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Abstract
We investigate the use of intrinsic spectral analysis (ISA) for
query-by-example spoken term detection (QbE-STD). In the
task, spoken queries and test utterances in an audio archive are
converted to ISA features, and dynamic time warping is applied
to match the feature sequence in each query with those in test
utterances. Motivated by manifold learning, ISA has been pro-
posed to recover from untranscribed utterances a set of nonlin-
ear basis functions for the speech manifold, and shown with
improved phonetic separability and inherent speaker indepen-
dence. Due to the coarticulation phenomenon in speech, we
propose to use temporal context information to obtain the ISA
features. Gaussian posteriorgram, as an efficient acoustic rep-
resentation usually used in QbE-STD, is considered a baseline
feature. Experimental results on the TIMIT speech corpus show
that the ISA features can provide a relative 13.5% improvement
in mean average precision over the baseline features, when the
temporal context information is used.
Index Terms: spoken term detection, intrinsic spectral analysis,
Gaussian posteriorgram, dynamic time warping

1. Introduction
Spoken term detection (STD) refers to the task of finding the
occurrences of a given query in an audio archive. Usually, the
query is provided in text form. Under this condition, a sophisti-
cated large vocabulary continuous speech recognition (LVCSR)
system is needed to transcribe the utterances in the test archive
into their textual representations, and then detection is done on
the recognition lattices. This requires a large amount of anno-
tated speech data to train the speech recognizer, and out of vo-
cabulary (OOV) problem will occur if the query contains words
that are not in the recognition vocabulary.

Query-by-example spoken term detection (QbE-STD) is
another kind of scenario in which queries are spoken examples.
In this situation, the detector can convert spoken queries and
test utterances into sequences of acoustic features, and dynamic
time warping (DTW) is applied to match two sequences of the
features — one from a query and another from a test utterance.
QbE-STD is suitable for low-resource languages and even un-
known languages.

Posteriorgram features have been shown better performance
than raw spectral features in QbE-STD [1, 2, 3] and other
speech tasks [4, 5, 6]. In [1], phoneme posteriorgrams are gen-
erated using a well-trained phoneme recognizer. In [2], a Gaus-
sian mixture model (GMM) trained using a set of unlabeled
data is employed to generate Gaussian posteriorgrams. In [3],
HMMs are trained in an unsupervised way to extract acoustic

segment model (ASM) posteriorgrams. It is known that unsu-
pervised posteriorgram has a performance gap compared with
the supervised one for a QbE-STD task. However, training a
phoneme recognizer usually requires at least hours of annotat-
ed speech data. For many languages, it is difficult to collect
enough necessary resources. Thus we are interested to find an
unsupervised way to extract a more useful feature representa-
tion to reduce the performance gap between using unsupervised
and supervised methods.

Similar to Gaussian posteriorgrams, intrinsic spectral anal-
ysis (ISA) features provide a data representation which has
been shown less sensitive to speaker variations. This motivates
us to investigate the use of ISA for QbE-STD. ISA is formu-
lated in [7] as an unsupervised manifold learning algorithm,
which is derived from the unsupervised learning case of Mani-
fold Regularization [8]. ISA provides a natural regularized out-
of-example extension of Laplacian eigenmaps [9]. Laplacian
eigenmaps, as a dimensionality reduction and data representa-
tion method, have been shown its success in story segmenta-
tion [10, 11] and image segmentation [12]. Spectral clustering,
which has close connection to Laplacian eigenmaps, has been
shown useful for unsupervised acoustic unit mining [13, 14].
Recently supervised ISA [15] has been applied in phone clas-
sification with performance improvement. The experiments on
isolated word matching in [7] show ISA’s superiority of data
representation over traditional spectral features, such as MFCC
and PLP. However, the comparison between ISA features and
Gaussian posteriorgram features is not available in [7].

Due to the coarticulation phenomenon in speech, any sound
in a continuous speech production process is influenced by its
neighbor context. Some works [16, 17, 18] taking this phe-
nomenon into consideration report performance improvement
in their frameworks. In this paper, we propose to use temporal
context information to have a more accurate graph Laplacian in
order to obtain a better intrinsic projection maps in ISA, and
eventually the improved ISA features can provide performance
improvement for the QbE-STD task.

We are interested to compare the performance of ISA fea-
tures and Gaussian posteriorgrams in a QbE-STD task, because
both of them have been shown superior performance compared
with spectral features in separate studies. To the best of our
knowledge, this is the first attempt to do this comparison in
QbE-STD or similar tasks using sequence matching on acoustic
features. Note that intrinsic projection maps that generate ISA
features and the Gaussian components that generate posterior-
gram features can be considered as nonlinear transformations.
However, there is significant difference between the two nonlin-
ear transformations. While the intrinsic projection maps derive
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ISA features from log mel spectrograms, the Gaussian compo-
nents generate posteriorgrams from spectral features, such as
MFCC, which is from discrete cosine transform of log mel spec-
trogram. Discrete cosine transform in MFCC is used to decor-
relate each element of the features so that the resultant features
can be modeled with Gaussian components with diagonal co-
variance matrices. Moreover, while intrinsic projection maps
would preserve the neighborhood relations of the input data,
each frame of unlabeled data is considered independently in the
training of Gaussian components.

Our experimental results on the TIMIT corpus show that
the ISA features can provide a relative improvement of 13.5%
in MAP, 13.4% in P@N and 8.6% in P@10, over Gaussian pos-
teriorgrams, when temporal context information is used in ISA.
We also observe that the three parameters in ISA are not sensi-
tive to the use of temporal context information.

2. Intrinsic spectral analysis
Intrinsic spectral analysis is an unsupervised learning algorithm
which is designed to recover from unlabeled speech data a set
of nonlinear basis functions for the speech manifold [7]. Giv-
en a set of unlabeled training data, X = {x1, . . . , xn}, where
xi ∈ Rd for all i, that forms a mesh of data points that lie
on the manifold, we can construct a weighted, undirected ad-
jacency graph G(V,E) with one vertex per data point. As in
[8], edges between vertices Vi and Vj are defined by either k-
nearest neighbors or ϵ-neighborhoods, and the corresponding
edge weights Wij can be defined either using binary weight-
s or heat kernel weights. A graph Laplacian L is defined as
L = D − W, where D is a diagonal matrix with elements
Dii =

∑
j Wij .

The nonlinear basis function f can be learned by solving
the optimization problem

f∗ = argmin
f∈HK

∥f∥2K + ξfT Lf, (1)

where HK is the reproducing kernel Hilbert space (RHK-
S) for some positive semi-definite kernel function K, f =
[f(x1), . . . , f(xn)]

T is the vector of values of the basis func-
tion f for each point of the training data, and ξ is the regu-
larization parameter controlling the relative importance of the
two term: the first term is the extrinsic norm, representing the
complexity of the solution, and the second term is the Lapla-
cian eigenmaps objective function. By the RHKS representer
theorem, the solution of Eq. (1) can be written as

f∗(v) =

n∑
i=1

aiK(xi, v), (2)

where a = [a1, . . . , an]
T ∈ Rn is the eigenvector of the fol-

lowing generalized eigenvalue problem

(I + ξLK)a = λKa, (3)

where K is the n × n Gram matrix defined on the unlabeled
training data X by Kij = K(xi, xj), and I is the iden-
tity matrix. In this paper we chose the configuration as in
[7]: k-nearest neighbors and binary weights are used to define
the adjacency graph; radial basis function (RBF), K(x, y) =
exp(−∥x− y∥2 /2σ2), is used as the kernel function K.

Before solving the general eigenvalue problem in Eq. (3),
three parameters, including k, ξ, and σ, need to be chosen: k
refers to the number of the nearest neighbors used to define the

graph Laplacian L, ξ refers to the weighting parameters in E-
q. (3), and σ is the width of the RBF kernel mentioned above.
A full spectrum of eigenvectors can be attained by solving E-
q. (3). According to Eq. (2), each eigenvector corresponds to
a nonlinear intrinsic basis function, and then out-of-sample da-
ta points can be transformed into a low-dimensional form using
the first i (i << d) intrinsic basis functions (sorted by the eigen-
values in an ascendant order), which is believed to represent the
underlying manifold structure. The corresponding non-linear
projection maps are also known as intrinsic projection maps.

2.1. Making use of temporal context

We investigate to use temporal context information to better ob-
tain the underlying manifold structure. This is motivated by the
coarticulation phenomenon, in which any sound in a continuous
speech production process is influenced by its neighor context.
Since the utterances in the task are unannotated and there is no
prior information about the distinctive sounds (e.g. phonemes)
in the utterances, we make use of the temporal contextual in-
formation of each speech frame by concatenating consecutive
frames of short-time spectral features (log mel spectrograms).
More precisely, consider a short-time spectral feature si ∈ Rd

at time index i. The temporal context features sci can be ob-
tained as follows:

sci = [sTi−(c−1)/2, . . . , sTi , . . . , sTi+(c−1)/2]
T , (4)

where c denotes the number of contextual frames concatenated
into a supervector. Note that when c = 1, sci becomes the orig-
inal features as in [7] without the context information. When
temporal context is used, the number of dimensions of data
points in X is increased by c times (i.e. xi ∈ Rcd for all i).
Note that the elements in the graph Laplacian L and the kernel
matrix K are obtained by the observations of speech frames in
the increased dimensions, but the matrices keep their original
dimensions (n×n). In practice, the first and last frame in an ut-
terance is duplicated as necessary to let each frame have enough
contextual frames to be concatenated.

3. The QbE-STD framework
Query-by-example spoken term detection (QbE-STD) involves
two main modules: feature extraction and detection by dynamic
time warping.

3.1. Feature extraction

The extraction of ISA features has been presented in Section
2. MFCC feature and Gaussian posteriorgram, which are usu-
ally used in the QbE-STD task, are considered as the base-
line feature representations in this paper. The Gaussian pos-
teriorgram is a feature representation generated from a GMM.
Given a set of unlabeled training data, X = {x1, . . . , xn},
where xi ∈ Rd for all i, a J-mixture GMM is trained, then
for each data point xi, its posterior probability distribution over
all the Gaussian components, forms a J dimensional vector,
Pi = [p(m1|xi), . . . , p(mJ |xi)]

T , which then can be used as
the new representation of the original data point xi.

3.2. Detection by dynamic time warping

Variants of dynamic time warping (DTW) have been used to
align two sequences of acoustic features for various tasks, such
as speech pattern discovery [1, 2, 3, 19, 20, 21], story segmenta-
tion [5] and speech summarization [22]. In this paper, to match
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a spoken query with the subsequence of a test utterance, the
algorithm in [20] is used. Given two sequences of acoustic fea-
tures, one from a spoken query u = [u1, . . . , ur] and another
from a test utterance v = [v1, . . . , vs], where r and s are the
lengths of the sequences, the distance d(i, j) between any two
feature vectors ui and vj are computed. For the MFCC and ISA
features, we use the cosine distance

d(i, j) = 1− uT
i vj

|ui| |vj |
. (5)

For the Gaussian posteriorgram, we use the inner-product dis-
tance

d(i, j) = − log(uT
i vj). (6)

The DTW algorithm finds a path in the distance matrix
d(i, j) starting from a location (1, b) to another location (r, e)
(where 1 ≤ b ≤ e ≤ s), such that its average accumulated
distance is minimum. The average accumulated distance of the
best path ending at location (i, j) is defined as cost(i, j) =
a(i, j)/l(i, j), where a(i, j) is the corresponding accumulated
distance and l(i, j) is the length of the best path. The value
of cost(i, j) can be obtained using a dynamic programming al-
gorithm. For i = 1, . . . , r, a(i, 1) = (

∑i
k=1 d(i, 1))/l(i, 1),

l(i, 1) = i. For j = 1, . . . , s, a(1, j) = d(1, j), l(1, j) = 1.
For other locations (i, j), we choose a neighboring precedent
point (p̂, q̂) from (i − 1, j), (i − 1, j − 1) and (i, j − 1) such
that the following distance is minimized:

a(p̂, q̂) + d(i, j)

l(p̂, q̂) + 1
. (7)

Then we obtain a(i, j) and l(i, j) as follows:{
a(i, j) = a(p̂, q̂) + d(i, j)

l(i, j) = l(p̂, q̂) + 1
. (8)

Finally, for e = 1, . . . , s, the minimum value of cost(r, e) is
set to be the dissimilarity score between the spoken query u and
the matched subsequence in the test uttterance v. For the spoken
query u, all the test utterances are ranked in an ascending order
according to these disimilarity scores.

4. Experiments
The QbE-STD experiment is performed on the TIMIT corpus.
From the 3,696 utterances of the training set, we extract 69 spo-
ken queries which are at least 0.35s in duration and contain at
least 6 English letters. The 944 utterances of the test set are
used as the test archive. For each spoken query, an utterance is
deemed a correct hit, if it contains the query term.

Three evaluation metrics are used for the performance mea-
sure: 1) Mean average precision (MAP), the mean of the av-
erage precision after each correct hit utterance is retrieved; 2)
P@N, the average precision of the top N utterances, where N is
the number of the correct hit utterances in the test set; 3) P@10,
that is the average precision over the first 10 ranked utterances.

4.1. Details on feature extraction

A vector of 39 MFCC features, consisting of 12 cepstral coef-
ficients, log energy, and their delta and acceleration cofficients,
were computed every 10ms with a 25ms analysis window. Giv-
en a speech frame, Gaussian posteriograms were generated us-
ing a 50-component GMM [2], which was trained using the M-
FCC features in the training set of the TIMIT corpus.

Table 1: Performance of ISA features. Average results in Gaus-
sian posteriorgrams (GP) and ISA features. Values in parenthe-
ses indicate standard deviation of the performance. Note that
MFCC and GP make use of temporal context information im-
plicitly by delta and acceleration coefficients in MFCC.

Feature MAP P@N P@10
MFCC 0.243 0.241 0.213

GP 0.325(0.006) 0.314(0.008) 0.279(0.007)
ISA-1 0.296(0.003) 0.278(0.006) 0.250(0.008)
ISA-3 0.369(0.005) 0.356(0.005) 0.303(0.005)
ISA-5 0.367(0.005) 0.345(0.006) 0.311(0.006)
ISA-7 0.357(0.008) 0.334(0.012) 0.297(0.009)
ISA-9 0.340(0.008) 0.321(0.008) 0.287(0.009)

In ISA, log mel spectrograms, which were extracted with
40 mel channels and a 25ms analysis window at every 10ms as
in [7], were used as the input for intrinsic projection maps. As
described in Section 2.1, consecutive spectrograms were con-
catenated according to the parameter c, the number of features
being concatenated. A set of 5,000 speech frames was random-
ly selected from the training set to form the mesh of data points,
the graph Laplacian L and the kernel matrix K. As in [7], the
distance metric used to determine the k-nearest neighbors is the
cosine distance defined in Eq. (5). The first 13 intrinsic com-
ponents (skipping the first trivial one) were kept to project the
original feature vector into 13 intrinsic components, and the
delta and acceleration coefficients were appended to take into
account the time derivatives of the basic static coefficients. The
number of dimensions of the ISA features is 39, the same as that
of the MFCC features.

Note that the MFCC and ISA features were post-processed
with utterance-based cepstral mean and variance normalization.
We found that this post-processing is important for the STD
performance, especially when their delta and acceleration coef-
ficients are included.

4.2. Comparison of different feature representations

Table 1 shows the performance of different feature representa-
tions on the QbE-STD task. The STD performance was var-
ied by the 5,000 data points selected for the intrinsic projec-
tion maps in ISA. Similarly in Gaussian posteriorgrams, GM-
M, which is trained for generating posteriorgrams, depends on
a set of the parameters initialized by k-means algorithm and
varies the STD performance. So the performances of these fea-
tures reported in the table are averaged results by running each
individual system 20 times, and the values in the parentheses in-
dicate the standard deviation of the performance. Note that the
number c in the notation ISA-c indicates the number of log mel
spectrograms being concatenated as a temporal context feature.
In each set of ISA-c features, we chose k = 10, ξ = 0.03, and
σ = 0.8m, where m is the average Euclidean distance between
all graph vertices. We found this choice of the parameters in
general provided good performance for different sets of ISA-c
features.

As Table 1 shows, Gaussian posteriorgrams give better per-
formance than MFCC features as expected. ISA features also
provide better performance than MFCC features. When tempo-
ral context features are used (c > 1) , ISA features obviously
outperform Gaussian posteriorgrams. Among different sets of
ISA features, ISA-3 features provide the best performance in
terms of MAP and P@N, and ISA-5 features provide the best
performance in terms of P@10.
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Table 2: Temporal context features (log mel spectrograms; with-
out intrinsic projection maps) provide better performance on
QbE-STD.

metric c MAP P@N P@10

Cosine 1 0.142 0.129 0.122
3 0.170 0.164 0.138

Euclidean 1 0.165 0.180 0.158
3 0.196 0.192 0.171

Moreover, we would point out that both MFCC features and
Gaussian posteriorgrams make use of temporal context infor-
mation implicitly by the delta and acceleration coefficients in
MFCC features. We believe that temporal context features pro-
vide more accurate acoustic similarity for finding the k-nearest
neighbors, and better representation for the graph Laplacian L
and the kernel matrix K, and thus better obtain the underlying
speech manifold.

To verify whether the temporal contextual information ob-
tained by concatenating consecutive features make the ISA bet-
ter recover the speech manifold, we did an auxiliary experiment
— a comparison of using log mel spectrogram with and without
temporal context for the QbE-STD task. The corresponding re-
sults are in Table 2. We believe that if the log mel spectrograms
with temporal context can do better in recovering the speech
manifold, this temporal context spectrogram features can pro-
vide better STD performance than the original spectrogram fea-
tures, though these log mel spectrogram features are not good
candidates for the distance matrices for DTW detection.

As Table 2 shows, no matter whether the cosine or Eu-
clidean distance is used, temporal context spectrogram features
(c = 3) improve the STD performance. We believe that when
temporal context spectrogram features are used in ISA, both
the graph Laplacian L, which is built based on the cosine dis-
tance defined in Eq. (5), and the RBF kernel K, which is relat-
ed to Euclidean distance, obtain the more accurate pairwise a-
coustic similarity measure between the sampled speech frames.
This probably leads ISA to generate more reliable intrinsic basis
functions. Note that although the log mel spectrograms report-
ed in Table 2 provide obvious improvement when three consec-
utive frames are concatenated, this would not be the case for the
systems reported in Table 1 when consecutive MFCC or ISA
frames are concatenated for DTW detection. This is because
appending delta and acceleration features has the similar effect
as concatenating consecutive frames.

4.3. Effect of parameters in intrinsic spectral analysis

Lastly, we study the effect of the three parameters in ISA, in-
cluding k, ξ and σ, on the QbE-STD task. In this last set of ex-
periments, we varied k from 5 to 12, ξ from 0.003 to 30 (multi-
plying by 10 in each step), and σ from 0.2m, 0.4m, 0.6m, 0.8m
to 1.0m. Since we observed that the performance changes were
similar when different number of features are concatenated, we
present the effect on performance using ISA-3 features in Fig-
ure 1. As mentioned in Section 4.2, since the STD performance
was varied by the choice of a mesh of data points in ISA, each
individual system was run five times and the results reported in
the figures are averaged results. From the figures, we observe
that the ISA features perform the best when ξ = 0.03 and σ =
0.8m. The STD performance is relatively less sensitive to k,
the number of the nearest neighbors used to define the adjacen-
cy graph and thus the graph Laplacian L.
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Figure 1: The performance changes with k (ξ = 0.03, σ =
0.8), ξ (k = 10, σ = 0.8) and σ (k = 10, ξ = 0.03).

5. Conclusions
In this paper, we investigate to use temporal context informa-
tion for intrinsic spectral analysis, and use it to generate fea-
ture sequences for dynamic time warping detection in query-
by-example spoken term detection. Our experiments show that
concatenating consecutive frames of log mel spectrograms in
ISA provides obviously better performance than using Gaussian
posteriorgrams on the spoken term detection task. We believe
that the proposed method can be straightforwardly used in other
zero-resource speech tasks [5, 22], which are based on search-
ing for repeated acoustic patterns.

In the future, we would evaluate the features on speech in
different domains, e.g., conversational telephone speech. We
would investigate whether the learned intrinsic projection maps
are portable across domains. Moreover, we would investigate
the choice of parameters k, ξ and σ, when speech from differ-
ent domains is involved. Ensemble manifold regularization [23]
will be considered for more elegant choice of the parameters.
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