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Spin-momentum locking is an intrinsic property of surface electromagnetic fields and its study has led to the discovery 
of photonic spin lattices and diverse applications. Previously, dispersion was ignored in the spin-momentum locking, 
giving rise to abnormal phenomena contradictory to the physical realities. Here, we formulate four dispersive spin-
momentum equations for surface waves, revealing universally that the transverse spin vector is locked with the 
momentum. The locking property obeys the right-hand rule in the dielectric but the left-hand rule in the dispersive 
metal/magnetic materials. In addition to the dispersion, the structural features can affect the spin-momentum locking 
significantly. Remarkably, an extraordinary longitudinal spin originating from the coupling polarization ellipticity is 
uncovered even for the purely polarized state. We further demonstrate the spin-momentum locking properties with 
diverse photonic topological lattices by engineering the rotating symmetry. The findings open up opportunities for 
designing robust nanodevices with practical importance in chiral quantum optics. 

Momentum and angular momentum (AM) are the two 
fundamental dynamical characters of matter and waves [1-7] 
and are important in understanding and predicting the 
behaviors in wave-matter interactions. Through the active 
manipulation of electron spins in solid-state systems, a 
multidisciplinary field that is referred to as spintronics and 
has potential applications in the field of information 
technology has grown [7,8]. Almost simultaneously, optical 
scientists have developed similar concepts for 
electromagnetic (EM) systems, giving rise to the discovery 
of the spin-dependent position or momentum of light, 
including the spin-Hall effect [9-17] and optical magnus 
effect [18], the spin-dependent optical vortex [19-21] and the 
spin-dependent unidirectional propagation of light [22-27]. 
Therein, by engineering the extrinsic spin-orbit coupling in 
artificial structures [22-24], the photonic analogy of 
unidirectional topological spin states has been demonstrated 
with the pseudo-spin. Meanwhile, intrinsic spin-momentum 
locking (iSML) originating from spin–orbit coupling in 
Maxwell’s equations has been demonstrated for surface EM 
systems [25-27]. This iSML describes the photonic spin 
dynamics in dispersionless system and has been exploited in 
diverse applications based on the spin AM (SAM) and 
momentum degrees of freedom for optical manipulation [28-
30], nanometrology [31,32], spin-based robust optical 
devices [33-36] and data processing with photonic 
topological solitons [37-43].  

Previous research on iSML adopted structureless and 
dispersionless EM surface modes [25-41], which limited 
further application. To exploit the applications, one can 
manipulate the iSML in artificial materials, including the 
metamaterials [44-47], metasurface [48-50], photonic crystal 
[22-24], artificial anisotropic materials [51] and chiral 
structures [52,53], which contain dispersion inevitably. If the 
dispersive and structural properties are not considered in 
iSML, it would give rise to abnormal phenomena 
contradictory to physical reality [54]. The energy density in 
a dispersive isotropic medium is described by the Brillouin 
formula [55]. However, there are challenges in characterizing 
the momentum and AM in dispersive media owing to the 

long-standing Abraham–Minkowski debate [56]. Although 
the kinetic Abraham-Poynting momentum can be used to 
describe the classical current feature of photons [57], it does 
not relate to dispersion. It is thus difficult to carry out the 
spin-orbit decomposition and to evaluate the iSML properties 
of a complex dispersive system. 

Here, we reexamine the spin-orbit decomposition in a 
complex dispersive system and utilize a dispersion-related 
momentum to formulate four Maxwell-like spin-momentum 
equations (SMEs) for the surface waves in multilayered 
structure. The SMEs unveil that the transverse spin is locked 
with the dispersive momentum: the iSML satisfies the right-
hand rule in the dielectric but the left-hand rule in the 
dispersive metals/magnetic materials. Moreover, the SMEs 
reveal that the structural and material dispersions can affect 
the iSML appreciably, which provides guidance for tuning 
the iSML by designing the structure and dispersion. 
Additionally, we uncover an extraordinary longitudinal spin 
component that does not possess iSML but depends on the 
symmetry of the EM mode. To verify the iSML properties, 
we investigate the spin-momentum properties of photonic 
topological lattices under diverse rotating symmetry. The 
present theoretical framework is important to the 
development of field theory with the spin and momentum of 
photons and is expected to have application in physical and 
integrated optics. 

We consider the purely polarized monochromatic surface 
mode (p- or s- polarized mode) propagating in a multilayered 
structure as shown in Fig. 1 with the complex electric field E 
and magnetic field H and angular frequency ω. Considering 
the dispersive effect [58-61], the Minkowski-type canonical 

momentum is ��� = ��������� ℏ�⁄ , where �� is the momentum 

operator, and the SAM is �� = ��������� ℏ�⁄ , where �� is the 

spin-1 matrix in SO(3). Here, the bra vector ���| =
(�̃�∗, −����∗) 2⁄  depends on the group permittivity �̃ =
�[��] ��⁄  and the group permeability �� = �[��] ��⁄  
whereas the ket vector |�⟩ = (�, ��)� 2⁄ . 

In the case of dispersive media, by performing inverse 
processing with respect to spin-orbit decomposition [57], a 



dispersive momentum �� = [�̃� + ���] � 2����⁄  can be 
obtained, where p=ε0μ0Re{E*×H}/2 the kinetic momentum, 
ε0 is the permittivity and μ0 is the permeability in vacuum 
[54]. Obviously, the dispersive momentum is consistent with 
the kinetic momentum in the free space and dielectric. In 
dispersive metals with the negative permittivity ε=ε0(1‒
ωep

2/ω2), where ωep is the electric plasma frequency, or 
magnetic materials with the negative permeability μ=μ0(1‒
ωmp

2/ω2), where ωmp is the magnetic plasma frequency [62], 
we have  [�̃� + ���] 2����⁄ = 1 , and the dispersive 
momentum is converted into the kinetic momentum of 
photons. Notably, only the metal/magnetic materials with 
negative real permittivity/permeability are considered here. 
Thus, irrespective of there being a dispersionless dielectric or 
dispersive media, the dispersive momentum is proportional 
to the kinetic momentum and includes the dispersive effect, 
which is beneficial in evaluating the iSML of light. With the 
dispersive momentum, the Maxwell-like dispersive SMEs 
can be summarized as [54] 
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where neff
2=β2/ω2εμ is the relative effective index, β is the 

propagating constant, k2=ω2εμ, �� = �� �̃⁄  and η=μ/ε. 
Equation (1) shows that the normal component of the 

dispersive momentum is continuous through the interface 
because the dispersive momentum only has horizontal 

components and thus ∇ ∙ �� = ∇
�������

�����
∙ � +

�������

�����
∇ ∙ � = 0. 

Equation (2) shows that the normal component of SAM is 
active or dissipating in the dispersive medium owing to the 
dispersion-induced breaking of the dual symmetry between 
the electric and magnetic properties, �̃� − ��� ≠ 0  [63], 
which is dramatically different from the dispersionless case. 
While the tendencies of electric and magnetic dispersions are 
identical (i.e., ωep=ωmp), the dual symmetry is protected and 
the normal SAM component is passive. Anyhow, as the 
material’s dispersion is present, the normal SAM component 
is discontinuous through the interface owing to the present of 
the additional dispersion-related terms in the group 
permittivity/permeability. The normal component of SAM 
depends on the electric ellipticity (E*×E)z and magnetic 
ellipticity (H*×H)z, which are determined by the continuous 
horizontal electric/magnetic field. Thus, the normal SAM 
components at the two sides of an interface are parallel 
because �̃ > 0 and �� > 0. Subsequently, Eq. (3) represents 
the spin-orbit decomposition of the dispersive momentum 
�� = ��� + ��� , in which the canonical momentum ���  also 
represents the orbital momentum (the orbital angular 
momentum �� = � × ���) and ��� = ∇ × �� 2⁄  is the dispersive 
Belinfante spin momentum [64]. Equation (3) shows that the 
horizontal SAM component is discontinuous through the 
interface owing to the additional dispersive terms in the 
group permittivity (ω∂ε/∂ω) for the p-polarized surface wave 

and in the group permeability (ω∂μ/∂ω) for the s-polarized 
surface wave, respectively. Moreover, the directions of the 
horizontal SAM components are opposite one another at the 
two sides of an interface owing to the opposing signs of ε and 
�̃  for the p-polarized surface wave or μ and ��  for the s-
polarized surface wave. Finally, Eq. (4) reveals that the 
horizontal dispersive momentum is discontinuous through 
the interface. In particular, for the purely polarized surface 
modes at the interface between the dielectric and 
metals/magnetic materials, the horizontal dispersive 
momenta have opposing signs at the two sides because the 
normal electric/magnetic field is discontinuous for the p/s-
polarized surface wave. 

 
FIG. 1. Schematic diagram of iSML in the multilayered 
system. (a) in the dispersionless dielectric, the horizontal 
SAM are locked with the p and the locking property satisfies 
the right-hand rule S||∝+p×n whereas the normal SAM is 
locked with p and the locking property satisfies the right-
hand screw rule Sz∝+(∇×p)z. (b) in the dispersive medium, 
the horizontal SAM are locked with the dispersive 
momentum �� and the locking property satisfies the left-hand 
rule ��∥ ∝ −�� × � whereas the normal SAM is locked with �� 
and the locking property satisfies the left-hand screw rule 
��� ∝ −(∇ × ��)�. n denotes the outer normal direction. 

Remarkably, Eq. (4) also expresses the iSML between the 
momentum of photons and transverse spin [2,25,27]. The 
transverse spin originates from the transverse 
inhomogeneities of the EM field [64,65]. In a dispersionless 
medium, such as the upper and lower space in Fig. 1, ῆ=η and 
the χ is equal to 2 uniformly. The transverse spin is locked 
with the kinetic momentum and the locking property satisfies 
the right-hand rule as shown in Fig. 1(a). However, in the 
dispersive metal/magnetic materials, the iSML properties are 
dramatically different. As an example, in the air-metal-air 
structure, the permittivity of the metal takes a negative real 
value at optical frequency ω < ωp, and the group permittivity 

�̃ = ���1 + ���
� ��⁄ � is positive such that the electric energy 

density has physical meaning. One can obtain that ῆ/η=(1‒
ωep

2/ω2)/(1+ωep
2/ω2)∊(‒1,0), 1+ῆ/η∊(0,1) and the χ for the 

horizontal components is positive. Because k2<0 for metal 
materials, the horizontal SAM is locked with the dispersive 
momentum and the locking property satisfies the left-hand 
rule. Meanwhile, because neff

2 is negative in the metal and 1‒
ῆ/η∊(1,2), the χ for the normal component is positive as well. 



Similarly, because k2<0 for metal materials, the transverse 
spin in the normal direction is also locked with the dispersive 
momentum and the locking property satisfies the left-hand 
screw rule. Notably, the difference between the horizontal χ 
and normal χ originates from the breaking of dual symmetry 
between the group permittivity and group permeability in the 
dispersive medium. Assuming the specific case that the 
permittivity and permeability have identical dispersive 
properties, the dispersion-induced dual symmetry is 
protected, and horizontal χ and normal χ are found to be equal 
to 1 simultaneously, which is consistent with the 
dispersionless SMEs [27]. 

 
FIG. 2. Origins of iSML in the k-space. The wavevector and 
transverse spin for (a) the propagating waves, (b) the surface 
waves in dispersionless dielectric and (c) the surface waves 
in dispersive metal/magnetic materials. For the propagating 
plane wave, the spin S∝ℏσk is purely longitudinal and the 
wavevector satisfies kx

2+ky
2+kz

2=k2, corresponding to a 
sphere. Thus, for a transverse wavevector kx

2+ky
2=k||

2<k2, 
there are two solutions of z-component wavevector (±kz) 
representing two propagating directions. Together with the 
two circularly polarized basises, the propagating wave 
possesses ℤ4 topological invariant [25]. For the purely 
polarized surface plane wave in dispersionless dielectric, the 
wavevector satisfies the relation kx

2+ky
2‒kz

2=k2, 
corresponding to an uniparted hyperboloid. For the purely 
polarized surface plane wave in dispersive metal/magnetic 
materials (k2<0), the wavevector satisfies ‒kx

2‒ky
2+kz

2=‒k2, 
corresponding to a parted hyperboloid. In these two cases, the 
dual symmetry is broken, and thus the two solutions ∓kz are 
corresponding to surface waves at the upper and lower sides 
of interface. The ℤ4 index is degraded into a pair of ℤ2 indices, 
which indicates the iSML [66]. Notably, the local wavevector 
is normally proportional to the canonical momentum. 
However, for the purely polarized surface waves, the 
dispersive momentum is proportional to the canonical 
momentum. The topology of the dispersive momentum is 
thus consistent with that of the wavevector. 

Additionally, dispersion includes the spatial dispersion 
and the material dispersion, which both can affect the optical 
spin-orbit interaction between the photon’s spin and 
position/momentum, leading to the spin-dependent 
momentum or propagation of light [2,9-18]. This spin-
dependent effect can be also observed in the Eq. (4). 
Moreover, Eq. (5) reveals that the iSML property is relative 
to the effective index neff

2. Thus, by well-designing the 
dispersive property of artificial materials, such as the electric 
and magnetic plasma frequencies in photonic metamaterials, 
the chirality of iSML can be engineered flexibly. Meanwhile, 
because the dispersive momentum of surface waves can be 
re-expressed as �� ∝ ⟨�|�∇|�⟩ , where |�⟩  is the Hertz 
potential. The transverse spin ��� ∝ �⟨∇�| × �|∇�⟩  has a 

similar form with the Berry curvature in the representation of 
the Hertz potential [1,2], which is beneficial for the analysis 
of spin-orbit interactions and geometric phases of surface 
waves in dispersive systems. 

The topological origins of iSML can be understood in the 
momentum space in Fig. 2. For the circularly polarized 
propagating plane waves in the free space, the longitudinal 
spin possesses ℤ4 topological invariant [25]. However, in the 
presence of the interface, the ℤ4 index is degraded into a pair 
of ℤ2 indices [66]. Moreover, owing to the breaking of dual 
symmetry between electric and magnetic properties of the 
dielectric and metal/magnetic materials, only one polarized 
state survives and thus the surface wave possesses iSML. 

Subsequently, we exhibit the spin-momentum properties 
using Bessel-type surface modes for the air–metal–air 
layered structure in Fig. 3. In Figs. 3(a-b) and 3(e-f), the 
dispersive momenta and horizontal SAMs of the symmetric 
and anti-symmetric modes are simultaneously inverted 
through the interface owing to the discontinuity of normal 
electric field Ez. Thus, in the upper and lower space, the 
directional vectors of horizontal SAMs can be recognized by 
the right-hand rule expressed by S||∝+p×n, whereas in the 
layer, the horizontal SAM is also locked with the dispersive 
momenta but the locking properties satisfy the left-hand rule 
��∥ ∝ −�� × �. Meanwhile, the normal components of SAMs 
are parallel through the interface as shown in Figs. (c) and 
(g). Together with the reversal of dispersive momenta on the 
two sides of the interface, the iSMLs between the dispersive 
momenta and the normal SAM components satisfy the right-
hand screw rule in the upper and lower space but the left-
hand screw rule in the layer. These conclusions are totally 
different from the evaluation of iSML properties made by 
ignoring the dispersive effect, where the iSML satisfies the 
right-hand rule in the dispersive medium. 

Interestingly, in addition to the transverse spins, there is an 
additional spin component (in Figs. 3(d) and (h)) owing to 
the coupling between the individual waves at the upper and 
lower interfaces in the layer. By ignoring the dispersion, this 
coupling spin will lead to abnormity in judging the chirality 
of iSML for the symmetric and anti-symmetric modes. The 
coupling spin can be decomposed into two contributions: (1) 
the interference spin between the upper and the lower waves; 
and (2) the coupling polarization ellipticity between the x/y-
component of upper wave and the y/x-component of lower 
wave. For contribution (1), the interference between the 
upper and lower waves introduces inhomogeneities into the 
field, and these inhomogeneities result in the transverse spin. 
Thus, the contribution (1) is consistent with the unified 
property of the transverse spin [65], whereas the contribution 
(2) should be regarded as the longitudinal spin. Figures 3(d) 
and (h) show that the longitudinal spins do not possess the 
iSML, because the directional vectors of the longitudinal 
spins depend on the symmetry and propagating direction of 
the modes simultaneously. This extraordinary longitudinal 
spin generated from the purely polarized field can also be 
found for dipole radiations [67]. 

The iSML properties are further demonstrated with chiral 
spin textures. The formation of photonic chiral spin texture 
originates from the conservation of total angular momentum 
and subluminal transportation of photons, and the stability is 
assured by the system’s symmetry [68]. In the C4 symmetry, 
the photonic meron spin lattice can be obtained in the 



presence of optical spin–orbit coupling (where the photonic 
skyrmion lattices are present in the C6 rotating symmetry 
[54]). The vector diagrams of dispersive momenta at 
different values of z of the material layer are similar and thus 
only one diagram is presented in Fig. 4(a), which contains 
multiple positive and negative vortexes. The SAMs at z = 
+12.5, 0 and ‒12.5 nm are respectively shown in Figs. 4(b–
d). From the vector diagrams in Figs. 4(b) and 4(d), the spin 
vectors in the two planes can be regarded as photonic meron 
lattices whose skyrmion numbers are ±1/2. It is observed that 
the normal spin vector is locked with the dispersive 

momentum and satisfies the left-hand rule. Moreover, the 
directions of chiral whirling for the photonic meron lattices 
are opposite in Figs. 4(b) and 4(d). This is because the 
horizontal SAM components are in opposite directions owing 
to the reversal of the outer normal direction in the two planes. 
In the center of the material layer, the horizontal SAM 
disappears and only the normal SAM component exists. This 
lattice can be regarded as photons with alternating positive 
and negative spins, which has potential application in data 
storage [69].  

 
FIG. 3. iSML for +2-order Bessel-type surface EM modes. In the xz-plane, the figure presents the (a) momentum ���, (b) SAM 

��� , (c) ���, and (d) longitudinal spin ���  for the symmetric mode and the (e) momentum ��� , (f) SAM ��� , (g) ��� , and (h) 

longitudinal spin ��� for the anti-symmetric mode.  In the layer, the transverse spins are locked with the dispersive momentum 
and the locking property satisfies the left-hand rule. The longitudinal spins originated from the coupling between the surface 
waves only exist in the layer. The longitudinal spins are opposite for the two modes, which indicates the longitudinal spin does 
not possess iSML. The thickness of metal (Au [70]) is 50nm. 

 
FIG. 4. Vector diagrams of (a) the dispersive momentum and 
spin textures at the planes (b) z=+12.5nm, (c) z=0 and (d) z=‒
12.5nm for the meron lattices in the layer of air-metal-air 
structure constructed by the symmetric mode. The vector 
properties of dispersive momentum are the same for the three 
spin textures. The spin textures are locked with the dispersive 
momentum and the locking properties satisfy the left-hand 
rule universally. The skyrmion number of the central 

photonic meron unit is ‒1/2 for (b) and (d). The horizontal 
components in (b) and (d) are enhanced by 5 times. 

In summary, we demonstrated dispersive SMEs and 
associated iSML properties of surface EM waves in 
dispersive system. In the metal/magnetic materials, the 
transverse spin is locked with the dispersive momentum and 
satisfies the left-hand rule universally. Remarkably, the 
dispersive SMEs show that the iSML is affected by the 
structural and material properties, which provides guidance 
for tuning the iSML by designing the structure and dispersion. 
Moreover, in addition to the transverse spin, there is 
longitudinal spin due to coupling polarization ellipticity 
between the orthometric polarized components of the surface 
waves. The longitudinal spin is determined by the mode’s 
symmetry and does not possess iSML. This extraordinary 
longitudinal spin generated by the purely polarized field is 
fascinating and was barely known previously. Finally, we 
exhibited diverse photonic topological lattices under varying 
rotating symmetry to demonstrate the iSML property. Our 
theory provides an efficient toolbox for the description of 
iSML of light in both dispersive and nondispersive systems 
and is expected to have widespread application in spin-based 
nanodevices.
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I. Mode properties for the surface EM waves in multilayered configuration 

Multilayered configuration is beneficial for designing and fabricating the dispersion-engineered artificial 

materials, such as: photonic crystals [S1], plasmonics [S2], negative-index metamaterials [S3-S4], the hyperbolic 

metamaterials [S5-S6] and the metasurface [S7], etc. This is the main motivation that we use the multilayered 

system to approach the complex dispersive system in our work.  

The p-polarized (transverse magnetic, TM) or s-polarized (transverse electric, TE) surface electromagnetic 

(EM) mode can be excited at the optical interfaces in multilayered systems. In the section, we will deduce and 

summarize the mode properties of p-polarized and s-polarized surface EM modes for the three types of 

multilayered structures as shown in Fig. S1. We mainly aim to show that there will be coupling EM terms while 

the layer is introduced into the structure, which lead to the different spin-momentum properties comparing to those 

of single interfacial system in Fig. S1(a). Noteworthily, the calculated methods to obtain the field distributions 

and the dispersion relations can be extended into arbitrary multilayered configurations. 

 

Fig. S1. (a) Schematic diagram of singe interface configuration to excite the p/s-polarized surface modes. The 

interface is localized at the plane z = 0. (b) Schematic diagram of one-layer configuration to excite the p/s-

polarized surface modes. The interfaces are localized at the planes z = +a/2 and z = ‒a/2. (c) Schematic diagram 

of two-layers configuration (such as: the dielectric waveguide structure) to excite the p/s-polarized surface modes. 

The interfaces are localized at the planes z = ‒a/2, z = +a/2 and z = +a/2+b, respectively. 

As shown in Fig. S1(a), at an interface between two materials (permittivity ε±, permeability μ± and total 

wavevector k±), the p-polarized surface modes should satisfy the relations: Hz = 0 and zz k    , where 
zik   is 

the normal wavevector. From the Maxwell’s equations, the electric/magnetic field components in Cartesian 

coordinates (x, y, z) have the expressions: 
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Here, 2 2
zk k      is the horizontal wavevector (propagating constant) and the z-component electric field 

fulfills the transverse Helmholtz equation 2 2 0      with 2 2 2 2 2x y       . By considering the EM 

boundary conditions, the dispersion relation can be expressed as 
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On the other hand, the s-polarized surface modes should satisfy the relations: Ez = 0 and zz k    . From 

the Maxwell’s equations, the electric/magnetic field components of s-polarized surface modes have the 

expressions: 
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Here, 2 2
zk k     is also the horizontal wavevector of the s-polarized surface modes and the z-component 

magnetic field fulfills the transverse Helmholtz equation 2 2 0      . By considering the EM boundary 

conditions, the dispersion relation can be expressed as 
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To transfer the Eq. (S1) and Eq. (S3) from the Cartesian coordinates into the cylindrical coordinates (r,φ,z), 

one can employ the matrices: 
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The Eqs. (S1-S7) are consistent with the Ref. [27].  

Then, to derivate the dispersion relations and mode distributions in the layered system, we need to employ 

the results given in Eqs. (S1-S7). For the one-layer system as shown in Fig. S1(b), the electric/magnetic field 

components of the p-polarized surface modes have the expressions: 
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Here, ξ(x,y) is the function of horizontal coordinates (x,y) and we ignore the (x,y)-dependent in the expressions 

for convenience. The z-component electric field fulfills the transverse Helmholtz equation 2 2 0     . By 

considering the EM boundary conditions, the dispersion relation can be expressed as 
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and 

  
22 2 i i i

zk     ,                                                                       (S9c) 

where i = +, ‒ and m are corresponding to the materials in the regions z>+a/2, z<‒a/2 and ‒a/2<z<+a/2, 

respectively. Since only the relative amplitude makes physical sense, one can set B+ or B‒ to be 1 and the other 

amplitude coefficients can be calculated properly. 

On the other hand, for the s-polarized surface modes in the three-layers system, the electric/magnetic field 

components of the s-polarized surface modes have the expressions: 
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Here, ζ(x,y) is the function of horizontal coordinates (x,y) and we ignore the (x,y)-dependent in the expressions 

for convenience. The z-component magnetic field fulfills the transverse Helmholtz equation 2 2 0     . By 

considering the boundary conditions, the dispersion relation can be expressed as 
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and 

  
22 2 i i i

zk     ,                                                                         (S11c) 



where i = +, ‒ and m are corresponding to the materials in the regions z>+a/2, z<‒a/2 and ‒a/2<z<+a/2, 

respectively. In the same way, one can set B+ or B‒ to be 1 to calculate the other amplitude coefficients. 

Subsequently, more intricately, we consider the field distributions and dispersion relations for the 

multilayered structure containing layers more than one layer as shown in Fig. 1(c). The electric/magnetic field 

components of the p-polarized surface modes have the expressions: 
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The z-component electric field fulfills the transverse Helmholtz equation 2 2 0      . By considering the 

boundary conditions, the dispersion relation can be expressed as 
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and 
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where i = +, ‒, m, and d are corresponding to the materials in the regions z>+a/2, z<‒a/2, ‒a/2<z<+a/2 and 

+a/2<z<+a/2+b, respectively. The parameters C+ and C‒ can be solved by Eq. (S13a). 

On the other hand, for the s-polarized surface modes in the four-layers system, the electric/magnetic field 

components of the s-polarized surface modes have the expressions: 
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The z-component magnetic field fulfills the transverse Helmholtz equation 2 2 0     . By considering the 

boundary conditions, the dispersion relation can be expressed as 
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and 
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where i = +, ‒, m, and d are corresponding to the materials in the regions z>+a/2, z<‒a/2, ‒a/2<z<+a/2 and 

+a/2<z<+a/2+b, respectively. In the same way, the parameters C+ and C‒ can be solved by Eq. (S15a). 

From the derivations, one can found that the expressions of electric/magnetic fields for the one-layer system 

as shown in Fig. S1(b) are similar with those of two-layers system in Fig. S1(c). Thus, we can conclude that the 

theoretical results of one-layer system can be generalized to arbitrary multilayered systems. 

In the following, to exhibit the mode properties visually, we will show the dispersion relations and the field 

distributions of plane wave solution and Bessel function solution for the one-layer configuration (air-metal-air). 

In the air-metal-air structure, there are symmetric and anti-symmetric modes exist. The symmetric mode has a 

larger propagating wavevector (β) comparing to that of the anti-symmetric mode as shown in Fig. S2. Noteworthily, 

the symmetry of mode is evaluated by the horizontal electric field component for the p-polarized mode.  



 

Fig. S2. (a) Propagating constant β and (b) effective index β/k0 via the wavelength (λ). The red line denotes the 

symmetric mode while the blue line indicates the anti-symmetric mode. The structure is air-metal-air and the 

material of metal layer is Au [70]. k0 is the wavevector in vacuum. 

For the surface plane wave solution, the expressions of electric Hertz potential can be expressed as 

i xe   ,                                                                          (S16) 

and the field distributions are: 
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The field distributions are shown in Fig. S3. Particularly, we show the kinetic momentum and dispersionless spin 

angular momentum (SAM) for the symmetric and anti-symmetric modes (the kinetic momentum 

 0 0 Re 2   p E H  in vacuum and the dispersionless SAM  Im 4      S E E H H ). In the case, 

one can observe that the SAM is locked with the kinetic momentum obeying the right-hand rule, no matter 

whether in the dielectric or in the metal. Since the plane wave solution does not contain Sz, we consider a Bessel 

function solution [S8]  

  im
mJ r e   .                                                                     (S18) 

Here, Jm is the m-order Bessel function of first type. We also show the kinetic momentum and dispersionless 

SAM for the symmetric and anti-symmetric modes of Bessel function solution. Since the locking properties 

between the kinetic momentum and horizontal spin (Sr) are similar with those of plane wave solution, we do not 

show those SAM components here. In Fig. S4 (e, f, k, l), one can find that the spin-momentum locking properties 

are opposite for the symmetric and anti-symmetric modes. This phenomenon is abnormal, which is one of main 



motivation of our work. We will explain that this is originated from two reasons: 1. the dispersion is ignored in 

the investigation of spin-momentum properties of EM field; 2. There is a longitudinal spin component owing to 

the coupling between the orthogonal components of the horizontal EM fields in the upper and lower interfaces 

and this longitudinal spin does not possess the property of spin-momentum locking.  

 

Fig. S3. The xz-plane distributions of the real part of (a) Ex, (b) Ez, (c) Hy, and the (d) kinetic momentum px, (e) 

dispersionless SAM Sy for the symmetric plane wave mode at the xz-plane. The 1D contour of px and Sy at x = 0 

of xz-plane is shown in (f). The xz-plane distributions of the real part of (g) Ex, (h) Ez, (i) Hy, and (j) kinetic 

momentum px, (k) dispersionless SAM Sy for the anti-symmetric plane wave mode at the xz-plane. The 1D contour 

of px and Sy at x = 0 of xz-plane is shown in (l). It is worth noting that the symmetry or anti-symmetry of a mode 

is evaluated by the horizontal electric field component for the transverse magnetic modes. The structure is air-

metal-air and the material of metal layer is Au [70]. The wavelength is 632.8nm. 



 

Fig. S4. The xz-plane distributions of the real part of (a) Er, (b) Ez, (c) Hr, and the (d) kinetic momentum pφ, (e) 

dispersionless SAM Sz for the symmetric plane wave mode at the xz-plane. The 1D contour of pφ and Sz at x = 

0.15μm of xz-plane is shown in (f). The xz-plane distributions of the real part of (g) Er, (h) Ez, (i) Hr, and (j) kinetic 

momentum pφ, (k) dispersionless SAM Sz for the anti-symmetric plane wave mode at the xz-plane. The 1D contour 

of pφ and Sz at x = 0.15μm of xz-plane is shown in (l). As mentioned above, the symmetry or anti-symmetry of a 

mode is evaluated by the horizontal electric field component (Er here) for the transverse magnetic modes. It is 

worth noting that, there are longitudinal spin components due to the coupling between horizontal EM field 

components in the Sz (the details can be found in the following section), which makes the signs of Sz opposite for 

the two modes in (e) and (k). Here, the order of Bessel function is +2. The structure is air-metal-air and the material 

of metal layer is Au [70]. The wavelength is 632.8nm. 

 

 

 



II. Dispersionless SMEs for the p-polarized surface EM modes 

The intrinsic spin-momentum locking property of surface EM waves by ignoring the dispersion: 

2 2 2
0 0 0

1 1 1

2 2 2k   
     S P p p ,                                           (S19) 

where p=ε0μ0Re{E*×H}/2 is the kinetic momentum of photons and proportional to the Poynting vector P due to 

the request of relativity [S9], was demonstrated in the single interface configurations [27]. The equation (S19) 

definitely reveals that [27]: 1. the transversal feature of SAM with respect to kinetic momentum (thus, the total 

three-dimensional spin vector can be regarded as the transverse spin universally); 2. the spin-momentum locking 

property between the SAM and the kinetic momentum (the locking property evaluating by the kinetic momentum 

obeys the right-hand rule, no matter in dielectric or metal/magnetic materials); 3. the derivative feature of the 

transverse spin (the transverse spin is originated form the transverse inhomogeneities of EM field). 

In the section, we will demonstrate theoretically that, for the multilayered structures, the spin-momentum 

locking will still be satisfied. However, unlike spin-momentum properties demonstrated in the single interface 

system [27] in Fig. S1(a), there is a hidden longitudinal spin component due to the local coupling between the 

horizontal EM components exist, no matter whether for the transverse magnetic modes or the transverse electric 

modes. Here, we only exhibit derivations of spin-momentum locking for the p-polarized surface EM waves in the 

one-layer system following the process in reference [27], but the results can be flexibly extended to the p-polarized 

or s-polarized surface mode in arbitrary multilayered systems from the expressions (S10), (S12) and (S14). The 

kinetic momentum of photons  0 0 Re 2   p E H of the p-polarized surface mode in Fig. S1(b) is: 
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and 
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On the other hand, the dispersionless SAM  Im 4      S E E H H  can be expressed as: 
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and 
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From the relation (S9) and assuming that the medium is lossless, there is  *Im 0B B B B
      and the coupling 



terms of horizontal SAM vanish ( 0mc
x  , 0mc

y  ). Thus, only the coupling terms in the horizontal kinetic 

momentum ( 0mc
x  , 0mc

y  ) and in the normal component SAM ( 0mc
z  ) are not zero and independent of 

z-axis. 

From the expressions (S19-S21), if we ignore the coupling terms in kinetic momentum and dispersionless 

SAM, one can deduce that the individual waves definitely satisfy the spin-momentum locking relations: 

2 2
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σ ρ σ ρ
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.                                     (S22) 

The remaining terms mc
x , mc

y , mc
z  are all z-independent. Thus, there are 0mc

x
   ρ , 0mc

y
   ρ  and 

0mc

z
   ρ . The coupling SAM is 
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σ x y z z .    (S23) 

Actually, the coupling term mc
z  is originated from two contributions: 

1. the interferential spin between the B+ wave and the B‒ wave (named as the interferential spin term); 
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σ ρ x y z ;         (S24) 

2. the directly coupling polarization ellipticities between the x/y-component of B+ wave and the y/x-component of 

B‒ wave (named as the coupling spin term); 
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σ σ ρ x y z .     (S25) 

Therein, the contribution 1 can be understood in two processes: 1. the interference between the B+ wave and the 

B‒ wave causes the inhomogeneities of total EM field; 2. this inhomogeneities of EM field and associated 

inhomogeneous kinetic momentum results in the optical transverse spin. Thus, the contribution 1 is originated 

from the interferential inhomogeneities/structure properties of EM field that is consistent with the unified property 

of optical transverse spin [27, 64, 65]. Whereas for the contribution 2, we emphasize that it is local helix-dependent, 

and it should be regarded as the longitudinal spin (helix-dependent solely and irrelated to inhomogeneity/structure 

property of EM field [65]). Additionally, since 2 0m m m m
z zk k       for the noble metal materials, the mcσ   is 

parallel to the m
lσ  and antiparallel to the m

tσ . However, if the layer is dielectric, it is normally 2 0m m m m
z zk k     . 

Thus, the mcσ  is parallel to the m
tσ  and antiparallel to the m

lσ . 

Based on the former analysis, if the materials’ dispersion is ignored here, we can reformulate the Maxwell-

like spin-momentum equations of surface EM modes in a complex multilayered system to be 

0   P p ,                                                                           (S26a) 

0 S ,                                                                                 (S26b) 

     22 2 2o r r o on        S P p p p p p ,                                            (S26c) 

 2 2
0 02 2t lk k   p S S S .                                                               (S26d) 

Here, εr and μr are the relative permittivity and permeability, respectively; n is the refractive index. Equation (S65c) 



denotes the spin-orbit decomposition by ignoring the dispersion, which the kinetic momentum εrμrp can be 

decomposed into canonical/orbital momentum po and the Belinfante spin momentum ps [S9]. In the equation 

(S26d), the longitudinal spin given by the difference between the total spin and the transverse spin l t S S S  is  
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S x y z .          (S27) 

In addition, one can deduce the dispersionless Helmholtz-like spin momentum equation as 

 2 2 2 2 22 4 4o l t t lk k          p S S S S S S .                                         (S28) 

In the special case that the coupling longitudinal spin Sl can be ignored (in single interface systems or the layer is 

thick enough), the dispersionless Helmholtz-like spin momentum equation is downgraded into 
2 22 4o t tk   p S S ,                                                                      (S29) 

which is consistent with the Helmholtz-like spin momentum equation in the single interface system [27].  

From equations (S26) to (S28), one can conclude that the transverse spin is still locked with the momentum 

in the complex multilayered structures while the longitudinal spin does not.  

 

Fig. S5. (a) The z-component coupling SAM mcσ , (b) the z-component coupling transverse spin m
tσ , and (c) the 

z-component coupling longitudinal spin m
lσ  for the +2-order symmetric Bessel-type surface waves. (d) The z-

component coupling SAM mcσ  , (e) the z-component coupling transverse spin m
tσ  , and (f) the z-component 

coupling longitudinal spin m
lσ   for the +2-order anti-symmetric Bessel-type surface waves. Obviously, since 

2 0m m m m
z zk k      for the noble metal materials, the mcσ  is parallel to the m

lσ  and antiparallel to the m
tσ . The 

thickness of gold layer is 50nm. The wavelength is 632.8nm. 

To verify the spin-momentum properties mentioned above, we summarize the z components of coupling 

SAMs for the symmetric and anti-symmetric Bessel surface modes of the air-metal-air structure in Fig. S5. 

Obviously, only in the layer, there is coupling SAM exist. Since 2 0m m m m
z zk k      for the noble metal materials, 

the mcσ   is parallel to the m
lσ   and antiparallel to the m

tσ  . Noteworthily, the three coupling SAMs are all z-



independent as indicated in expressions (S23-S25). On the other hand, we show the z components of diverse 

SAMs for the symmetric Bessel surface mode of the metal-air-metal structure in Fig. S6. Noteworthily, only 

symmetric mode exists in the metal-air-metal structure. It can be observed that the mcσ  is parallel to the m
tσ  and 

antiparallel to the m
lσ . This is because there is normally 2 0m m m m

z zk k      for the dielectric layer. Likewise, 

the three coupling SAMs are all z-independent. 

 

Fig. S6. (a) The z-component coupling SAM mcσ , (b) the z-component coupling transverse spin m
tσ  and (c) the 

z-component coupling longitudinal spin m
lσ  for the +2-order symmetric Bessel-type surface waves in the metal-

air-metal structure. There is only symmetric mode exist here. As the layer is dielectric, it is normally 
2 0m m m m

z zk k     . Thus, the mcσ  is parallel to the m
tσ  and antiparallel to the m

lσ . The thickness of dielectric 

layer is 200nm. The wavelength is 632.8nm. 

Finally, by decomposing the coupling z-component SAM into transverse spin and longitudinal spin 

components, the abnormal properties of spin-momentum locking in Fig. S4 are removed theoretically. Here, we 

draw the azimuthal kinetic momentum pφ, the z-compoment SAMs St,z and longitudinal spin Sl for the symmetric 

and anti-symmetric modes of the +2 and ‒2 order surface Bessel waves at the air-metal-air structure in Fig. S7 for 

reference. It is observed that, for the surface EM waves in arbitrary multilayered systems, the symmetric and anti-

symmetric modes satisfy an unique spin-momentum locking property: the horizontal spin components S|| are 

purely transverse spin and thus there are locked with the kinetic momentum p and the locking property satisfies 

the right-hand rule S||∝+p×n with n the outer normal direction of interface, while the normal spin component Sn 

contain the coupling helix (longitudinal spin) component and transverse spin component simultaneously and only 

the transverse spin component of Sn is locked with the kinetic momentum p and the locking property satisfies the 

right-hand screw rule determined by (∇×p)n. On the other hand, the coupling longitudinal spin appears in the 

multilayered system, and the coupling longitudinal spin only exists in the layers and does not possess the property 

of spin-momentum locking. The coupling longitudinal spin can be tuned by the mode’s symmetry, which would 

destroy the right-hand rule in the spin-momentum locking between the kinetic momentum and normal component 

SAM if we do not decompose the total SAM into transverse spin component and longitudinal spin component in 

physics. 

Till now, we remove the abnormal properties of spin-momentum locking caused by analyzing the mode’s 

symmetry and coupling property. In the following section, we will focus on the abnormal properties of spin-

momentum locking caused by the dispersions in Fig. S4. 



 

Fig. S7. (a) The kinetic momentum pφ, (b) the z-component transverse spin St,z, (c) the z-component coupling 

longitudinal spin Sl for the +2-order symmetric Bessel-type surface waves in the metal-air-metal structure; and (d) 

the kinetic momentum pφ, (e) the z-component transverse spin St,z, (f) the z-component coupling longitudinal spin 

Sl for the ‒2-order symmetric Bessel-type surface waves in the metal-air-metal structure. From (a), (b), (d) and 

(e), as the order changes from +2 to ‒2, the kinetic momentum and the z-component transverse spin St,z are inverted 

correspondingly, which demonstrates the property of spin-momentum locking. (g) The kinetic momentum pφ, (h) 

the z-component transverse spin St,z, (i) the z-component coupling longitudinal spin Sl for the +2-order anti-

symmetric Bessel-type surface waves in the metal-air-metal structure; and (j) the kinetic momentum pφ, (k) the z-

component transverse spin St,z, (l) the z-component coupling longitudinal Sl for the ‒2-order anti-symmetric 

Bessel-type surface waves in the metal-air-metal structure. Likewise, as the order changes from +2 to ‒2, the 

kinetic momentum and the z-component transverse spin St,z are inverted correspondingly, which demonstrates the 

property of spin-momentum locking. Noteworthily, the spin-momentum locking properties of symmetric and anti-

symmetric modes are coincident here, which are totally different from those exhibited in Fig. S4. The thickness 

of Au layer is 50nm. The wavelength is 632.8nm. 

 



III. Dispersive SMEs for the p-polarized surface EM modes 

In this section, we give the details of the derivations of dispersive SMEs in the multilayered structures and 

introduce the spin-momentum locking property for dispersive surface EM modes. In the dispersive medium, the 

kinetic momentum, canonical momentum density and spin angular momentum are [58] 
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and 

 1
Im

4
 


    S E E H H   ,                                                  (S32) 

respectively. It can be observed that an additional group term is introduced into the permittivity/permeability of 

the canonical momentum density and SAM to represent the dispersive effect: 


  




 


  and 


  




 


                                                   (S33) 

Remarkably, the dispersion will not change the expression of kinetic momentum/Poynting vector. From the section 

II, if we still use kinetic momentum/Poynting vector to evaluate the optical transverse spin, one can find that these 

group terms are not only originated from the inhomogeneities of EM field (they are originated from dispersion 

and inhomogeneities simultaneously). However, the group terms have the similar property with the dispersionless 

terms (The vector property of SAM depends on the electric ellipticity  E E  and magnetic ellipticity  H H , 

while the intensity of SAM is determined by the relative value of permittivity and permeability.). Therefore, it is 

meaningful to reformulate the spin-momentum equation by considering the dispersive terms.  

We first consider the continuities of the kinetic momentum/Poynting vector 

0    p P                                                                           (S34) 

since the kinetic momentum/Poynting vector does not contain the dispersive group terms. Then, the continuities 

of the dispersive canonical momentum and SAM densities are 

0o  p ,                                                                             (S35) 
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S E H E H  ,                                                 (S36) 

respectively. Obviously, the dispersive SAM is active and the dispersive effect can be considered as the source of 

the SAM. However, if the dual symmetry between the dispersive permittivity and permeability is protected 

(           ), the dispersive SAM would be conservative in the dispersive medium. On the other hand, 

the dispersive canonical momentum is continuous.  

Since the kinetic momentum/Poynting vector is irrelative to the dispersion, the spin-orbit decomposition of 

kinetic momentum/Poynting vector cannot obtain the dispersive canonical momentum and SAM. By re-examining 

the process of the spin-orbit decomposition given by M. V. Berry [57], we define a dispersive momentum similar 

to the kinetic momentum: 

   
1 1

Re Im
4 4

   


                  p E H E H E E H H    .                   (S37) 

In the free space, there are 0    and 0   , and the dispersion momentum is consistent with the kinetic 

momentum. In particular, for the noble metals or magnetic materials, there are μ=μ0,  2 2
0 1 ep      or ε=ε0, 

 2 2
0 1 mp      [62], where μ0 and ε0 are the permeability and permittivity in vacuum, respectively; ωep and 



ωmp are the electric plasmon frequency and magnetic plasmon frequency, respectively. In the case, there is 

 2 2
0 1 ep      or  2 2

0 1 mp     . Thus, the dispersion momentum is 

0 01
Re Re

4 2

 
               p E H E H E H p   ,                                   (S38) 

which is consistent with the kinetic momentum of photons. In addition, the dispersive momentum can be 

decomposed into: 

o s p p p   ,                                                                              (S39) 

where the op  is consistent with the dispersive canonical momentum and the dispersive spin momentum sp  is 

1

2
s  p S .                                                                              (S40) 

Through simple derivations, one can obtain the continuity of dispersive momentum and dispersive Belinfante spin 

momentum as: 

0  p .                                                                                  (S41) 

and 

0s  p ,                                                                                 (S42) 

respectively. 

Here, we obtain three spin-momentum equations in equations (S41), (S36) and (S39). In the following, we 

deduce the fourth spin-momentum equation between the dispersive momentum and the dispersive SAM. In the 

three-layers system as shown in Fig. S1(b), by calculating with the equations (S8) and (S37), the dispersive 

momentum density can be expressed as 
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On the other hand, the three components of dispersive SAM are 
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and 
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By employing the expressions (S43) and (S44), the spin-momentum locking can be expressed as 
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In sum, the spin-momentum locking can be expressed as 

t l S S S   ,                                                                           (S46) 
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In the Eq. (S47), the parameter is 
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Here,     ,               and 2 2 2
effn k   (Noteworthily, the propagation constant is identical in 

the structure, while the wavevector k depends on the material’s property in each layer). In the dispersionless limit, 

there is     , the parameter χ is equal to 1 universally. Thus, this asymmetry in the spin-momentum locking 

property between the horizontal and normal components is originated from the dispersion of materials. Moreover, 

in Eq. (S46), a coupling spin term, which is considered as the longitudinal spin as the section 2, is expressed as: 
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The longitudinal spin only has the normal component in the layer. In the dispersionless limit, it has 1m m   , 

1m m    and 1 0    in the layer. Thus, one can reach that 
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which matches well with the expression (S27). Thus, this term can be considered as the coupling spin term 

originated from the coupling ellipticities between the orthogonal polarized components in the horizontal plane 

uniformly.  



In sum, the four Maxwell-like spin-momentum equations for the surface EM modes can be expressed as: 
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Here, the p  is given in Eq. (S37); the op  is given in Eq. (S31); C  indicates the dispersion induced EM spin. 

However, since 0 S , the Helmholtz spin-momentum equation cannot be obtained directly.  

To obtain the Helmholtz spin-momentum equation, we first calculate the dispersive canonical momentum 

density as 
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From the equations (S44) and (S52), one can reach two separated dispersive spin-momentum equations: 



  2 22o tS k S    p  
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and 

  2 2 22 2 2o n t n l ln
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Here, the symbol || indicates the horizontal components (for example: x and y) and n denotes the normal component.  

The parameters are 
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To study the spin-momentum locking properties for the horizontal and normal components of surface EM 

modes in the dispersive medium, we first investigate the parameters in Eq. (S48) and Eq. (S54). We show 

the wavelength dependent character of parameters in Fig. S8.  

In the dispersive noble metals, there is    2 2 2 21 1 1 0p p             since ω<<ωp at optical 

frequencies, as shown in Fig. S8(a). Thus, 0 1 1    , 1 1 2     and  2 2 1    
 , as shown in 

Fig. S8(d). For the air-metal-air configuration, the 2
effn  in the air region is approximatively 1, the 2

effn  in the metal 

region is less than 0 ( 2 0effn  ). Thus, 21 1n effn    , as shown in Fig. S8(d). On the other hand, since 2 0effn  , 

there are 0   and also 22t effn   , as shown in Fig. S8(e) and Fig. S8(f). In the metal-air-metal configuration, 

the 1    in the layer, and thus the spin-momentum locking in the layer is consistent with the expression (S26).  

From the expression (S51), we can understand this spin-momentum equation in three aspects. First, the spin-

momentum locking in the dispersive medium is totally different from that of dispersionless medium as exhibited 

in equation (S26). In the dispersionless dielectric medium, the transverse spin is locked with the kinetic 

momentum/Poynting vector and the locking property satisfies the right-hand rule. Whereas in the dispersive noble 

materials, the whole transverse spin is still locked with the dispersive momentum (S37). However, this dispersion-

dependent locking property between the SAM and dispersive momentum satisfies the left-hand rule as we consider 

the dispersive group permittivity in calculating the SAM, no matter whether the horizontal component or normal 

component of structured SAMs, as shown in Fig. S9 and Fig. S10. Remarkably, although there is an expression 

to connect the dispersive SAM and canonical momentum, there is no locking relation between these physical 

quantities (as shown in Fig. S9(e) and Fig. S9 (j), one may recognize that the horizontal dispersive SAM 

component is locked with the dispersive canonical momentum and satisfies the right-hand rule. However, in Fig. 

S10(f) and Fig. S10 (l), it can be observed that the normal dispersive SAM component is not locked with the 

dispersive canonical momentum.). Second, in the expressions of SAM (Eq. (S32)) and dispersive momentum (Eq. 

(S37)), one can find that these quantities are only affected by the dispersion but not the structural property. 

However, from our derivation in Eq. (S51), the spin-momentum locking property is definitely determined by the 



effective index neff
2, which is relative to the structural property. Thus, one can conclude that the complex structure 

and dispersion can engineer the spin-momentum locking property of EM field simultaneously.  

From the equation (51), one can manipulate the spin-momentum locking in two ways: (1) the spin-

momentum locking is proportional 1/k2=1/ω2εμ, which is relative to the permittivity ε and the permeability μ of 

bulk materials (natural materials or artificial metamaterials). Thus, by tuning the permittivity and the permeability 

of the metamaterials or natural materials (such as Sb2Te3 [NPG Asia Materials 9, e425(2017)]) from the metal 

characteristics to the negative refractive characteristics or from the dielectric characteristics to the metal 

characteristics, the spin-momentum locking properties would be inverted. (2) the spin-momentum locking is also 

proportional 2 [1 + �� �⁄ ]⁄ . In the Drude-Lorentz model [62], there is 
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where ωep and ωmp are the electric and magnetic plasma frequencies, respectively. In the case that ω2>ωmp
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2ωep

2/ω4>0, there is 1 + �� �⁄ > 0. Since the ωep and ωmp can be engineered by the structural design (spatial 

dispersion) in the metamaterials, the intrinsic spin-momentum locking can be manipulated flexibly. 

Third, these asymmetry between the horizontal and normal components in expression (S47) is originated 

from the dispersion induced dual symmetry between the electric and magnetic properties breaking [63] since  
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in the dispersive noble metal. Assuming a specific case that  

 2 2
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where the dispersion induced dual symmetry is protected (the permittivity and permeability have the equivalent 

dispersive properties or contain the same variation tendency), one can reach that 
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However, for the ordinary dispersive medium (the dispersion induced dual symmetry is broken consequentially), 

this asymmetry between the horizontal and normal components is inevitable. 

Finally, we also investigate the longitudinal and transverse spins in the z-component SAMs for the symmetric 

mode and anti-symmetric mode in air-metal-air configuration and the symmetric mode in meal-air-metal 

configuration in Fig. S11.  



 

Fig. S8. Wavelength dependent (a) dispersive wave impedance �� �⁄  for the silver material and air; wavelength 

dependent (b) effective index neff
2 for the symmetric mode (red) and anti-symmetric mode (blue) in the air space; 

(c) the effective index neff
2 for the symmetric mode (red) and anti-symmetric mode (blue) in the metal material; 

the parameters (d) χ, (e) horizontal α||, and (f) γ in the metal material for the symmetric mode (red) and anti-

symmetric mode (blue). The black line is the horizontal χ|| in (e) and αair in air space in (f). The multilayered 

configuration is air-silver-air with the thickness of metal layer is 50nm. The wavelength is 632.8nm. 



 

Fig. S9. The (a) �� y, (b) �� x, and (c) �� o,x for the symmetric plane wave mode in the xz-plane (y=0), and the 

corresponding 1D contours of (e) �� y and �� x, (d) �� y and �� o,x indicate the direction of dispersive canonical 

momentum are inverted to that of the dispersive momentum. The (f) ��y, (g) ��x, and (h) ��o,x for the anti-symmetric 

plane wave mode in the xz-plane (y=0), and the corresponding 1D contours of (i) ��y and ��x, (j) ��y and ��o,x indicate 

the direction of dispersive canonical momentum are also inverted to that of the dispersive momentum. In the plane 

wave case, if one utilizes the dispersive momentum to evaluate the spin-momentum locking in the layer, the spin 

vector and the dispersive momentum satisfy the left-hand rule. Whereas the spin vector and the dispersive 

canonical momentum satisfy the right-hand rule. The wavelength is 632.8nm and the thickness of layer is 50nm. 

 

 

 



 

Fig. S10. The (a) ��x, (b) ��z, (c) ��y, and (d) ��o,y for the symmetric Bessel function mode in the xz-plane (y=0), and 

the corresponding 1D contours of (e) �� z and �� y, (f) �� z and �� o,y indicate the direction of dispersive canonical 

momentum are inverted to that of the dispersive momentum. The (g) ��x, (h) ��z, (i) ��y, and (j) ��o,y for the symmetric 

Bessel function mode in the xz-plane (y=0), and the corresponding 1D contours of (k) ��z and ��y, (l) ��z and ��o,y 

indicate the direction of dispersive canonical momentum are also inverted to that of the dispersive momentum. 

Remarkably, in the case, if one utilizes the dispersive momentum to evaluate the spin-momentum locking in the 

layer, the spin vector and the dispersive momentum satisfy the left-hand rule as shown in (e) and (k). However, 

the spin vector and the dispersive canonical momentum do not satisfy the spin-momentum locking, as shown in 

(f) and (l). The symmetric and anti-symmetric modes are constructed by +2-order Bessel function. The wavelength 

is 632.8nm and the thickness of layer is 50nm.  

 

 

 

 

 

 



 
Fig. S11. In the xz-plane (y=0), the (a) coupling z-component SAM, (b) coupling z-component transverse spin 

and (c) coupling longitudinal spin for the symmetric Bessel function mode in the air-metal-air configuration; the 

(d) coupling z-component SAM, (e) coupling z-component transverse spin and (f) coupling longitudinal spin for 

the anti-symmetric Bessel function mode in the air-metal-air configuration; the (a) coupling z-component SAM, 

(b) coupling z-component transverse spin and (c) coupling longitudinal spin for the symmetric Bessel function 

mode in the metal-air-metal configuration. One can definitely observe that the coupling spin components in (c), 

(f), (i) are always inverted to the transverse spin components (b), (e), (h), which make the spin-momentum locking 

between the dispersive SAM and dispersive momentum consistently in diverse multilayered structures. The 

symmetric and anti-symmetric modes are constructed by +2-order Bessel function. The wavelength is 632.8nm; 

the thickness of metal layer is 50nm in the air-metal-air configuration; the thickness of dielectric layer is 200nm 

in the metal-air-metal configuration. 

 

 

 

 

 

 

 

 

 

 

 



IV. Photonic meron and skyrmion lattices in various rotational symmetric 

systems 

The former spin-momentum locking properties can be utilized to investigate the spin-momentum dynamics 

of photonic topological solitons. Here, we first give the details of derivations of field distributions for the photonic 

skyrmion and meron lattices in C6 and C4 symmetries, respectively. The SAMs and dispersive momenta of the 

photonic skyrmion and meron lattices can be calculated by the equations (S43) and (S44). Then, we give several 

examples to indicate the relationship between the spin-momentum locking and photonic spin topological solitons.  

As given in Eq. (S8), for the p-polarized surface wave in the one-layer configuration considered here, the 

normal electric field component 2
zE A     should fulfill the Helmholtz equation 

   2 2, , , , 0x y z x y z     ,                                                       (S58) 

where the trial solution can be expressed as  

     , , zk zx y z X x Y y e  .                                                         (S59) 

By substituting equation (S59) into equation (S58), it can be obtained that 
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which can be separated into 
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with u + ν=1. The nontrivial solution of expression (S61) is 
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If we set 
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with λsp=2π/β, one can get 
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and then one can obtain that two groups of solutions 
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Therefore, the nontrivial solution of expression (S62) is converted into  
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The parameters in expression (S66) can be calculated further with rotating symmetry with rotating matrix 

 
cos sin 0

sin cos 0

0 0 1
zR

 

  

 
 

  
 
 

                                                               (S67) 

as the solid-state physics [S10]. The rotating symmetry operator can be expressed as 
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z z z zR E R e E    r z r z
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Note here that there is always   ˆ ˆ
z z zR E E z z  for the normal electric field component.  

First, for the C4 rotational symmetry and l = 0, the calculated field components are 

   

   

    

0 0

2 2

0 0

2 2

0 0

sin sin

sin sin

cos cos 0

z z

z z

z

k z k zz z z z
x x

k z k zz z z z
y y

k z
z z

A Ak E k Ei
E x e H i y e

x y

A Ak E k Ei
E y e H i x e

y x

A A
E x y e H

 
 

    

 
 

    

  
 

 

 



 
     

 

 
     

 

   

.             (S69) 

For the C4 rotational symmetry and l = 1, the calculated field components are 
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For the C4 rotational symmetry and l = 2, the calculated field components are 
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For the C4 rotational symmetry and l = 3, the calculated field components are 
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Using the equations (S8) and (S9), one can obtain the z-component electric field for meron lattices with 

l = 3 as 
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The horizontal electromagnetic field components are 
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The amplitude coefficients A+, B+, B‒ and A‒ have the relations: 
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Remarkably, the solutions have a periodicity of 4 if we only consider the spin-momentum properties of 

photonic meron lattices here. Moreover, as the l=0 and l=2, the SAMs and dispersive momenta vanish 

simultaneously (Noteworthily, as l=0 or l=2, the electric field distributions can be regarded as the photonic meron 

lattices [39]. However, the spin-orbit interaction is absence in the cases, and hence these cases are outside the 

range of our study.). We only consider the properties of spin angular momenta and momenta for l=1 (in Fig. S12) 

and l=3 (in Fig. S14) here. As l=1, the photonic meron lattice in the air half-space has been researched in Ref. 

[39]. Here, we first investigated the spin-momentum locking and photonic meron lattices in the dispersive medium: 

1. from the vector diagrams of dispersive momentum and SAMs in Fig. S12 and Fig. S14, it can be observed that 

the spin textures are locked with the dispersive momentum and satisfies the left-hand rule universally; 2. From 

the vector diagrams of SAMs, one can recognize that the skyrmion number of photonic meron lattices is ±1/2.  

We also give the corresponding abnormal results in Fig. S13 and Fig. S15 by ignoring the dispersion in the metal 

materials, which show the normal components of dispersionless SAMs are locked with the kinetic momentum and 

satisfies the right-hand rule for the symmetric modes, whereas for the anti-symmetric modes, the normal 

components of dispersionless SAMs are locked with the kinetic momentum and satisfies the left-hand rule. 



 

Fig. S12. As l=1 and C4 symmetry, the vector diagram of (a) dispersive momentum and the spin textures in the 

(b) z=0, (c) z=+12.5nm, (d) z=‒12.5nm for the meron lattices in the layer of air-metal-air structure constructed by 

the symmetric modes and the vector diagram of (e) dispersive momentum and the spin textures in the (f) z=0, (g) 

z=+12.5nm, (h) z=‒12.5nm for the meron lattices in the layer of air-metal-air structure constructed by the anti-

symmetric modes. From the vector diagrams of dispersive momentum and SAMs, it can be observed that the spin 

textures are locked with the dispersive momentum and satisfies the left-hand rule universally. Noteworthily, the 

directions of whirling are opposite between the spin textures in the planes z=12.5nm and z=‒12.5nm. This is 

because the horizontal SAM components are opposite in the planes z=12.5nm and z=‒12.5nm. In addition, from 

the vector diagrams of SAMs, one can recognize that the skyrmion number of photonic meron lattices is ±1/2. 



 

Fig. S13. As l=1 and C4 symmetry, the abnormal vector diagram of (a) kinetic momentum and the dispersiveless 

spin textures in the (b) z=0, (c) z=+12.5nm, (d) z=‒12.5nm for the meron lattices in the layer of air-metal-air 

structure constructed by the symmetric modes and the abnormal vector diagram of (e) kinetic momentum and the 

dispersiveless spin textures in the (f) z=0, (g) z=+12.5nm, (h) z=‒12.5nm for the meron lattices in the layer of air-

metal-air structure constructed by the anti-symmetric modes. From the vector diagrams of kinetic momentum and 

SAMs, it can be observed that the normal components of spin textures are locked with the kinetic momentum and 

satisfies the right-hand rule for the symmetric modes, whereas for the anti-symmetric modes, the normal 

components of spin textures are locked with the kinetic momentum and satisfies the left-hand rule. The 

configuration is air-metal-air, and the thickness of metal layer is 50 nm. The wavelength is 632.8nm. 

 



 

Fig. S14. As l=3 and C4 symmetry, the vector diagram of (a) dispersive momentum and the spin textures in the 

(b) z=0, (c) z=+12.5nm, (d) z=‒12.5nm for the meron lattices in the layer of air-metal-air structure constructed by 

the symmetric modes and the vector diagram of (e) dispersive momentum and the spin textures in the (f) z=0, (g) 

z=+12.5nm, (h) z=‒12.5nm for the meron lattices in the layer of air-metal-air structure constructed by the anti-

symmetric modes. From the vector diagrams of dispersive momentum and SAMs, it can be observed that the spin 

textures are locked with the dispersive momentum and satisfies the left-hand rule universally. Noteworthily, the 

directions of whirling are opposite between the spin textures in the planes z=12.5nm and z=‒12.5nm. This is 

because the horizontal SAM components are opposite in the planes z=12.5nm and z=‒12.5nm. In addition, from 

the vector diagrams of SAMs, one can recognize that the skyrmion number of photonic meron lattices is ±1/2. 

The configuration is air-metal-air, and the thickness of metal layer is 50 nm. The wavelength is 632.8nm. 

 

 



 

Fig. S15. As l=3 and C4 symmetry, the abnormal vector diagram of (a) kinetic momentum and the dispersiveless 

spin textures in the (b) z=0, (c) z=+12.5nm, (d) z=‒12.5nm for the meron lattices in the layer of air-metal-air 

structure constructed by the symmetric modes and the abnormal vector diagram of (e) kinetic momentum and the 

dispersiveless spin textures in the (f) z=0, (g) z=+12.5nm, (h) z=‒12.5nm for the meron lattices in the layer of air-

metal-air structure constructed by the anti-symmetric modes. From the vector diagrams of kinetic momentum and 

SAMs, it can be observed that the normal components of spin textures are locked with the kinetic momentum and 

satisfies the right-hand rule for the symmetric modes, whereas for the anti-symmetric modes, the normal 

components of spin textures are locked with the kinetic momentum and satisfies the left-hand rule. The 

configuration is air-metal-air, and the thickness of metal layer is 50 nm. The wavelength is 632.8nm. 

 

 

 



Then, for the C6 rotational symmetry and l = 0, the calculated field components are 
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For the C6 rotational symmetry and l = 1, the calculated field components are 
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For the C6 rotational symmetry and l = 2, the calculated field components are 
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For the C6 rotational symmetry and l = 3, the calculated field components are 
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For the C6 rotational symmetry and l = 4, the calculated field components are 
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For the C6 rotational symmetry and l = 5, the calculated field components are 
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The electric/magnetic field components can be calculated as the processes in expressions (S73)-(S75).  

Remarkably, the solutions have a periodicity of 6 if we only consider the spin-momentum properties of 

photonic Skyrmion lattices here. Moreover, as the l=0 and l=3, the spin angular momenta and momenta vanish 



simultaneously (Noteworthily, as l=0 or l=3, the electric field distributions can be regarded as the photonic 

skyrmion lattices [S11, S12]. However, the spin-orbit interaction is absence in the cases, and hence these cases 

are outside the range of our study.).  
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