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Spin Hall effect (SHE) is studied with first-principles relativistic band calculations for platinum, which
is one of the most important materials for metallic SHE and spintronics. We find that intrinsic spin Hall
conductivity (SHC) is as large as �2000�@=e��� cm��1 at low temperature and decreases down to
�200�@=e��� cm��1 at room temperature. It is due to the resonant contribution from the spin-orbit
splitting of the doubly degenerated d bands at high-symmetry L and X points near the Fermi level. By
modeling these near degeneracies by an effective Hamiltonian, we show that SHC has a peak near the
Fermi energy and that the vertex correction due to impurity scattering vanishes. We therefore argue that
the large SHE observed experimentally in platinum is of intrinsic nature.
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Spin Hall effect (SHE), i.e., the transverse spin current
generation by the electric field, is an issue of intensive
current interests both theoretically and experimentally
since the theoretical proposal for its intrinsic mechanism
in semiconductors [1,2]. This effect enables us to control
spins without magnetic field or magnetic materials, which
is a crucial step for spintronics. In addition to semiconduc-
tors, the SHE in metallic systems is currently attracting
interest, stimulated by experiments on the SHE or inverse
spin Hall effect (ISHE), i.e., the transverse voltage drop
due to the spin current [3–5]. The SHE or ISHE in metals
has the following importance and advantages compared
with that in semiconductors: (i) a contact with a ferromag-
netic metal does not suffer from conductance mismatch
[6], and one can make use of the spin-polarized current
supplied from it. Thus, techniques developed in metallic
spintronics can be utilized. (ii) The spin Hall conductivity
(SHC) is much larger than that in semiconductors. The
value of SHC obtained in Ref. [4] is 4 orders of magnitude
larger than that in GaAs [7]. Naı̈vely this appears to be
attributed to the large number of carriers, whereas the band
structure is important as we discuss below. (iii) The Fermi
degeneracy temperature is much higher than room tem-
perature, and hence quantum coherence is more robust
against thermal agitations than in semiconductors. We
note that the spin diffusion length is relatively small in
metals, e.g., 10 nm in platinum (Pt) [4], causing fast decay
of the SHE signal. However, it is not a crucial obstacle for
observation and application, by designing the device as
demonstrated in Ref. [4].

Compared with the recent experimental advances in
metallic SHE, its theoretical understanding is still lacking
and is urgent. Among metallic systems, Pt shows remark-
ably large SHE surviving even up to room temperature
[3,4], whereas aluminum and copper show relatively tiny
SHE [5]. The SHC in Pt at room temperature is 240�@=e��

�� cm��1, 10 times larger than that of aluminum at 4.2 K.
In [4] this difference is attributed to a magnitude of spin-
orbit coupling for each metal. However, Pt seems to be
special even among heavy elements, and the SHC does not
simply scale with the size of the spin-orbit coupling. Such
behavior cannot be explained within the extrinsic mecha-
nism [8–10], where material properties are represented by
a few parameters such as the size of the spin-orbit cou-
pling. This material dependence strongly suggests a crucial
role of intrinsic contributions, which has been largely
overlooked. It is thus highly desired to study the intrinsic
SHE of Pt as a representative material for metallic SHE.
This analysis opens up the possibility to theoretically
design the SHE in metallic systems.

This discussion on separating intrinsic and extrinsic
mechanisms is analogous to the long-standing debates on
the anomalous Hall effect (AHE) [11–14]. In semiconduc-
tors, there have been experimental reports on the SHE in
n-type GaAs [7], p-type GaAs [15], and n-type
InGaN=GaN superlattices [16]. It is now recognized that
the SHE in n-type GaAs is due to the extrinsic mecha-
nisms, i.e., skew-scattering and side-jump contributions
[9,17], while that in p-type GaAs is mostly intrinsic
[18,19]. In metals, the conventional understanding has
been that the skew scattering is dominant in AHE.
However, recent studies have revealed that the intrinsic
contribution can be dominant for AHE in metals when the
�xy is of the order of 103 �� cm��1 and the conductivity
�xx is in the range of �104–106 ��1 cm�1 [20]. This
dominant contribution of intrinsic mechanism is confirmed
by the detailed comparisons between the first-principles
calculations [21–23] and experiments [24].

In this Letter we present an ab initio calculation for the
SHC in Pt, and its analysis based on an effective
Hamiltonian. We find that there are near degeneracies
near the Fermi level (EF) at high-symmetry X and L points
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in the Brillouin zone (BZ) for the fcc lattice. They give a
prominent enhancement of SHC in Pt. We determine an
effective Hamiltonian near X and L points, and we dem-
onstrate robustness of the SHE against impurities.

The band structure of Pt is calculated using a fully
relativistic extension [25] of the all-electron linear
muffin-tin orbital method [26] based on the density func-
tional theory with local density approximation [27]. The
lattice constants for Pt and Al used are 3.92 and 4.05 Å,
respectively. The basis functions used are s, p, d, and f
muffin-tin orbitals for Pt but s, p, and d muffin-tin orbitals
for Al [26]. In the self-consistent band structure calcula-
tions, 89 k points in the fcc irreducible wedge (IW) of the
BZ were used in the BZ integration. The SHC is evaluated
by the Kubo formula [28]. A fine mesh of 60 288 k points
on a larger IW (3 times the fcc IW) is used. These corre-
spond to the division of the �X line into 60 segments.
Comparison with test calculations with 102 315 k points
(72 divisions of the �X line) for Pt indicate that the
calculated SHC converges within 1%.

Figure 1 shows the relativistic band structure of Pt, and
also the SHC (�xy) as a function of EF. Remarkably, the
SHC peaks at the true Fermi level (0 eV), with a large value
of 2200�@=e��� cm��1. This gigantic value of the SHC is
orders of magnitude larger than the corresponding value in
p-type semiconductors Si, Ge, GaAs, and AlAs [28,29].
Furthermore, the calculated SHC in simple metal Al is only
�17�@=e��� cm��1, being 2 orders of magnitude smaller
than that of Pt. Interestingly, the SHC in Pt decreases
monotonically as the EF is artificially raised and becomes
rather small above 3.0 eV. When the EF is artificially
lowered, the SHC also decreases considerably, and changes
its sign at �1:1 eV. As the EF is further lowered, the SHC
increases in magnitude again and becomes peaked at
�4:2 eV with a large value of �1970�@=e��� cm��1.
The SHC decreases again when the EF is further lowered,
and finally becomes very small below �6:0 eV. Note that

the bands below �8:0 eV and also above 2.0 eV are
predominantly of 5s character and the effect of the spin-
orbit coupling is negligible.

We notice that a peak in the SHC appears at the double
degeneracies on the L and X points near EF (0 eV) in the
scalar-relativistic band structure (i.e., without the spin-
orbit coupling) while the other peak at �4:2 eV occurs
near the double degeneracies at the L and � points (see
Fig. 1). The double degeneracy (bands 5 and 6) at L is
made mostly (93%) of dx0z0 and dy0z0 (z0 is the threefold
axis), being consistent with the point group D3d at L. The
double degeneracy (bands 4 and 5) at X consists mainly of
dx0z0 and dy0z0 (z0: fourfold axis), being consistent with the
point group D4h. These double degeneracies are lifted by
the spin-orbit coupling, with large spin-orbit splittings
(�0:66, 0.93 eV, respectively).

One may attribute the large SHC in Pt to these double
degeneracies. To see this, let us consider the k-resolved
contribution to the SHC, i.e., Berry curvature �z
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where the spin current operator jzx �
1
2 fsz; vg, with spin sz

given by sz �
@

2��z (�, �z: 4� 4 Dirac matrices) [28].
fkn is the Fermi distribution function for the nth band at k.
�z
n is an analogue of the Berry curvature for the nth band,

and it is enhanced when other bands come close in energy
(i.e., near degeneracy). Figure 2(a) shows clearly that
�z�k� is large only near the L and X points. Inter-
estingly, Berry curvature �z

n�k� for the doublet bands 4
and 5 near the X point are large but have opposite signs
[Fig. 2(b)]. However, because band 5 near the X point is
unoccupied, only �z

n�k� for band 4 contributes to the SHC,
resulting in the large positive peak in �z�k� near the X
point [Fig. 2(a)]. Figure 2(c) shows that the SHC decreases
monotonically as the temperature (T) is raised. This rather
strong temperature dependence is also due to the near
degeneracies since the small energy scale is relevant to
the SHC there. Nevertheless, the SHC �xy � 240�@=e��
�� cm��1 at T � 300 K is still large and is close to the
measured value (240) [4]. The SHC for Al at 4 and 300 K is
�17 and �6�@=e��� cm��1, respectively. The former
value is similar to the experimental values (�27, �34) at
4.2 K [5].

In order to study the role of near degeneracies in more
detail, we construct two effective Hamiltonians H�k� for
the two doubly degenerate bands at X and L points, re-
spectively. At the X point, by imposing the D4h symmetry
and the time-reversal symmetry, the effective Hamiltonian
with basis j�x0 	 iy0�z0 "i and j�x0 
 iy0�z0 #i (z0: fourfold
axis) can be written in terms of 4� 4 Clifford � matrices
(�1 � �x, �2 � �z�y, �3 � �x�y, �4 � �y�y, �5 � �z) as
H�k� � ��k� �

P5
a�1 da�k��

a. By expanding the coeffi-

-11
-10

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4

E
ne

rg
y 

(e
V

)

SOC
noSOC

-20 0 20

σxy
z
 (10

2Ω-1
cm

-1
)

-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4

W L X WΓ Γ

(a) (b)

fcc Pt

FIG. 1 (color online). (a) Relativistic band structure and
(b) spin Hall conductivity of fcc Pt. The zero energy and the
dotted line is the Fermi level. The dashed curves in (a) are the
scalar-relativistic band structure.
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cients da with respect to the wave numbers k0 measured
from X and L points (k0 � k� ki, i � L, X), we have
constructed the effective Hamiltonian. Fitting with the
calculated energy bands and wave functions, we deter-
mined the expansion coefficients to k04 order. This effec-
tive model is an even function of k0 and is similar to the
Luttinger model, representing the valence bands of cu-
bic semiconductors [30], or the valence and conduction
bands of zero-gap cubic semiconductors [31] near the �
point. The previous analysis for the p-type semiconduc-
tors [30] are equally applied. The effective Hamiltonian
has the eigenvalues El�k� � ��k� � d�k�, and Eu�k� �
��k� � d�k� for the lower and upper bands, respectively,

where d �
�����������������P5
i�1 d

2
i

q
, and these bands correspond to the

heavy-hole and light-hole bands, respectively. From
Eq. (35) of Ref. [30], the response of a generalized spin
current (corresponding to �ab) is given by

 �abij � 4
Z dk
�2��3

�fkl � fku�G
ab
ij ; (2)

where fku and fkl are the Fermi functions of the upper and
the lower bands, and Gab

ij �
1

4d3 �abcdedc
@dd
@ki

@de
@kj

, where

�abcde is the totally antisymmetric tensor with �12345 � 1.
We flipped the sign of�abij because the sign of the charge of
the carriers is opposite from Ref. [30]. Gab

ij describes the
mapping of an area form from the three-dimensional k
space to the five-dimensional d space. It can be regarded as
a ‘‘solid angle’’ enclosed by the d vector when the wave
number k runs over the domain between the two Fermi
surfaces. Hence, it becomes larger for smaller d�k� � 1

2 �

�Eu � El�. The spin operators are given by sx � �35=2,
sy � �45=2, and sz � �34=2, where �ab � 1

2i ��
a;�b�.

Using these relations, one can calculate the SHC �zxy
from Eq. (2) by summing over the three X points and
four L points.

The next issue is whether the contributions from various
bands cancel or not. From Eq. (2), the SHC from the X
points and that from the L points are calculated as a
function of the EF, as shown in Fig. 3. Here we put a cutoff
for the k integral as�=�5a�. The integrand is dominated by
the contribution near the L or theX points, and cancellation
does not occur when the Fermi energy is in the gap. It is
analogous to the zero-gap semiconductors rather than
GaAs [31,32]. Thus we can identify the peaks at EF � 0
with the peak of the SHC in Fig. 1, and the enhancement of
SHC in Pt is attributed to the near degeneracies at the L and
X points.

As is similar to the p-type semiconductors [18], this
intrinsic SHE is robust against impurity scattering [33]. To
see this, we consider dilutely distributed short-ranged im-
purities V�r� �

P
iV��r� ri�. It is justified in Pt, because

screening is prominent compared with semiconductors.
Then the vertex corrections from the impurity scattering
for the SHC vanishes in the clean limit from the follow-
ing reason. Because the effective Hamiltonian satisfies

σσ

(a () b)

o

‘
‘

FIG. 3 (color online). Spin Hall con-
ductivity of platinum calculated from the
effective Hamiltonian for (a) the L points
and (b) the X points, as a function of EF
[32].
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FIG. 2 (color online). (a) Berry curvature �z�k� at zero tem-
perature, and (b) band (n)-decomposed Berry curvature �z

n�k�
along the symmetry lines in the fcc Brillouin zone. In (b), �z

n�k�
for the nth band has been shifted upwards by �n� 1� � 500 for
clarity. The inset (c) shows the temperature dependence of the
spin Hall conductivity �zxy.
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H�k� � H��k�, the Green function is an even function
and the current operator is an odd function of k0. Then in
calculating the SHC from a correlation function between
the current jy and the spin current jzx, the ladder diagrams
from impurities cancel between the internal wave numbers
k0 and �k0 for the current vertex j�k�. Thus for short-
ranged impurities, the SHC in the clean limit is given by
the intrinsic value from the bare diagram without impurity
scattering. This justifies our first-principle result even in
the disordered case. Although it may sound trivial, it is not
in general; in the Rashba model the vertex correction from
impurities is relevant and kills the intrinsic SHC even in the
clean limit [17].

We note that H�k0� � H��k0� results because we re-
strict ourselves to the even-parity (i.e., d) orbitals. Thus
even when we include the higher-order terms in k0 it holds
true, and the vertex correction vanishes for short-ranged
impurities. When k is away from such high-symmetry
points, the orbitals with odd and even parities are hybri-
dized, and the SHC will be canceled to some extent by the
vertex corrections by impurities. Thus for inversion-
symmetric systems such as Pt, it is safe to restrict ourselves
to the high-symmetry points.

Discussion on the relevance of the present result to the
experiment on SHE in Pt [4] is in order. At room tempera-
ture the magnitude of �zxy � 240 �� cm��1 with the con-
ductivity �xx � 105 ��1 cm�1 corresponds to the ‘‘intrin-
sic’’ region in the criterion of Ref. [20]. This is consistent
with the idea of ‘‘resonant’’ Hall effect since the enhanced
contribution from the near degeneracies at X and L points
has been confirmed by the present first-principles calcula-
tion. Hence it is most probable that the SHE in Pt at room
temperature is due to the intrinsic mechanism calculated in
this Letter. On the other hand, at the lowest temperature the
system enters the superclean extrinsic region [20], with�xx
rising up to �xx � 109 ��1 cm�1. Hence at lowest tem-
perature the skew scattering becomes very large, and the
SHC cannot be explained only by the intrinsic mechanism.
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Note added.—Recently, the temperature dependence
of the SHC in Pt was measured to be almost constant
from T � 300 K to T � 0 K [34]. Though it may look
different from our scenario, it is consistent with it. In [34],
the conductivity at T � 0 K is �xx � 105 �� cm��1,
much lower than the above-mentioned value. This conduc-
tivity corresponds to the self-energy of the order of
10 meV, which is comparable to room temperature. This
implies that the self-energy gives a cutoff to the expression
of the SHC, and the SHC remains constant below room
temperature.

*gyguo@phys.ntu.edu.tw
[1] S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301,

1348 (2003).
[2] J. Sinova et al., Phys. Rev. Lett. 92, 126603 (2004).
[3] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl.

Phys. Lett. 88, 182509 (2006).
[4] T. Kimura et al., Phys. Rev. Lett. 98, 156601 (2007).
[5] S. O. Valenzuela and M. Tinkham, Nature (London) 442,

176 (2006).
[6] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip,

and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
[7] Y. Kato et al., Science 306, 1910 (2004).
[8] M. I. D’yakonov and V. I. Perel, Phys. Lett. 35, 459

(1971).
[9] H.-A. Engel, B. I. Halperin, and E. I. Rashba, Phys. Rev.

Lett. 95, 166605 (2005).
[10] R. V. Shchelushkin and A. Brataas, Phys. Rev. B 71,

045123 (2005).
[11] R. Karplus and J. M.Luttinger, Phys. Rev. 95, 1154 (1954).
[12] M. Onoda and N. Nagaosa, J. Phys. Soc. Jpn. 71, 19

(2002).
[13] J. Smit, Physica (Amsterdam) 21, 877 (1955).
[14] L. Berger, Phys. Rev. B 2, 4559 (1970).
[15] J. Wunderlich et al., Phys. Rev. Lett. 94, 047204

(2005).
[16] H. J. Chang et al., Phys. Rev. Lett. 98, 136403 (2007).
[17] J.-I. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys.

Rev. B 70, 041303(R) (2004).
[18] S. Murakami, Phys. Rev. B 69, 241202(R) (2004).
[19] M. Onoda and N. Nagaosa, Phys. Rev. B 72, 081301(R)

(2005).
[20] S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. Lett.

97, 126602 (2006).
[21] Z. Fang et al., Science 302, 92 (2003).
[22] Y. Yao et al., Phys. Rev. Lett. 92, 037204 (2004).
[23] Y. Yao et al., Phys. Rev. B 75, 020401(R) (2007).
[24] T. Miyasato et al., Phys. Rev. Lett. 99, 086602 (2007).
[25] H. Ebert, Phys. Rev. B 38, 9390 (1988).
[26] O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
[27] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58,

1200 (1980).
[28] G. Y. Guo, Y. Yao, and Q. Niu, Phys. Rev. Lett. 94, 226601

(2005).
[29] Y. Yao and Z. Fang, Phys. Rev. Lett. 95, 156601 (2005).
[30] S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. B

69, 235206 (2004).
[31] S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev.

Lett. 93, 156804 (2004).
[32] As seen in Fig. 1, there is no real gap near L and X points

while Fig. 3 shows the finite gaps. This is because we take
a rather small value of the cutoff because the fitting by the
second order terms in k gets worse for larger cutoff. It is
also the reason why the obtained value of SHC for the
effective model is 1 order of magnitude smaller than the
band calculation.

[33] Here we are considering an intrinsic region
104 ��cm��1<�xx<106 ��cm��1, and skew-scattering
contribution is neglected.

[34] L. Vila, T. Kimura, and Y. Otani, Phys. Rev. Lett. 99,
226604 (2007).

PRL 100, 096401 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
7 MARCH 2008

096401-4


