. The inequalites are strict if and only if X does not exclusively assume

values on its GPCs a.s.

This settles the issue raised by V. Patrangenaru in the special case of constant

curvature manifolds.

2.2. Variance decomposition and multiple effects models

Variance decomposition, and hence dimension reduction, in Euclidean space

is based on the Pythagoras Theorem that has CX = 0. For random variables

spread out on spaces involving curvature this decomposition poses difficulties,

as will be further elaborated on below. The approach of classical MANOVA

and multiple effects models can be thought of as a combination of variance de-

composition locally and comparison via the connection of tangent spaces, i.e.

affine parallel transport. Obviously on compact spaces, parallelism can only be

a local concept. Translating an intuitive notion of similar shape variation into,

say, parallel data variation (as begun in Huckemann (2009)), seems like another

challenging goal when confronting the non-linear structure of shape spaces. In a
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Table 1. Variance explained by residuals. Top row: five-dimensional shapes
of tree crowns; middle row: five-dimensional data of iron age brooches; and
bottom row: nine-dimensional data of macaque skulls. For the latter data

only the ultimate variance is negative.

GPC1 GPC2 GPC3 GPC4 GPC5 ... GPC9

2.6e − 05 9.4e − 06 −2.8e − 06 −3.1e − 06 −3.1e − 06
0.40226 0.33941 0.08660 −0.00035 −0.03718

2.7e − 02 1.2e − 02 7.2e − 03 4.7e − 03 3.3e − 03 ... −1.3e − 05

similar vein, additive models cannot directly be generalized to shape spaces, be-

cause in general these spaces lack a (natural) commutative operation. In Hucke-

mann, Hotz, and Munk (2009), we discuss generalizations of classical fixed effects

models toward intrinsic MANOVA.

2.3. Variance explained by residuals

In Euclidean geometry due to the Pythagoras Theorem, V
(s)
res ≥ 0 for all

1 ≤ s ≤ m. For higher dimensions m, the variance V
(s)
res explained by the s-th

GPC obtained by residuals can be viewed as the difference between the mean

squared distance to all GPCs and the squared distanced to the s-th GPC. In

view of the Pythagoras Theorem for constant curvature spaces, cf., Lemma 2.1

for this reason, higher order variances may be negative. This effect increases

with dimension, dispersion, and anisotropy. Numerical experiments for data on

m-spheres give negative variance V
(m)
res “explained” by the ultimate GPC in more

than 80% of the simulations for

(a) data uniformly distributed on a quarter sphere {(x1, . . . , xm+1) ∈ Rm+1 :∑m+1
j=1 x2

j = 1,−π/4 ≤ x1 ≤ π/4} for m ≥ 7; and

(b) data highly anisotropically distributed following a spherical Bingham distri-

bution with eigenvalues 0, 0, 0,−104, i.e. m = 3 (see e.g., Mardia and Jupp

(2000, Section 9.4.3)).

Obviously, for m = 2 and any data admitting a unique GPCA, both V
(1)
res and

V
(2)
res are non-negative. For the shape data considered in our contribution the

individual variances explained by residuals are depicted in Table 1.
Summarizing, we can say that the tendency of higher order residual vari-

ances to be negative increases with dimension, dispersion, anisotropy, and data
curvature (CX).

2.4. Geodesic scores

Suppose that p(δ) = x sinα + v cos α is a pre-shape of the orthogonal pro-
jection of a shape [p] ∈ Σk

m to a generalized geodesic δ through a principal
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component mean [x] ∈ Σk
m with initial velocity v ∈ HxSk

m and geodesic score

t = arctan(α). As we have seen, even for concentrated data, due to oscillation

|t| can be large. If one determined generalized geodesics by maximizing sums

of squared geodesic scores as proposed by Fletcher and Joshi (2004), this effect

would be enlarged giving non-interpretable geodesic scores. For an example one

may think of data on a torus where there will be geodesics that allow infinite

scores while staying arbitrarily close to the data.

2.5. Data driven Riemannian metrics

As pointed out by most of the discussants (cf., Section 1.1), many data-sets

are approximated much better by non-geodesic curves than by geodesics. In

view of parsimony and the interpretation of the geometry of the shape space as

reflecting an “elastic shape energy” (cf., Bookstein (1986) as well as Grenander

and Miller (1994)), one might boldly want to alter the canonical geometry of the

shape space according to the data to be modelled. In their very interesting contri-

bution P.T. Kim and J.-Y. Koo pointed to the fact that the geometric structure

is equivalently described by the Laplace operator, which in turn is characterized

by its eigenfunctions and eigenvalues. Recent applications to image understand-

ing and shape analysis have successfully exploited this fact, e.g., Reuter, Wolter,

and Peinecke (2006) or Wardetzky, Mathur, Kälberer, and Grinspun (2007). Un-

der a statistical paradigm, these relations may be used to obtain a data-driven

adaption of the metric; a challenging endeavor that may provide further insight,

e.g., into biological growth, by finding the suitable geometry for a “geodesic hy-

pothesis” to hold. Indeed it is well known that for some applications (e.g., Kume

et al. (2007)), certain classes of curves non-geodesic w.r.t. the canonical metric

fit biological growth data much better than geodesic curves. Possibly, a frame-

work can be utilized which has been laid out in Kim, Koo, and Luo (2009) for a

different statistical estimation problem, though in a very similar context.

2.6. Extrinsic PCA

Finally, we comment on V. Patrangenaru’s plea for extrinsic analysis. As

illustrated in Bandulasiri, Bhattacharya and Patrangenaru (2009) for Kendall’s

three-dimensional reflection shape space, the Schönberg embedding allows for ex-

trinsic methods for the manifold part of the quotient. The intriguing fact about

extrinsic methods – if available – is that means and principal components can be

directly computed in Euclidean space and are mapped orthogonally back to the

manifold and the tangent space at the former, respectively. For Kendall’s three-

dimensional shapes non-invariant under reflections, a suitable embedding seems

not at hand. Moreover, in general, a canonical approach to extrinsic PCA seems

not obvious; e.g., one could define extrinsic PCs by projecting straight lines of
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the ambient space. Building such an extrinsic PCA at least on spaces with a

“benign” embedding seems like an interesting and challenging goal to pursue.

3. Statistical Inference

Several discussants bemoaned “the complete lack of consideration of prob-

lems of statistical inference” (R. N. Bhattacharya). Indeed, GPCA so far only

gives a parsimonious description of the data, but it does highlight the difficulties

already associated with descriptive statistics of shape data that need to be un-

derstood before attempting to do inference. Nonetheless, we summarize some of

the discussants’ suggestions for moving forward and mention some recent devel-

opments in this direction.

As J.T. Kent points out, there is a need for “more work to be done” de-

veloping distributions on shape spaces, especially for higher-dimensional shapes.

Such distributions are necessary to perform what is commonly known as para-

metric statistics where one starts by specifying a probabilistic model for one’s

data in order to infer about the model’s parameters after observing the data. One

promising approach to obtaining a generalization of a Gaussian distribution on

manifolds was mentioned by P.T. Kim and J.-Y. Koo, viewing this “Gaussian”

distribution as the solution of a diffusion equation with an adequately defined

Laplacian. They then propose to use likelihood methods for statistical inference

by means of the corresponding empirical characteristic function.

If one wants to avoid distributional assumptions about the data, nonpara-

metric methods need to be employed. M. C. Mukherjee and A. Biswas suggest

the use of resampling techniques to this end. A common technique for proving

the validity of, say, the bootstrap for inference requires a central limit theorem

(CLT) for the statistic in question. For a mean on a manifold, this is indeed

available, see e.g., Hendriks and Landsman (1996, 1998), as well as Bhattacharya

and Patrangenaru (2003, 2005) for the extrinsic and intrinsic mean. Such results

are relatively easy to obtain since they make use of the fact that the mean’s

distribution gets more and more concentrated asymptotically, hence allowing for

a Euclidean approximation. For PCA, matters are more difficult since PCs by

definition extend into the manifold – possibly even worse, onto the non-manifold

part of the quotient – and hence do not allow for a Euclidean approximation, even

asymptotically; for the Euclidean case see e.g., Anderson (1963) or Ruymgaart

and Yang (1997). More involved resampling techniques will be necessary here,

and the asymptotic distribution of the GPCs and its bootstrap analog appears

to us a very interesting challenge for the future.

Although statistical inference on manifolds raises difficulties, successful at-

tempts have been made for specific statistical models, especially for flat data

(cf., above). The latter e.g., allow for one-way analysis of variance, testing the
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hypothesis of no difference between the groups, see e.g., Dryden and Mardia

(1998) where the analysis is performed in the tangent space; R.N. Bhattacharya

discussed intrinsic treatments of one- and two-sample problems in his contribu-

tion. Recently, Huckemann et al. (2009) have developed an intrinsic two-way

MANOVA for groups of flat data for which Euclidean approximation in a single

tangent space is not necessarily appropriate, i.e., where the entire data set is not

necessarily flat.

While in the past most efforts have focused on flat data, we currently wit-

ness an increased interest in developing methodology for curved data. Due to the

aforementioned difficulties, many of the existing tools are only descriptive but

there are first results allowing to do inference for such data, e.g., based on CLTs

of intrinsic means. Curved data will certainly remain an issue of intense research

in the near future, calling for the careful generalization of existing techniques

to spaces where curvature has to be taken into account. This is especially im-

portant for Kendall’s shape spaces that feature non-constant curvature, or even

unbounded curvature for three- and higher-dimensional shapes. For looped data,

however, many concepts and views that have been developed for flat data will

no longer be applicable, so new ideas are needed to address the challenges such

data sets pose. This certainly requires fresh ways of thinking, opening the field

of shape analysis toward hitherto uncharted territory.
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480.

Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. Wiley, Chichester.

Edelman, A., Arias, T. A. and Smith, S. T. (1998). The geometry of algorithms with orthogo-

nality constraints. SIAM J. Matrix Anal. Appl. 20, 303-353.



INTRINSIC SHAPE ANALYSIS: GEODESIC PCA 99

Fletcher, P. T. and Joshi, S. C. (2004). Principal geodesic analysis on symmetric spaces: Statis-
tics of diffusion tensors. ECCV Workshops CVAMIA and MMBIA, 87-98.

Fuchs, M. and Scherzer, O. (2008). Regularized reconstruction of shapes with statistical a priori
knowledge. Internat. J. Comput. Vision 79, 119-135.

Grenander, U. and Miller, M. (1994). Representation of knowledge in complex systems. J. Roy.

Statist. Soc. Ser. B 56, 549-603.

Hastie, T. and Stuetzle, W. (1989). Principal curves. J. Amer. Statist. Assoc. 84 (406), 502-516.

Hendriks, H. and Landsman, Z. (1996). Asymptotic behaviour of sample mean location for
manifolds. Statistics & Probability Letters 26, 169-178.

Hendriks, H. and Landsman, Z. (1998). Mean location and sample mean location on manifolds:
asymptotics, tests, confidence regions. J. Multivariate Anal. 67, 227-243.

Hotz, T., Huckemann, S., Gaffrey, D., Munk, A. and Sloboda, B. (2009). Shape spaces for pre-
alingend star-shaped objects in studying the growth of plants. J. Roy. Statist. Soc. Ser. C,
to appear.

Huckemann, S. (2009). Parallel shape deformation. Preprint.

Huckemann, S. and Hotz, T. (2009). Principal components geodesics for planar shape spaces.
J. Multivariate Anal. 100, 699-714.

Huckemann, S., Hotz, T. and Munk, A. (2009). Intrinsic MANOVA for Riemannian manifolds
with an application to Kendall’s space of planar shapes. IEEE Trans. Pattern Anal. Mach.

Intell. To appear.

Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Comm. Pure Appl.

Math. XXX, 509-541.

Kent, J. (1994). The complex Bingham distribution and shape analysis. J. Roy. Statist. Soc.

Ser. B 56, 285-299.

Kent, J. T., Mardia, K. V. and McDonnell, P. (2006). The complex Bingham quartic distribution
and shape analysis. J. Roy. Statist. Soc. Ser. B 68, 747-765.

Kim, P. T., Koo, J.-Y. and Luo, Z.-M. (2009). Weyl eigenvalue asymptotics and sharp adaptation
on vector bundles. J. Multivariate Anal. To appear.

Kume, A., Dryden, I. and Le, H. (2007). Shape space smoothing splines for planar landmark
data. Biometrika 94, 513-528.
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