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INTRINSIC ULTRACONTRACTIVITY
OF THE FEYNMAN-KAC SEMIGROUP

FOR RELATIVISTIC STABLE PROCESSES

TADEUSZ KULCZYCKI AND BART�LOMIEJ SIUDEJA

Abstract. Let Xt be the relativistic α-stable process in Rd, α ∈ (0, 2), d > α,

with infinitesimal generator H
(α)
0 = −((−∆ + m2/α)α/2 − m). We study

intrinsic ultracontractivity (IU) for the Feynman-Kac semigroup Tt for this

process with generator H
(α)
0 − V , V ≥ 0, V locally bounded. We prove that

if lim|x|→∞ V (x) = ∞, then for every t > 0 the operator Tt is compact. We

consider the class V of potentials V such that V ≥ 0, lim|x|→∞ V (x) = ∞ and
V is comparable to the function which is radial, radially nondecreasing and
comparable on unit balls. For V in the class V we show that the semigroup

Tt is IU if and only if lim|x|→∞ V (x)/|x| = ∞. If this condition is satisfied we
also obtain sharp estimates of the first eigenfunction φ1 for Tt. In particular,
when V (x) = |x|β , β > 0, then the semigroup Tt is IU if and only if β > 1.
For β > 1 the first eigenfunction φ1(x) is comparable to

exp(−m1/α|x|) (|x| + 1)(−d−α−2β−1)/2.

1. Introduction

The purpose of this paper is to study the Feynman-Kac semigroup for the rel-
ativistic α-stable process Xt on Rd, α ∈ (0, 2). This process is a Markov process
with independent and homogeneous increments and characteristic function of the
form

E0(exp(iξXt)) = exp
(
−t((m2/α + |ξ|2)α/2 − m)

)
,

where ξ ∈ Rd, m > 0, t > 0. In the entire paper we assume that d > α. As usual
Ex, x ∈ Rd, denotes the expected value for the process starting from x ∈ Rd.

The Feynman-Kac semigroup Tt, t > 0, for Xt and measurable, locally bounded
potential 0 ≤ V (x) < ∞ is defined as follows:

Tt(f)(x) = Ex

(
exp

(
−

∫ t

0

V (Xs)ds

)
f(Xt)

)
, x ∈ Rd, f ∈ L2(Rd).(1.1)

The generator of this semigroup is the Schrödinger operator H(α) = H
(α)
0 − V ,

where
H

(α)
0 = −((−∆ + m2/α)α/2 − m).
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In this paper we study the Feynman-Kac semigroup for the generator H(α) =
H

(α)
0 − V by using methods of stochastic processes. Although proofs are rather

complicated they are quite general and can be applied to many other operators
e.g. −(−∆)α/2, which are generators of symmetric α-stable processes. It is worth
pointing out that Feynman-Kac semigroups for Markov processes (especially for
symmetric α-stable processes) have been widely studied ([Z], [BB1], [BB2], [CS1],
[CS2]).

The relativistic α-stable process has been introduced and studied in [R]. For
α = 1 this process has been studied in [CMS] (see also [C1], [Ba1] and [Ba2]). For
α = 1 the generator of this process has the form

H
(1)
0 = −(

√
−∆ + m2 − m)

and −H
(1)
0 is called relativistic Hamiltonian. As explained in [CMS] this operator

corresponds to the kinetic energy of a relativistic particle with mass m. If p is
the momentum of the particle, then its relativistic kinetic energy is given by E =√

p2 + m2. In the process of quantization the momentum p is replaced by the
differential operator −i∇, and the quantum analog of the relativistic kinetic energy
is the free relativistic Hamiltonian −H

(1)
0 .

There are many problems in quantum mechanics which can be formulated in
terms of such generators. For example they were investigated by E. Lieb in difficult
problems concerning the stability of relativistic matter. There exists an important
literature on properties of relativistic Hamiltonians ([L], [H], [DL], [Db], [F], [FL],
[LY]).

Now we come back to formulating results for the Feynman-Kac semigroup Tt of
the relativistic α-stable process. Let us recall that we assume in this paper that the
potential V which appears in the definition of the Feynman-Kac semigroup satisfies
0 ≤ V (x) < ∞. The Feynman-Kac semigroup Tt is given by the kernel u(t, x, y),
that is,

Ttf(x) =
∫
Rd

u(t, x, y)f(y)dy, x ∈ Rd, f ∈ L2(Rd).

For each t > 0 the kernel u(t, x, y) is continuous and bounded on Rd × Rd. For
any t > 0, x, y ∈ Rd the kernel is strictly positive. The proof of these properties is
standard. It is similar to proofs for the classical Feynman-Kac semigroup (see e.g.
[CZ]). For the convienience of the reader we write the short proof of properties of
u(t, x, y) in Lemma 3.1.

Our first result gives an easy criterion for compactness of operators Tt.

Theorem 1.1. If V (x) −→ ∞ as |x| −→ ∞, then for all t > 0 the operators Tt

are compact. If there exists a set consisting of an infinite number of disjoint unit
balls such that V (x) is bounded on this set, then for all t > 0 the operators Tt are
not compact.

From now on we will assume that V (x) −→ ∞ as |x| −→ ∞. The properties of
u(t, x, y) and general theory of semigroups for compact operators gives the following
standard results. There exists an orthonormal basis in L2(Rd) of eigenfunctions
{φn}∞n=1 with corresponding eigenvalues {e−λnt}∞n=1 satisfying 0 < λ1 < λ2 ≤ λ3 ≤
· · · and limn→∞ λn = ∞. That is, Ttφn = e−λntφn. All φn are continuous and
bounded. The first eigenfunction φ1 is strictly positive.
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The most important result of this paper concerns intrinsic ultracontractivity (IU)
for the semigroup Tt. IU was introduced by E. B. Davies and B. Simon in [DS].
The semigroup Tt is called intrinsically ultracontractive if and only if for any t > 0
there exists a constant Ct such that for all x,y ∈ Rd

u(t, x, y) ≤ Ctφ1(x)φ1(y).(1.2)

This definition comes from [DS], Theorem 3.2(iv), which presents many equivalent
conditions for IU. It is well known that the upper bound inequality implies the lower
bound inequality (see [DS], Theorem 3.2, proof of (iv) ⇒ (v)). Therefore IU may
also be formulated in the following way. The semigroup Tt is called intrinsically
ultracontractive if and only if for any t > 0 there exist constants Ct,ct > 0 such
that for all x,y ∈ Rd

ctφ1(x)φ1(y) ≤ u(t, x, y) ≤ Ctφ1(x)φ1(y).(1.3)

There are many other equivalent conditions for IU (see [DS], [B]).
Let us point out that in [DS] it is assumed that

∫
Rd u(t, x, x) dx < ∞, and we

do not assume this apriori. Nevertheless we do not use this assumption anywhere,
and also the proof of (1.2) ⇒ (1.3) does not use this assumption.

In this paper we will check IU using the following conditions which may be
studied using probabilistic methods.

Condition 1.2. There exists an open, bounded and nonempty set D such that for
any t > 0 there is a constant ct,D > 0 such that for any x ∈ Rd,

Tt(1Rd)(x) ≤ ct,DTt(1D)(x).

Condition 1.3. For any open, bounded and nonempty set D and for any t > 0
there is a constant ct,D > 0 such that for any x ∈ Rd,

Tt(1B(x,1))(x) ≤ ct,DTt(1D)(x).

Condition 1.2 implies IU. We will show this at the end of Section 3. The fact
that Condition 1.2 implies IU is rather well known (see e.g. [BD], Lemma 1.4).
However we could not find in the literature the direct proof for the Feynman-Kac
semigroup. Therefore we decided to provide the brief proof.

Also at the end of Section 3 we will show that IU implies Condition 1.3. This
condition will be used to show that for some potential V the semigroup is not IU.

IU has been introduced in [DS] for very general semigroups. Important examples
of such semigroups are the semigroups of elliptic operators H0 and the semigroups
for Schrödinger operators H = H0 − V both on Rd, as well as on domains D (with
Dirichlet boundary conditions). IU for such semigroups has been widely studied
(see e.g. [B], [Da] [D], [BD]). IU has also been studied for semigroups generated
by −(−∆)α/2 (see e.g. [K], [CS1], [CS2]).

The classical result for Feynman-Kac semigroups Tt on Rd generated by H =
∆− V is the following fact (Corollary 4.5.5, Theorem 4.5.11 and Corollary 4.5.8 in
[D]). If V (x) = |x|β (dimension d ≥ 1), then Tt is IU iff β > 2. Moreover for β > 2
we have

cf(x) ≤ φ1(x) ≤ Cf(x), |x| > 1,

where c and C are positive constants, and

f(x) = |x|−β/4+(d−1)/2 exp
(
− 2

2 + β
|x|1+β/2

)
.
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There are of course many other results of similar type (see e.g. Theorems 6.1, 6.3,
6.4 in [DS]).

Now we will define the class V of potentials which we will investigate in this
paper. First we need the definition of the auxiliary class of functions L.

Definition 1.4. We say that a function L : [0,∞) −→ [0,∞) belongs to the class
L if

(1) L is nondecreasing,
(2) limt→∞ L(t) = ∞,
(3) there exists c̃ ≥ 1 such that for all t ≥ 0

L(t + 1) ≤ c̃L(t) + c̃.

Definition 1.5. We say that the potential V : Rd −→ [0,∞) belongs to the class
V if there exists a function L ∈ L and a constant C > 0 such that for any x ∈ Rd

we have
L(|x|) ≤ V (x) ≤ CL(|x|) + C.

Roughly speaking V ∈ V if V ≥ 0, lim|x|→∞ V (x) = ∞ and V is comparable
to the function which is radial, radially nondecreasing and comparable on unit
balls. Typical examples of functions belonging to V are V (x) = |x|β for β > 0,
V (x) = |x|β lnγ(|x| + 2) for β ≥ 0 and γ > 0, and V (x) = eβ|x| for β > 0. On the
other hand V (x) = exp(|x|β), β > 1, does not belong to V because exp(|x|β) and
exp((|x| + 1)β) are not comparable.

The main result of this paper is the following theorem.

Theorem 1.6. Assume that the potential V belongs to class V. Then the Feynman-
Kac semigroup Tt with such potential (defined by (1.1)) is intrinsically ultracontrac-
tive if and only if

lim
|x|→∞

V (x)
|x| = ∞.(1.4)

Moreover, if (1.4) holds, then there exist c1 = c1(d, α, m, V ) > 0 and c2 =
c2(d, α, m, V ) > 0 such that for any x ∈ Rd we have

c1 exp(−m1/α|x|)
(|x| + 1)(d+α+1)/2(V (x) + 1)

≤ φ1(x) ≤ c2 exp(−m1/α|x|)
(|x| + 1)(d+α+1)/2(V (x) + 1)

.(1.5)

In particular for potentials V (x) = |x|β , the semigroup Tt is IU if and only if
β > 1. When β > 1 there exists c1 = c1(α, d, m, β) > 0 and c2 = c2(α, d, m, β) > 0
such that

c1 exp(−m1/α|x|)
(|x| + 1)(d+α+2β+1)/2

≤ φ1(x) ≤ c2 exp(−m1/α|x|)
(|x| + 1)(d+α+2β+1)/2

.

This gives control on the growth of u(t, x, y) (cf. (1.3)).
The rest of the paper is organized as follows. In Section 2, Preliminaries, we

set notation and present various facts which are needed in the sequel. In Section
3 we prove Theorem 1.1 which gives criterion for compactness of Tt. In Section 4
we prove estimates of transition density for the killed process. These estimates are
needed to prove the main result. Nevertheless it seems that these estimates were
not known before and are interesting in themselves. In Section 5 we prove the main
result of the paper, Theorem 1.6. Section 5 is the most important and difficult part
of this paper. We use probabilistic methods to prove intrinsic ultracontractivity.
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One of the key steps in the proof of the main theorem is Lemma 5.9. The main
idea of the proof of this lemma is taken from [BK], Lemma 4.5.

2. Preliminaries

Let N = {1, 2, . . . } denote the set of natural numbers. Let d ≥ 1. By |x| we
will denote the Euclidean norm of in Rd, and by |A| the d-dimensional Lebesgue
measure of set A. For any subset U ∈ Rd we will denote its complement by Uc.
Furthermore for x ∈ Rd, r > 0, we put B(x, r) = {y ∈ Rd : |x − y| < r}. For
any A,B ⊂ Rd, t > 0, we denote dist(A, B) = inf{x ∈ A, y ∈ B : |x − y|},
tA = {tx : x ∈ A}, δA(x) = dist(x, ∂A).

We will write c = c(α, β, . . . , γ) to indicate the dependence of a constant c on
parameters, functions, etc. All constants in this paper depend on the process, and
(if applicable) on the potential, thus we will omit dependence on α, d, m, and V .
The constants may change their value from one use to the next, even on the same
line in the same formula. However, the set of parameters on which a constant may
depend will not change from one use to another. The constants will always be
assumed finite and strictly positive.

From now on let α ∈ (0, 2). We will follow terminology and notation from [R]
most of the time.

The density of the transition probability for Xt is given by the formula

Px(Xt ∈ A) =
∫

A

p(t, x, y)dy.

It is well known (Lemma 3 from [R]) that for all t > 0 the density p(t, x, y) is
bounded. The density of the Levy measure for the relativistic α-stable process,
called ν(x), is equal to (Lemma 2 from [R])

(2.1) ν(x) =
c

|x|d+α
e−m1/α|x|ϕ(m1/α|x|),

for x ∈ Rd, |x| > 0, where

(2.2) ϕ(ξ) =
∫ ∞

0

e−vvp(ξ + v/2)pdv, ξ ≥ 0, p =
d + α − 1

2
,

and c = Γ((d + α)/2)/(πd/22−α/2|Γ(−α/2)|ϕ(0)).
By τD we will denote the first exit time from the open set D, i.e., τD =

inf{t > 0 : Xt 	∈ D}. The exit time has the following property: Px(τD = t) = 0 for
all t > 0.

By pD(t, x, y) we denote the density of the process killed on exiting the set D:

pD(t, x, y) = p(t, x, y) − Ex(τD ≤ t; p(t − τD, X(τD), y)),(2.3)

for x,y ∈ D, and pD(t, x, y) = 0 everywhere else. For the open bounded set D
we will denote by GD(x, y) the Green function for the set D equal to GD(x, y) =∫ ∞
0

pD(t, x, y)dt.
For an open set D ⊂ Rd and x ∈ Rd, the distribution Px(τD < ∞, X(τD) ∈ ·)

will be called the relativistic α-harmonic measure for D. The following Ikeda-
Watanabe formula recovers the relativistic α-harmonic measure for the set D from
the Green function.
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Proposition 2.1 ([IW]). Assume that D is an open, nonempty, bounded subset of
Rd, and A is a Borel set such that dist(D, A) > 0. Then

(2.4) Px(X(τD) ∈ A, τD < ∞) =
∫

D

GD(x, y)
∫

A

ν(y − z)dzdy, x ∈ D.

Now we prove some estimates for p(t, x, y) and ν(x), which are crucial in further
considerations.

Lemma 2.2. For any x, y ∈ Rd and t > 0 there exist constants c1 > 0 and c2 > 0,
such that

p(t, x, y) ≤ c1e
mt min

{
t

|x − y|d+α
e−c2|x−y|, t−d/α

}
.

Proof. Let us recall our convention that all constants (in particular c1, c2) may
depend on α, d, m, V , and we omit this dependence in notation. Moreover, all con-
stants are strictly positive. The following inequality is the consequence of formula
(8) in the proof of Lemma 2 from [R]:

(2.5) p(t, x, y) ≤ ctemt

∫ ∞

0

1

u
d+α+2

2

e−m2/αue
−|x−y|2

4u du.

We have∫ |x−y|

0

1

u
d+α+2

2

e−m2/αue
−|x−y|2

4u du ≤ e−|x−y|/8

∫ |x−y|

0

1

u
d+α+2

2

e
−|x−y|2

8u du,∫ ∞

|x−y|

1

u
d+α+2

2

e−m2/αue
−|x−y|2

4u du ≤ e−m2/α|x−y|
∫ ∞

|x−y|

1

u
d+α+2

2

e
−|x−y|2

8u du.

Thus

p(t, x, y) ≤ ctemte−c2|x−y|
∫ ∞

0

1

u
d+α+2

2

e
−|x−y|2

8u du.

Substituting v = |x − y|2/(8u), the last expression equals

ctemte−c2|x−y|
∫ ∞

0

v
d+α−2

2

|x − y|d+α
e−vdv =

c1te
mt

|x − y|d+α
e−c2|x−y|.

The second estimate (by t−d/α) is a consequence of Lemma 5 from [R] and well-
known estimates for transition density for classical α-stable processes. �

We obtained the following explicit formula for the asymptotic behavior of ν(x).

Lemma 2.3. Let ε > 0. There exist constants cε and Cε, such that for |x| > ε we
have

(2.6)
cε

|x| d+α+1
2

e−m1/α|x| ≤ ν(x) ≤ Cε

|x| d+α+1
2

e−m1/α|x|.

Proof. To get the asymptotic behavior of ν(x) we need to estimate ϕ from (2.2).
Assume ξ ≥ εm1/α. We divide ϕ into two parts,

I1 =
∫ ξ

0

e−vvp(ξ + v/2)pdv,

I2 =
∫ ∞

ξ

e−vvp(ξ + v/2)pdv.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INTRINSIC ULTRACONTRACTIVITY OF FEYNMAN-KAC SEMIGROUP 5031

We have

I2 ≤
∫ ∞

ξ

e−vvp(2v)pdv ≤ 2p

∫ ∞

0

e−vv2pdv,

so I2 is bounded. On the other hand,

I1 ≤ (2ξ)p

∫ ξ

0

e−vvpdv ≤ (2ξ)p

∫ ∞

0

e−vvpdv = c|ξ|p,

I1 ≥ |ξ|p
∫ ξ

0

e−vvpdv ≥ |ξ|p
∫ εm1/α

0

e−vvpdv = c|ξ|p. �

Lemma 2.4. For any x ∈ Rd we have

ν(x) ≤ c

|x|d+α
.

Proof. The lemma is a consequence of formulas (2.1) and (2.2). �

Now we prove generalizations of the Ikeda-Watanabe formula (Proposition 2.1).

Proposition 2.5. Assume that D is an open, nonempty, bounded subset of Rd,
and A is a Borel set such that A ⊂ Dc \ ∂D. Then

Px(X(τD) ∈ A, t1 < τD < t2)

=
∫

D

∫ t2

t1

pD(s, x, y)ds

∫
A

ν(y − z)dzdy,
(2.7)

where x ∈ D, 0 ≤ t1 < t2 ≤ ∞.

Proof. It is sufficient to consider only the case when t2 = ∞. At first assume that
dist(A, D) > 0. Using strong Markov property we have, for any t > 0 and x ∈ D,

Px(X(τD) ∈ A, t < τD < ∞)

= Ex
(
t < τD;PXt(X(τD) ∈ A, τD < ∞)

)
= Ex

(
t < τD;

∫
D

GD(Xt, y)
∫

A

ν(y − z)dzdy

)

= Ex

(
t < τD;

∫
D

∫ ∞

0

pD(s, Xt, y)ds

∫
A

ν(y − z)dzdy

)

=
∫

D

∫ ∞

0

Ex(t < τD; pD(s, Xt, y))ds

∫
A

ν(y − z)dzdy

=
∫

D

∫ ∞

0

∫
Rd

pD(t, x, z)pD(s, z, y)dzds

∫
A

ν(y − z)dzdy.

Now using the semigroup property for pD (Theorem 1 from [R]) and changing the
limits in the second integral, this is equal to∫

D

∫ ∞

t

pD(s, x, y)ds

∫
A

ν(y − z)dzdy.

If dist(A, D) = 0 let us put Aε = {z ∈ A : dist(z, D) > ε}, ε > 0. Then (2.7)
holds for Aε. Letting ε → 0 we get (2.7) for A. �

To prove the next generalization we need the following fact.
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Lemma 2.6. For any open nonempty set D, and DR = D ∩ B(0, R),

pDR
(t, x, y) ↗ pD(t, x, y)

as R −→ ∞, for any x, y ∈ D, t > 0.

Proof. We choose R large enough so that x,y ∈ DR. By the definition of pD (2.3),
pD(t, x, y) − pDR

(t, x, y) is equal to

(2.8) Ex(τDR
< t; p(t − τDR

, X(τDR
), y)) − Ex(τD < t; p(t − τD, X(τD), y)).

Note that τDR
≤ τD and

Ex(τD < t,τDR
= τD; p(t − τD, X(τD), y))

= Ex(τDR
< t, τDR

= τD; p(t − τDR
, X(τDR

), y)).

Therefore (2.8) is equal to

Ex(τDR
< t, τDR

< τD; p(t − τDR
, X(τDR

), y))

− Ex(τDR
< τD < t; p(t − τD, X(τD), y))

≤ Ex(τDR
< t, τDR

< τD; p(t − τDR
, X(τDR

), y))

= Ex(τDR
< t, X(τDR

) ∈ D; p(t − τDR
, X(τDR

), y)).

Note also that if X(τDR
) ∈ D, then X(τDR

) ∈ Bc(0, R). Thus using Lemma 2.2
the last expression is bounded from the above by

Ex

(
τDR

< t, X(τDR
) ∈ D;

c1(t − τDR
)em(t−τDR

)

|X(τDR
) − y|d+α

e−c2|X(τDR
)−y|

)

≤ c1te
mt

(R − |y|)d+α
e−c2(R−|y|).

The last expression tends to 0 as R −→ ∞, thus the lemma is proved. �

Proposition 2.7. Assume that D is open and nonempty (it may be unbounded)
and A is a Borel set such that A ⊂ Dc \ ∂D. Also assume that 0 ≤ t1 < t2 < ∞.
Then (2.7) holds.

Proof. Without loss of generality we can assume that t1 = 0. Consider the family
of sets DR = D ∩B(0, R), R > 0. These sets are open, bounded and nonempty for
large enough R, so we may apply Proposition 2.5 to those sets and t2 = t ≥ 0:

(2.9) Px(X(τDR
) ∈ A, τDR

< t) =
∫

DR

∫ t

0

pDR
(s, x, y)ds

∫
A

ν(y − z)dzdy.

The proof will be completed if we show that

Px(X(τDR
) ∈ A, τDR

< t) −→ Px(X(τD) ∈ A, τD < t),(2.10)

pDR
(s, x, y) ↗ pD(s, x, y),(2.11)

as R −→ ∞.
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Lemma 2.6 gives (2.11). We need to show (2.10). We may and do assume that
x ∈ DR. Note that if X(τDR

) ∈ A, then τDR
= τD. Thus

Px(X(τD) ∈ A, τD < t) − Px(X(τDR
) ∈ A, τDR

< t)

= Px(X(τD) ∈ A, X(τDR
) ∈ D, τDR

< τD < t)

≤ Px(X(τDR
) ∈ D \ B(0, R), τDR

< t)

= Px(X(τDR
) ∈ D \ B(0, R), τDR

< t, τB(0,R) < t)

≤ Px(τB(0,R) < t).

For R > 2|x| this is bounded from above by

Px(τB(x,R/2) < t) = P0(τB(0,R/2) < t)

= 1 − P 0(τB(0,R/2) > t) = 1 −
∫
Rd

pB(0,R/2)(t, 0, y)dy.

By Lemma 2.6 this decreases to 1 −
∫
Rd p(t, 0, y)dy = 0. �

The above proposition gives an explicit formula for the joint distribution of
X(τD) and τD, thus as an easy consequence we have

Corollary 2.8. Assume that D is an open and nonempty set (it may be unbounded)
and A is a Borel set such that A ⊂ Dc \ ∂D. Also assume that 0 ≤ t < ∞ and B
is any Borel set. Then

Px(X(τD) ∈ A, τD < t, X(t) ∈ B)

=
∫

D

∫ t

0

pD(s, x, y)
∫

A

ν(y − z)Pz(X(t − s) ∈ B)dz ds dy.
(2.12)

In the sequel we will need another generalization of the Ikeda-Watanabe formula.
Namely we need to change the assumption A ⊂ Dc\∂D to the assumption A ⊂ Dc.
It is possible to do so, but we have to make some additional regularity assumptions
on ∂D.

We say that an open set D ⊂ Rd satisfies the outer cone property if there exist
constants η = η(D), R0 = R0(D) and a cone C = {x = (x1, . . . , xd) ∈ Rd : 0 <
xd, ||(x1, . . . , xd−1)|| < ηxd} such that for every Q ∈ ∂D, there is a cone CQ with
vertex Q, isometric with C and satisfying CQ ∩ B(Q, R0) ⊂ Dc.

For such sets we will be able to prove that P x(X(τD) ∈ ∂D; τD < ∞) = 0,
x ∈ D.

At first we need the following auxiliary lemma. We point out that this lemma
would be trivial for the symmetric stable process because of the scaling properties
of the process. For the relativistic process the proof requires more technical details.

Lemma 2.9. Let D be an open, nonempty, bounded set satisfying the outer cone
property. For x ∈ D let rx = 1

3 dist(x, Dc) and Bx = B(x, rx). There exists a
constant p = p(D) > 0 (not depending on x) such that for any x ∈ D we have

P x(X(τBx
) ∈ Dc) > p.

Proof. Let x ∈ D. By Lemma 7 from [R] we have

Ex(τBx
) ≥ (1 + mc|D|α/d)−1Ex(τ̃Bx

),

where τ̃Bx
is the exit time for the symmetric α-stable process and c a constant

depending only on d and α. It is well known (see e.g. [BK] (2.10)) that Ex(τ̃Bx
) =

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5034 TADEUSZ KULCZYCKI AND BART�LOMIEJ SIUDEJA

c′rα
x , where c′ depends only on d and α. Therefore Ex(τBx

) ≥ crα
x , where c = c(D)

(recall that we omit the dependence on α, d, m in the notation). Let Q ∈ ∂D be
such that dist(x, ∂D) = |Q − x|. We have CQ ∩ B(Q, R0) ⊂ Dc. By Proposition
2.1 and formula (2.1) we get

P x(X(τBx
) ∈ Dc) =

∫
Bx

GBx
(x, y)

∫
Dc

ν(y − z) dz dy

≥
∫

Bx

GBx
(x, y)

∫
CQ∩B(Q,R0)

c|y − z|−d−αe−m1/α|y−z|ϕ(m1/α|y − z|) dz dy.

(2.13)

Note that for y ∈ Bx and z ∈ CQ ∩ B(Q, R0) we have |y − z| ≤ diam(D) + R0 and
|y − z| ≤ |y − x| + |x − z| ≤ 2|x − z|. We estimate the terms in the integral over
CQ ∩B(Q, R0) as |y − z|−d−α ≥ c|x− z|−d−α, e−m1/α|y−z| ≥ c, c = c(D). By (2.2)
ϕ(ξ) ≥ c for any ξ ≥ 0.

∫
Bx

GBx
(x, y) dy = Ex(τBx

) ≥ crα
x , c = c(D). Therefore

using (2.13) we obtain

(2.14) P x(X(τBx
) ∈ Dc) ≥ crα

x

∫
CQ∩B(Q,R0)

|x − z|−d−α dz, c = c(D).

We will consider 2 cases, rx ≥ R0/2 and rx < R0/2.
If rx ≥ R0/2, then the estimate is easy. Note that rα

x ≥ (R0/2)α and |x − z| ≤
diam(D) + R0, so the right-hand side of (2.14) is bounded from below by c(D).

If rx < R0/2 put C ′
Q = CQ ∩ B(Q, R0) ∩ Bc(Q, rx) (z ∈ C ′

Q if z ∈ CQ and rx ≤
|z−Q| ≤ R0). For z ∈ C ′

Q we have |x−z| ≤ |x−Q|+|Q−z| = 3rx+|Q−z| ≤ 4|Q−z|.
Therefore ∫

C′
Q

|x − z|−d−α dz ≥ c

∫
C′

Q

|Q − z|−d−α dz = c(D)r−α
x .

�

Lemma 2.10. Let D be an open, nonempty set (it may be unbounded) satisfying
the outer cone property. Then for any x ∈ D we have

P x(X(τD) ∈ ∂D; τD < ∞) = 0.

Proof. At first we note that |∂D| = 0 (the Lebesgue measure). This follows from
the fact that almost every point of a measurable set is a density point. Since for
x ∈ ∂D there exists a cone belonging to Dc, the point x is not a density point for
∂D. Therefore |∂D| = 0.

In the next step let us assume that D is bounded. Then we may repeat the proof
which is given in [Bo], Lemma 6, for symmetric α-stable processes. Some changes
in the proof are needed because we have to prove it for relativistic stable processes
which do not have nice scaling properties. Therefore we will repeat the main steps
from the proof of [Bo], Lemma 6.

By Theorems 3 and 2 from [R] we have Ex(τB(0,R)) < ∞ for any R > 0 and x ∈
B(0, R). Since D is bounded it follows that Ex(τD) < ∞, hence P x(τD < ∞) = 1,
for any x ∈ D. Therefore we will omit τD < ∞ and write P x(X(τD) ∈ ∂D) instead
of P x(X(τD) ∈ ∂D; τD < ∞) whenever D is bounded.
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For x ∈ D let rx = 1
3 dist(x, Dc) and Bx = B(x, rx). By the strong Markov

property we have for x ∈ D

P x(X(τD) ∈ ∂D)

= P x(X(τBx
) ∈ ∂D) + Ex(PX(τBx )(X(τD) ∈ ∂D); X(τBx

) ∈ D).
(2.15)

We denote the two terms on the right-hand side of (2.15) by p0(x) and r0(x),
respectively. We observe that p0(x) is the probability of the event that the pro-
cess Xt jumps directly to ∂D while leaving Bx, and r0(x) is the probability of a
complimentary event that upon leaving Bx it visits D before going to ∂D.

Using (2.15) we can prove inductively that for k = 0, 1, . . . we have

(2.16) P x(X(τD) ∈ ∂D) = p0(x) + p1(x) + . . . + pk(x) + rk(x), x ∈ D,

with

(2.17) pk+1(x) = Ex(pk(X(τBx
)); X(τBx

) ∈ D)

and

(2.18) rk+1(x) = Ex(rk(X(τBx
)); X(τBx

) ∈ D).

Indeed, it is enough to verify that rk = pk+1 + rk+1. We may think of pk as the
probability of the event that the process Xt goes to ∂D after precisely k jumps
from one ball Bx to another.

Recall that we assume that D is bounded so we can use Lemma 2.9. By this
lemma and (2.18) we get

sup
x∈D

rk+1(x) ≤ (1 − p) sup
x∈D

rk(x) ≤ (1 − p)k+1 → 0 as k → ∞.

By (2.16) we obtain P x(X(τD) ∈ ∂D) =
∑∞

k=0 pk(x).
Now note that for any x ∈ D, dist(Bx, ∂D) > 0, so we may apply Proposition

2.1. But |∂D| = 0, so this proposition gives that p0(x) = 0 for all x ∈ D. By (2.17)
we obtain that pk(x) = 0 for all x ∈ D and all k. Therefore P x(X(τD) ∈ ∂D) = 0.

Next let us assume that D is unbounded. Let Dn = D ∩ B(0, n), n = 1, 2, . . ..
For x ∈ Dn we have

P x(X(τDn
) ∈ ∂D) = P x(X(τDn

) ∈ ∂Dn ∩ ∂D) + P x(X(τDn
) ∈ ∂D \ ∂Dn).

The first term on the right-hand side is 0 because Dn satisfies the outer cone
property and is bounded. The second term is 0 by Proposition 2.5 (for t1 = 0,
t2 = ∞) and the fact that |∂D| = 0.

Now we will use a very general fact that for each fixed ω ∈ Ω and t > 0, we have
sups∈[0,t] |Xs(ω)| < ∞. Therefore for any fixed ω ∈ Ω such that τD(ω) < ∞, we
have sups∈[0,τD(ω)] Xs(ω) < ∞. Hence for any fixed ω ∈ Ω such that τD(ω) < ∞,
there exists n = n(ω) such that τD(ω) = τDn

(ω). It follows that

P x(X(τD) ∈ ∂D; τD < ∞) = lim
n→∞

P x(X(τDn
) ∈ ∂D) = 0.

�

As an immediate conclusion of Corollary 2.8 and Lemma 2.10 we obtain the
following corollary.

Corollary 2.11. Assume that D is an open and nonempty set satisfying the outer
cone property (it may be unbounded) and A is a Borel set such that A ⊂ Dc. Also
assume that 0 ≤ t < ∞ and B is any Borel set. Then (2.12) holds.
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3. Compactness of the Feynman-Kac semigroup

At the beginning of this section we prove the existence and basic properties
of the kernel u(t, x, y). The proof is standard and is based on [CZ] (see Section
3.2). Let us denote Ptf(x) = Ex(f(Xt)). Using estimates for p(t, x, y) (see Lemma
2.2) it is easy to show that Pt : L1(Rd) → L∞(Rd), Pt : L1(Rd) → L1(Rd) and
Pt : L∞(Rd) → L∞(Rd) are bounded operators. By CB(Rd) we denote the set of
all continuous and bounded functions on Rd.

Lemma 3.1. (i) Tt(|f |)(x) ≤ Pt(|f |)(x), t > 0, x ∈ Rd, f : Rd → R.
(ii) For any t > 0, Tt : L∞ → CB(Rd).
(iii) There exists a density u(t, x, y) for Tt, i.e. Ttf(x) =

∫
u(t, x, y)f(y) dy,

t > 0, x ∈ Rd, f ∈ Lp(Rd) (1 ≤ p ≤ ∞). For each fixed t > 0, u(t, x, y) is
continuous and bounded on Rd × Rd.

(iv) u(t, x, y) = u(t, y, x), t > 0, x, y ∈ Rd.
(v) u(t, x, y) ≤ p(t, x, y), t > 0, x, y ∈ Rd.
(vi) u(t, x, y) > 0, t > 0, x, y ∈ Rd.

Proof. (i) This is clear from (1.1) and our assumption that V ≥ 0.
(ii) Put u(x, y) =

∫ ∞
0

p(s, x, y) ds, x, y ∈ Rd. By J we denote the Kato class for
the relativistic α-stable process. We say that q : Rd → R belongs to J if and only
if

(3.1) lim
r↓0

[ sup
x∈Rd

∫
|y−x|≤r

u(x, y)|q(y)| dy] = 0.

This definition is motivated by [Z], Theorem 1 (C1). The condition (3.1) implies

(3.2) lim
t↓0

[ sup
x∈Rd

Ex

(∫ t

0

|q(Xs)| ds

)
] = 0.

This follows from Lemma 2 in [Z] and proof of Theorem 1, steps 4 and 2 in [Z].
Put eq(t) = exp(

∫ t

0
q(Xs)ds). By a standard argument based on the Khasminskii

lemma (see Lemma 3.7 and Proposition 3.8 in [CZ]) (3.2) implies

(3.3) lim
t↓0

[ sup
x∈Rd

Ex(e|q|(t))] = 1.

Now for any R > 0, x ∈ Rd put VR(x) = 1B(0,R)(x)V (x). Recall our assumption
that d > α and V is locally bounded. Estimates of u(x, y) from Lemma 4 in [R]
give that VR ∈ J for any R > 0. Set Tt,Rf(x) = Ex(e−VR

(t)f(Xt)), t > 0, R > 0,
x ∈ Rd. Formula (7) from [R] implies that for each fixed t > 0 the kernel p(t, x, y)
is bounded and continuous on Rd × Rd. It follows that Pt : L∞(Rd) → CB(Rd).
Using this, formula (3.3) and the same arguments as in the proofs of Propositions
3.11 and 3.12 from [CZ], we obtain that Tt,R : L∞(Rd) → CB(Rd). We also have

|Ttf(x) − Tt,Rf(x)| = |Ex((e−V (t) − e−VR
(t))f(Xt))| ≤ ||f ||∞P x(τB(0,R) < t).

For each fixed t > 0, P x(τB(0,R) < t) tends to 0 as R tends to ∞. This implies (ii).
(iii)–(v) By (i) and properties of Pt we obtain Tt : L1(Rd) → L∞(Rd) and

Tt : L1(Rd) → L1(Rd) are bounded operators. It follows from this and a theorem
due to Dunford and Pettis (see [S], Theorem A.1.1, Corollary A.1.2) (cf. also [CZ],
page 77) that for each t > 0 there exists a measurable (on Rd×Rd) density u(t, x, y),
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x, y ∈ Rd for Tt, i.e.

(3.4) Ttf(x) =
∫

u(t, x, y)f(y) dy, f ∈ L1(Rd), t > 0, x ∈ Rd.

In fact, by (i) and properties of Pt it is not difficult to show that this formula holds
for all f ∈ Lp (1 ≤ p ≤ ∞).

(i) and (1.1) imply that for each fixed t > 0 and x ∈ Rd we have 0 ≤ u(t, x, y) ≤
p(t, x, y) for almost all y ∈ Rd. We may and do assume that these two inequalities
hold for all y ∈ Rd. In particular this gives (v).

By standard arguments (see [CZ], pages 75-76) Tt is symmetric, so for each fixed
t > 0 (iv) holds for almost all (x, y) according to the Lebesgue measure on Rd×Rd.

Put ft,x(y) = u(t, x, y). Fix t > 0, x0, y0 ∈ Rd, r > 0. Using (iv) (for almost all
(x, y) ∈ Rd × Rd) and the semigroup property we get∫

B(y0,r)

u(t, x0, y) dy =
∫

B(y0,r)

Tt/2ft/2,x0(y) dy.

ft/2,x0 ∈ L∞(Rd), so (ii) implies that Tt/2ft/2,x0 ∈ CB(Rd). Therefore we may
and do assume that for each fixed t > 0 and x ∈ Rd, u(t, x, y) is continuous as a
function of y.

Fixed t > 0. For any x, y ∈ Rd we have

u(t, x, y) =
∫ ∫

u(t/3, x, z)u(t/3, z, w)u(t/3, w, y) dw dz.

For any z, w ∈ Rd, u(t/3, z, x) → u(t/3, z, x0) and u(t/3, w, y) → u(t/3, w, y0) when
x → x0 and y → y0. Using the bounded convergence theorem we get (iii). It follows
that (iv) holds for all t > 0, x, y ∈ Rd.

(vi) By (1.1) and the fact that V is locally bounded, we obtain that for each
fixed t > 0, x ∈ Rd, u(t, x, y) > 0 for almost all y ∈ Rd according to the Lebesgue
measure. We also have u(t, x, y) =

∫
u(t/2, x, z)u(t/2, z, y) dz, so (vi) holds for all

t > 0, x, y ∈ Rd. �

Now we will prove Theorem 1.1. We define an auxiliary operator.

Definition 3.2. Fix t > 0. For any bounded Borel A ⊂ Rd let

SA(f)(x) =
∫

A

u(t, x, y)f(y)dy, f ∈ L2(Rd).

Lemma 3.3. For any fixed t > 0 and any bounded Borel A ⊂ Rd, the operator SA

is compact.

Proof. It is sufficient to show that this operator is the Hilbert-Schmidt operator.
K(x, y) = 1A(y)u(t, x, y) is the integral kernel of SA. Using the previous lemma
and boundedness of p(t, x, y) (Lemma 2.2) we get∫

Rd

∫
Rd

K2(x, y)dxdy =
∫
Rd

∫
A

u2(t, x, y)dydx ≤
∫
Rd

∫
A

p2(t, x, y)dydx

≤ ct

∫
A

∫
Rd

p(t, x, y)dydx = ct|A| < ∞.

Thus A is the Hilbert-Schmidt operator, so it is compact. �
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Lemma 3.4. Assume that lim|x|→∞ V (x) = ∞. Fix t > 0. Then we have

lim
R−→∞

sup
y∈Bc(0,R)

Tt(1Rd)(y) = 0.

Proof. Let M = infx∈Bc(0,R−1) V (x). Obviously M −→ ∞ as R −→ ∞. Let
τ = τB(y,1).

sup
y∈Bc(0,R)

Tt(1Rd)(y) ≤ sup
y∈Bc(0,R)

Ey

(
exp

(
−

∫ min{t,τ}

0

V (Xs)ds

))

= sup
y∈Bc(0,R)

{
Ey

(
τ > t; exp

(
−

∫ t

0

V (Xs)ds

))

+ Ey

(
t√
M

< τ < t; exp
(
−

∫ τ

0

V (Xs)ds

))

+ Ey

(
τ <

t√
M

; exp
(
−

∫ τ

0

V (Xs)ds

)) }

≤ e−Mt + e−
√

Mt + P0

(
τB(0,1) <

t√
M

)
.

The lemma follows because the last expression tends to 0 as R −→ ∞. �

Definition 3.5. The ε-net, ε > 0, for the operator T : L2(Rd) −→ L2(Rd) is
a finite set Nε of a function from L2(Rd), such that for any f ∈ L2(Rd) with
||f ||2 ≤ 1 there exists g ∈ Nε such that

||T (f) − g||2 < ε.

It is easy to see that operator is compact iff for every ε > 0, there exists the
ε-net for this operator.

Proof of Theorem 1.1. Recall that V ≥ 0. Assume that V (x) → ∞ as |x| → ∞,
and fix t > 0 and ε > 0. We will show that there exists the ε-net for Tt. Choose
R > 0 such that supy∈Bc(0,R) Tt(1Rd)(y) < (ε/2)2. It is possible due to Lemma 3.4.
Put A = Bc(0, R). The operator SAc is compact, so there exists the (ε/2)-net for
this operator. Let us denote this net by Nε/2. We will show that Nε/2 is the ε-net
for Tt. Fix arbitrary f ∈ L2(Rd), ||f ||2 ≤ 1. Put f1 = 1Af and f2 = 1Acf . By the
Cauchy-Schwartz inequality we have

||Tt(f1)||22 =
∫
Rd

(∫
A

u(t, x, y)f1(y)dy

)2

dx

≤
∫
Rd

(∫
A

u(t, x, y)dy

) (∫
A

u(t, x, y)f2
1 (y)dy

)
dx

≤
∫

A

∫
Rd

u(t, x, y)f2
1 (y)dxdy ≤

∫
A

f2
1 (y)Tt(1Rd)(y)dy

≤ sup
y∈A

Tt(1Rd)(y)
∫

A

f2
1 (y)dy ≤ (ε/2)2||f1||22 ≤ (ε/2)2.

On the other hand we have

Tt(f2)(x) =
∫
Rd

u(t, x, y)f2(y)dy =
∫

Ac

u(t, x, y)f(y)dy = SAc(f)(x).
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Since Nε/2 is the (ε/2)-net for SAc , there exists g ∈ Nε/2 such that ||SAc(f)−g||2 <
ε/2. Now it is sufficient to show that ||Tt(f) − g||2 < ε. Indeed

||Tt(f) − g||2 = ||Tt(f1 + f2) − g||2 ≤ ||SAc
(f) − g||2 + ||Tt(f1)||2 ≤ ε.

Thus operator Tt is compact.
Now fix t > 0 and assume that there exists N > 0 and a sequence of disjoint

unit balls Bn = B(xn, 1), such that V (x) < N for any x ∈ Bn, n ∈ N. We may
and do assume there exists M > 2 such that dist(Bn, Bm) > M for any n, m ∈ N,
n 	= m. Note that M > 2 may be chosen arbitrarily. We will choose appropriate
M > 2 later in the proof. Now consider the sequence fn = 1Bn

/(2|Bn|)1/2. All
those functions have norms equal to 1/2, and

||Tt(fn) − Tt(fm)||22 =
1

2|B1|

∫
Rd

[
Ex

(
Xt ∈ Bn; e−

∫ t
0 V (Xs)ds

)
− Ex

(
Xt ∈ Bm; e−

∫ t
0 V (Xs)ds

)]2

dx

≥ 1
2|B1|

∫
B(xn,1/2)

[
Ex

(
Xt ∈ Bn; e−

∫ t
0 V (Xs)ds

)
− Ex

(
Xt ∈ Bm; e−

∫ t
0 V (Xs)ds

)]2

dx.

To show that the operator Tt is not compact, it is sufficient to prove that for
n 	= m this norm is greater than a positive constant not depending on n and m.
To do this we need to estimate both expected values in the last expression. For
x ∈ B(xn, 1/2) we have

Ex(Xt ∈Bn; e−
∫ t
0 V (Xs)ds) ≥ Ex(τB(x,1/2) > t; e−

∫ t
0 V (Xs)ds)

≥ e−NtP0(τB(0,1/2) > t) = C1(t)e−Nt.

By Lemma 2.2 for x ∈ B(xn, 1/2) and n 	= m we have

Ex(Xt ∈Bm; e−
∫ t
0 V (Xs)ds) ≤ Px(Xt ∈ Bm)

=
∫

Bm

p(t, x, y)dy ≤ C2te
mt|M − 2|−d−α.

Now let us choose M large enough so that 1
2C1(t)e−Nt > C2te

mt|M−2|−d−α. Then
we have

||Tt(fn) − Tt(fm)||22 ≥ 1
2|B1|

∫
B(xn,1/2)

1
4
(C1(t))2e−Ntdx.

Thus the points of the sequence Tt(fn) are separated, so the operator Tt is not
compact. �

Now we will show that Condition 1.2 implies IU. Assume that for some open,
bounded, nonempty set D and all t > 0 Condition 1.2 is satisfied. Recall that φ1

is continuous and strictly positive. Therefore there exists cD > 0 such that for all
x ∈ D we have φ1(x) ≥ cD. Hence for any s > 0 and x ∈ Rd we have Ts(1D)(x) ≤
Ts(φ1/cD)(x) = c−1

D e−λ1sφ1(x). By Lemma 3.1 u(s, x, y) ≤ p(s, x, y) ≤ cs, s > 0,
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x, y ∈ Rd. Using the semigroup property we get

u(t, x, y) =
∫
Rd

∫
Rd

u(t/3, x, z)u(t/3, z, w)u(t/3, w, y) dz dy

≤ ct/3

∫
Rd

u(t/3, x, z) dz

∫
Rd

u(t/3, w, y) dy = ct/3Tt/3(1Rd)(x)Tt/3(1Rd)(y)

≤ ct/3c
2
t/3,DTt/3(1D)(x)Tt/3(1D)(y) ≤ ct/3c

2
t/3,Dc−2

D e−2λ1t/3φ1(x)φ1(y).

(3.5)

This gives (1.2), so the semigroup Tt is IU.
Now we will show that IU implies Condition 1.3. Let t > 0 and D be an open,

bounded, nonempty set. By (1.3) we have

Tt(1D)(x) =
∫

D

u(t, x, y) dy ≥ ctφ1(x)
∫

D

φ1(y) dy.

Recall that φ1 is bounded. Also by (1.3) we have

Tt(1B(x,1))(x) ≤ ctφ1(x)
∫

B(x,1)

φ1(y) dy ≤ ct||φ1||∞|B(0, 1)|φ1(x).

This shows that the inequality (1.3) implies Condition 1.3.

4. Estimates of transition probability of the killed process

In this section we prove some estimates of transition probability of the killed
process. These estimates will be used in the next section to estimate the probability
of “short jumps”. On the other hand it seems that these estimates have not been
known before and that they are interesting in themselves. The most general result
of such type are Theorem 4.2 and Corollaries 4.4 and 4.5.

Lemma 4.1. Let R = B(0, 3/2) \ B(0, 1) and 1 < |x| < 5/4. Then

Ex(τR) ≤ cδ
α/2
R (x),(4.1)

Px(X(τR) ∈ Bc(0, 3/2)) ≤ cδ
α/2
R (x).(4.2)

Here we recall our notation δR(x) = dist(x, ∂R).

Proof. By Theorem 3 in [R] (cf. also [CS3]) we get

GR(x, y) ≤ c min

{
(δR(x)δR(y))α/2

|x − y|d ,
δ

α/2
R (x)

|x − y|d−α/2

}
.

Therefore

Ex(τR) =
∫

R

GR(x, y)dy ≤ c

∫
R

δ
α/2
R (x)

|x − y|d−α/2
dy ≤ cδ

α/2
R (x).

Let A = Bc(0, 3/2). By Corollary 2.11 and Lemma 2.4 we get

Px(X(τR) ∈ A) =
∫

R

GR(x, y)
∫

A

ν(y − z)dzdy

≤ c

∫
R

GR(x, y)
∫

Bc(y,δA(y))

1
|y − z|d+α

dzdy

= c

∫
R

GR(x, y)
∫ ∞

δA(y)

rd−1

rd+α
drdy = c

∫
R

GR(x, y)
1

δα
A(y)

dy.
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Now we divide the last integral into two parts, over sets R1 = B(0, 5/4) \ B(0, 1)
and R2 = B(0, 3/2) \ B(0, 5/4). For y ∈ R1 we have δA(y) ≥ 1/4, so

∫
R1

GR(x, y)
1

δα
A(y)

dy ≤ c

∫
R1

δ
α/2
R (x)

|x − y|d−α/2
4αdy ≤ cδ

α/2
R (x).

For y ∈ R2 we have |x − y| ≥ 1/4. Hence

∫
R2

GR(x, y)
1

δα
A(y)

dy ≤ c

∫
R2

(δR(x)δR(y))α/2

|x − y|d
1

δα
A(y)

dy

≤ c

∫
R2

δ
α/2
R (x)

δ
α/2
A (y)

8ddy

= cδ
α/2
R (x)

∫ 3/2

5/4

rd−1

(3/2 − r)α/2
dr ≤ cδ

α/2
R (x).

�

The proof of the next theorem contains the main idea of this section.

Theorem 4.2. Let D = (B(0, 1))c and T > 0. There exist constants cT and c such
that for any 0 < t ≤ T , |x| ≥ 2 and 1 < |y| < 5/4 we have

pD(t, x, y) ≤ cT e−c|x−y|δ
α/2
D (y).

Proof. To show this inequality we will estimate the integral of pD(t, y, z) over a
small ball B(x, s). Then we will take the limit when s tends to 0.

Let R = B(0, 3/2) \ B(0, 1) and s > 0 such that B(x, s) ⊂ Bc(0, 3/2). We have∫
B(x,s)

pD(t, y, z)dz = Py(X(t) ∈ B(x, s), τD > t)

≤ Py(τR < t, X(τR) ∈ D \ R, X(t) ∈ B(x, s)),

and by the strong Markov property the last expression is equal to

Ey(τR < t, X(τR) ∈ D \ R;PX(τR)(X(t − r) ∈ B(x, s))|r=τR
).(4.3)

Now we divide the set D \ R into two subsets, A = B(x, |x − y|/16) and F =
D \ (A ∪ R). We have dist(F, B(x, s)) ≥ |x − y|/32 for small enough s. Note also
that dist(A, R) = |x| − 3/2 − |x − y|/16 ≥ |x − y|/16. The last inequality holds
because |x| ≥ |x|/8 + |y|/8 + 3/2 ≥ |x − y|/8 + 3/2. Now we are going to estimate
the part of (4.3) for the set F . At first note that

Ey(τR < t, X(τR) ∈ F ;PX(τR)(X(t − r) ∈ B(x, s))|r=τR
)

= Ey

(
τR < t, X(τR) ∈ F ;

∫
B(x,s)

p(t − τR, X(τR), z)dz

)
.

(4.4)
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Note also that X(τR) ∈ F , so for z ∈ B(x, s) we have |X(τR) − z| ≥ |x − y|/32 ≥
1/64. By Lemma 2.2 this is bounded from above by

Ey

(
τR < t, X(τR) ∈ F ;

∫
B(x,s)

ctemte−c′|z−X(τR)|dz

)

≤ Ey
(
τR < t, X(τR) ∈ F ; |B(x, s)|cTemT e−c′|x−y|

)
≤ cT |B(x, s)|e−c′|x−y|Py(X(τR) ∈ D \ R).

By the previous lemma we finally obtain

Ey(τR < t, X(τR) ∈ F ;PX(τR)(X(t − r) ∈ B(x, s))|r=τR
)

≤ cT |B(x, s)|e−c′|x−y|δ
α/2
B(0,1)(y).

(4.5)

For the set A by the generalized Ikeda-Watanabe formula (Corollary 2.11) we
get

Ey(τR < t, X(τR) ∈ A;PX(τR)(X(t − r) ∈ B(x, s))|r=τR
)

= Ey(τR < t, X(τR) ∈ A; X(t) ∈ B(x, s))

=
∫

R

∫ t

0

pR(r, y, z)
∫

A

ν(z − w)Pw(X(t − r) ∈ B(x, s))dwdrdz.

(4.6)

Now we will estimate ∫
A

ν(z − w)Pw(X(t − r) ∈ B(x, s))dw,

for z ∈ R and r ∈ (0, t). To do this, we need to divide the set A into two subsets
A1 = B(x, max{2s, q1/α/(64T 1/α)}), where q = t − r, and A2 = A \ A1. To
make expressions simpler we set a = max{2s, q1/α/(64T 1/α)} and b = |x − y|/16.
Note that q1/α/(64T 1/α) < 1/64 < |x − y|/16, and we may and do assume that
2s < |x − y|/16. Hence a < b. Recall that dist(A, R) ≥ |x − y|/16. For z ∈ R and
w ∈ A we have |z−w| ≥ |x−y|/16 ≥ 1/64. By Lemma 2.3 ν(z−w) ≤ ce−c′|z−w| ≤
ce−c′|x−y|.

For the set A2 we have∫
A2

ν(z − w)Pw(X(q) ∈ B(x, s))dw

≤ c

∫
A2

e−c′|x−y|
∫

B(x,s)

p(q, w, u)dudw.

By Lemma 2.2 this is bounded from above by

c

∫
A2

e−c′|x−y|
∫

B(x,s)

qemq

|w − u|d+α
dudw ≤ c

∫
A2

e−c′|x−y| qe
mT |B(x, s)|
δα+d
B(x,s)(w)

dw

≤ cT qe−c′|x−y||B(x, s)|
∫ b

a

rd−1

(r − s)d+α
dr.

Note that a ≥ 2s, so this is bounded from above by

cT qe−c′|x−y||B(x, s)|
∫ ∞

a

dr

r1+α
≤ cT e−c′|x−y||B(x, s)| q

aα
.
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By the definition of a we have a ≥ q1/α/(64T 1/α), hence∫
A2

ν(z − w)Pw(X(q) ∈ B(x, s))dw ≤ cT e−c′|x−y||B(x, s)|.(4.7)

We have A1 = B(x, a). Recall that for z ∈ R and w ∈ A1 ⊂ A we have ν(z − w) ≤
ce−c′|x−y|. Now we will consider two cases. If a = 2s, then |A1| = c|B(x, s)|. Hence∫

A1

ν(z − w)Pw(X(q) ∈ B(x, s)) dw ≤
∫

A1

ν(z − w) dw

≤ ce−c′|x−y||B(x, s)|.
(4.8)

If a = q1/α/(64T 1/α), then by Lemma 2.2 we get∫
A1

ν(z − w)Pw(X(q) ∈ B(x, s))dw

≤ c

∫
A1

e−c′|x−y|
∫

B(x,s)

p(q, w, u)dudw

≤ c

∫
A1

e−c′|x−y||B(x, s)| e
mq

qd/α
dw

≤ cemT e−c′|x−y||B(x, s)| |A1|
qd/α

.

But the Lebesgue measure of A1 is equal to cT qd/α, so∫
A1

ν(z − w)Pw(X(q) ∈ B(x, s))dw ≤ cT e−c′|x−y||B(x, s)|.(4.9)

Substituting (4.7), (4.8) and (4.9) into (4.6) we have

Ey(τR < t, X(τR) ∈ A;PX(τR)(X(t − r) ∈ B(x, s))|r=τR
)

≤ cT e−c′|x−y||B(x, s)|
∫

R

∫ ∞

0

pR(r, y, z)drdz

= cT e−c′|x−y||B(x, s)|
∫

R

GR(y, z)dz

= cT e−c′|x−y||B(x, s)|Ey(τR).

By Lemma 4.1 it follows that

Ey(τR < t, X(τR) ∈ A;PX(τR)(X(t − r) ∈ B(x, s))|r=τR
)

≤ cT |B(x, s)|e−c′|x−y|δ
α/2
B(0,1)(y).

(4.10)

From (4.3), (4.5) and (4.10) we finally obtain

1
|B(x, s)|

∫
B(x,s)

pD(t, y, z)dz ≤ cT e−c′|x−y|δ
α/2
B(0,1)(y).

Letting s −→ 0 we get the assertion of the theorem. �

Corollaries 4.3–4.6 below are simple generalizations and conclusions of Theorem
4.2. It seems that estimates of pD(t, x, y) presented in these corollaries have not
been known before, and they may find some interesting applications.

Almost the same proof as the proof of Theorem 4.2 leads to a slightly more
general fact.
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Corollary 4.3. Let D = (B(0, ε))c and T > 0. There exist constants cT,ε and cε

such that for any 0 < t ≤ T , |x| ≥ 2ε and ε < |y| < 5ε/4 we have

pD(t, x, y) ≤ cT,εe
−cε|x−y|δ

α/2
D (y).

Corollary 4.4. Let T > 0 and let D ⊂ Rd be an open set satysfying the outer ball
condition in point z ∈ ∂D, that is, there exists a ball B(w, ε) ⊂ Dc, ε > 0, such
that ∂D∩∂B(w, ε) = {z}. Then there exist constants cT,ε and cε such that for any
0 < t ≤ T , x, y ∈ D and |x − w| > 2ε we have

pD(t, x, y) ≤ cT,ε

|x − y|d+α
e−cε|x−y||z − y|α/2.

Proof. We will consider two cases. First let |z − y| > ε/4. Then the assertion
follows from Lemma 2.2. Now assume that |z − y| < ε/4. Then |y − w| < 5ε/4.
B(w, ε) is a subset of Dc, thus pD(t, x, y) ≤ p(B(w,ε))c(t, x, y) for any x,y ∈ Rd, and
any t > 0. By the previous corollary

p(B(w,ε))c(t, x, y) ≤ cT,εe
−cε|x−y|δ

α/2
B(w,ε)(y),

for any x 	∈ B(w, 2ε). Besides δB(w,ε)(y) ≤ |z − y| and |x − y| ≥ 3ε/4, thus

pD(t, x, y) ≤ p(B(w,ε))c(t, x, y) ≤ cT,ε

|x − y|d+α
e−cε|x−y||z − y|α/2.

�

Corollary 4.5. Let T > 0 and let D be a set with a uniform outer ball condition,
i.e. there exists ε > 0, such that for any z ∈ ∂D there exists B(w, ε) ⊂ Dc, such
that ∂B(w, ε)∩∂D = {z}. Then there exist constants cT,ε and cε such that for any
x, y ∈ D, δD(x) > ε and 0 < t ≤ T we have

pD(t, x, y) ≤ cT,ε

|x − y|d+α
e−cε|x−y|δ

α/2
D (y).

Corollary 4.6. Let R ≥ 1, D = (B(0, R))c and 0 < T < ∞. There exist constants
cT and c such that for any 0 < t ≤ T , |x| ≥ R + 1 and R < |y| ≤ R + 1/4 we have

pD(t, x, y) ≤ cT e−c|x−y|δ
α/2
D (y).

As an application of the above corollary we prove the following proposition,
which will be very important in the proof of the main theorem.

Proposition 4.7. Let R ≥ 1, D = (B(0, R))c and 0 < T < ∞. There exists a
constant cT such that for any 0 ≤ t1 < t2 ≤ T and |x| > R + 1 we have

Px(t1 < τD < t2) ≤ cT (t2 − t1).

Let us emphasize that cT does not depend on R.

Proof. By the generalized Ikeda-Watanabe formula (Corollary 2.11)

Px(t1 < τD < t2) =
∫

D

∫ t2

t1

pD(s, x, y)ds

∫
Dc

ν(y − z)dzdy.

Now we divide the set D into two parts, A = Bc(0, R + 1/4) and B = D \ A. If
y ∈ A and z ∈ Dc, then |z − y| ≥ 1/4. Hence by Lemma 2.3 ν(y − z) ≤ ce−c′|y−z|.
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It follows that∫
A

∫ t2

t1

pD(s, x, y)ds

∫
Dc

ν(y − z)dzdy

≤ c

∫
A

∫ t2

t1

pD(s, x, y)ds

∫
Dc

e−c′|y−z|dzdy.

(4.11)

We have
∫

Dc e−c′|y−z|dz ≤
∫
Rd e−c′|y−z|dz < ∞. Therefore (4.11) is bounded from

above by

c

∫ t2

t1

∫
A

pD(s, x, y)dyds = c

∫ t2

t1

Px(τD > s)ds ≤ c(t2 − t1).

Let δ(y) = δB(0,R)(y). By Lemma 2.4 we have∫
B

∫ t2

t1

pD(s, x, y)ds

∫
Dc

ν(y − z)dzdy

≤ c

∫
B

∫ t2

t1

pD(s, x, y)ds

∫
Bc(y,δ(y))

1
|y − z|d+α

dzdy

= c

∫
B

∫ t2

t1

pD(s, x, y)ds

∫ ∞

δ(y)

rd−1

rd+α
drdy

= c

∫
B

∫ t2

t1

pD(s, x, y)ds
1

δα(y)
dy,

and by Corollary 4.6 this is bounded from above by

cT (t2 − t1)
∫

B

e−c|x−y| dy

δα/2(y)
.

It is sufficient to show that this integral is bounded by a constant not depending
on R. We will prove this for d ≥ 3. For the dimension d = 1 the proof is very easy
and for d = 2 the proof is similar to the proof for d ≥ 3.

We may and do assume that x = (0, . . . , 0, R + 1). We introduce spherical
coordinates in Rd (r, ϕ1, ϕ2, . . . , ϕd−1), r ∈ [0,∞), ϕ1, . . . , ϕd−2 ∈ [0, π], ϕd−1 ∈
[0, 2π), with center in 0 and principal axis 0x.

We divide the set B into 2 parts:

B1 = {(r, ϕ1, ϕ2, . . . , ϕd−1) : r ∈ (R, R + 1/4), ϕ1 ∈ [0, 1/R]},
B2 = {(r, ϕ1, ϕ2, . . . , ϕd−1) : r ∈ (R, R + 1/4), ϕ1 ∈ (1/R, π]}.

We have∫
B1

e−c|x−y| dy

δα/2(y)
≤ c

∫ 1/R

0

∫ R+1/4

R

rd−1

(r − R)α/2
sind−2 ϕ1 drdϕ1

≤ cRd−1

∫ 1/R

0

∫ 1/4

0

1
rα/2

ϕd−2
1 drdϕ1

≤ cRd−1(1/R)d−1 = c.

Now we estimate the integral over B2. Let y ∈ B2 and put y0 = yR/|y| and
x0 = xR/|x| = (0, 0, . . . , R). Note that |x−y| ≥ |x0−y| and |x0−y| ≥ |x0−y0|−1/4.
Let y = (r, ϕ1, . . . , ϕd−1) in spherical coordinates. Since y ∈ B2 we have ϕ1 > 1/R.
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It follows that |x0−y0| ≥ 2R sin(1/2R) ≥ 2/π > 1/2. Hence |x0−y| ≥ |x0−y0|/2.
This gives

|x − y| ≥ |x0 − y0|/2 = R sin(ϕ1/2) ≥ Rϕ1/π = CRϕ1.

We also have e−c|x−y| ≤ c′|x − y|−d. Therefore e−c|x−y| ≤ c′(CRϕ1)−d. It follows
that ∫

B2

e−c|x−y| dy

δα/2(y)
≤ c′′

∫ π

1/R

∫ R+1/4

R

rd−1

(r − R)α/2

sind−2 ϕ1

(Rϕ1)d
drdϕ1

≤ cRd−1

∫ 1/4

0

1
rα/2

dr

∫ π

1/R

ϕd−2
1

(Rϕ1)d
dϕ1

= cR−1

∫ π

1/R

ϕ−2
1 dϕ1 = c.

�

5. Intrinsic ultracontractivity

In this section we prove the main result of this paper, Theorem 1.6. In this
section we fix the potential V ∈ V .

To prove that the semigroup Tt is IU we will use Condition 1.2 for D = B(0, 1).
To show that the semigroup Tt is not IU we will use Condition 1.3. At first we
prove two auxiliary lemmas, which will be used to estimate Tt(1D)(x).

Lemma 5.1. Let 0 ≤ t1 < t2 ≤ t < ∞, x ∈ Rd, |x| ≥ 3, D = B(0, 1) and
B = B(x, 1). Then

Px(X(τB) ∈ D/2, t1 < τB < t2) ≥
ct(t2 − t1)

|x| d+α+1
2

e−m1/α|x|.

Proof. By Proposition 2.5 we have

Px(X(τB) ∈ D/2, t1 < τB < t2)

=
∫

B

∫ t2

t1

pB(s, x, y)ds

∫
D/2

ν(y − z)dzdy.

By Lemma 2.3 this is bounded from below by∫
B

∫ t2

t1

pB(s, x, y)ds|D/2| c

(|x| + 1)
d+α+1

2

e−m1/α(|x|+1)dy

≥ c

|x| d+α+1
2

e−m1/α|x|
∫ t2

t1

∫
B

pB(s, x, y)dyds

=
c

|x| d+α+1
2

e−m1/α|x|
∫ t2

t1

Px(τB > s)ds

≥ c(t2 − t1)

|x| d+α+1
2

e−m1/α|x|Px(τB > t)

and P x(τB > t) = ct. Here we recall our convention that constants c may change
their value from one use to the next. �
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Lemma 5.2. For any r ≥ 0 we have
∞∑

n=1

e−r/n

n(n + 1)
≥ e−1

r + 1
.

Proof. We have
∞∑

n=1

e−r/n

n(n + 1)
≥

∞∑
n=[r]+1

e−1

n(n + 1)
=

e−1

[r] + 1
≥ e−1

r + 1
.

�

Now we will show some lemmas needed to estimate Tt(1Rd)(x) from above. This
is the most difficult part of the paper. Roughly speaking, the main idea is to divide
Rd into appropriate rings, and estimate the probability of jumps between these
rings. To shorten notation, from now on we will assume that n, k, l, N ∈ N. We
will use the following notation:

• 2 ≤ n0 ∈ N will be chosen later,
• Rn = B(0, n) \ B(0, n − 1) for any n ≥ n0 + 2,
• Rn0 = B(0, n0), Rn0+1 = B(0, n0 + 1),
• An = (B(0, n − 2))c for any n ≥ n0 + 2,
• An0 = Rd, An0+1 = Rd,
• τn = τAn

= inf{t ≥ 0 : Xt 	∈ An}, n ≥ n0,
• σn = σRn

= inf{t ≥ 0 : Xt ∈ Rn}, n ≥ n0.
Let us point out that for n ≥ n0 + 2 sets Rn are “rings” in Rd and Rn0 , Rn0+1 are
balls. Note also that τn0 = ∞, τn0+1 = ∞.

First we need to estimate a volume of the intersection of two balls.

Lemma 5.3. Let 0 < l ≤ n, k > 0. Consider two balls B(x, n) and B(y, k + l)
with |x− y| = n + k. The volume of the intersection of these balls (denoted by I) is
less than cl

d+1
2 (min{2k + l, 2n}) d−1

2 .

Proof. Let d > 1. Let z be any point belonging to the intersection of spheres with
centers at x and y, and radius n and k + l. Let w be the orthogonal projection of
z on the line containing x and y. Then k < |w − y| < k + l. Therefore

|z − w|2 = (k + l)2 − |w − y|2 < (k + l)2 − k2 = 2kl + l2 = l(2k + l).

Analogical argument can be applied to n, thus we have

|z − w|2 < n2 − (n − l)2 = 2nl − l2 < 2nl.

Therefore we get

|I| ≤ cl|z − w|d−1 ≤ cl
d+1
2 (min{2k + l, 2n})

d−1
2 .

Let d = 1. In this case the lemma obviously holds, because the intersection of
two balls (intervals) has measure equal to l. �

Now we estimate an integral of the Levy measure.

Lemma 5.4. Let |x| ≥ N ≥ n + 1 and n ≥ n0. Then we have∫
Rn

ν(x − y)dy ≤ c(min{N − n, n}) d−1
2

(N − n)
d+α+1

2

e−m1/α(N−n).
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Proof. By Lemma 2.3

∫
Rn

ν(x − y)dy ≤
∫

Rn

c

|x − y| d+α+1
2

e−m1/α|x−y| dy

≤
∫

B(0,n)

c

|x − y| d+α+1
2

e−m1/α|x−y| dy =: J.

Let us point out that the last inequality holds both when n ≥ n0 + 2 (and Rn are
“rings”) and when n = n0 or n = n0 + 1 (and Rn are balls).

It is sufficient to consider only the case x = (0, 0, ..., 0, N). Let N − n = k.
Consider a sequence of balls B(x, k + l) for 1 ≤ l ≤ n. Then

B(0, n) = (B(0, n) \ B(x, k + n))︸ ︷︷ ︸
=A

∪
⋃

0<l≤n

{(B(0, n) ∩ B(x, k + l)) \ B(x, k + l − 1)}︸ ︷︷ ︸
=Al

.

In addition we denote El = B(0, n) ∩ B(x, k + l). We will divide an integral J
into integrals over sets A and Al. At first we estimate an integral over A:

∫
A

c

|x − y| d+α+1
2

e−m1/α|x−y| dy ≤ c|A|
(k + n)

d+α+1
2

e−m1/α(k+n)

≤ cnd

k
d+α+1

2

e−m1/α(k+n) ≤ c

k
d+α+1

2

e−m1/αk.

In the last inequality we use the fact that there exists c (depending on m, α and d)
such that for any n ∈ N we have nde−m1/αn ≤ c. In the sequel we will use similar
inequalities without further comments. For Al we have

∫
Al

c

|x − y| d+α+1
2

e−m1/α|x−y| dy ≤ c|Al|
(k + l − 1)

d+α+1
2

e−m1/α(k+l−1)

≤ c|El|
k

d+α+1
2

e−m1/α(k+l).

Now we will consider two cases. At first assume that k ≥ n. Using the previous
lemma we obtain

J ≤ c

k
d+α+1

2

e−m1/αk +
∑

1≤l≤n

cl
d+1
2 (min{2k + l, 2n}) d−1

2

k
d+α+1

2

e−m1/α(k+l)

≤ c

k
d+α+1

2

e−m1/αk +
c(min{3k, 3n}) d−1

2

k
d+α+1

2

e−m1/αk
∑

1≤l≤n

l
d+1
2 e−m1/αl

≤ c(min{k, n}) d−1
2

k
d+α+1

2

e−m1/αk.
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In the second case (k < n) we have

J ≤ c

k
d+α+1

2

e−m1/αk +
∑

1≤l≤n

cl
d+1
2 (min{2k + l, 2n}) d−1

2

k
d+α+1

2

e−m1/α(k+l)

≤ c

k
d+α+1

2

e−m1/αk +
∑

1≤l≤k

cl
d+1
2 (min{3k, 3n}) d−1

2

k
d+α+1

2

e−m1/α(k+l)

+
∑

k<l≤n

cl
d+1
2 (3l)

d−1
2

k
d+α+1

2

e−m1/α(k+l) ≤ c(min{k, n}) d−1
2

k
d+α+1

2

e−m1/αk.

�
Lemma 5.5. For N − 1 < |x| ≤ N , n0 ≤ n ≤ N − 2 and 0 ≤ t1 < t2 ≤ T < ∞ we
have

Px(X(τN ) ∈ Rn, t1 < τN < t2)

≤ CT (t2 − t1)
(min{N − n, n}) d−1

2

(N − n)
d+α+1

2

e−m1/α(N−n).

Proof. Recall that τN = τAN
. For n = N − 2 we have

Px(X(τN) ∈ Rn, t1 < τN < t2) ≤ Px(t1 < τN < t2) ≤ cT (t2 − t1),

by Proposition 4.7.
Let n < N − 2. By Proposition 2.7 (the generalization of the Ikeda-Watanabe

formula) we have
Px(X(τN ) ∈ Rn, t1 < τN < t2)

=
∫

AN

∫ t2

t1

pAN
(s, x, y)ds

∫
Rn

ν(y − z)dzdy.
(5.1)

Note that for y ∈ AN we have |y| > N − 2. By Lemma 5.4 for y ∈ AN we have∫
Rn

ν(y − z)dz ≤ c min{N − 2 − n, n} d−1
2

(N − 2 − n)
d+α+1

2

e−m1/α(N−2−n).

Therefore (5.1) is bounded from the above by

c(min{N − n, n}) d−1
2

(N − n)
d+α+1

2

e−m1/α(N−n)

∫ t2

t1

∫
AN

pAN
(s, x, y)dyds.

We have
∫

AN
pAN

(s, x, y)dy = Px(τAN
> s) ≤ 1, and the lemma follows. �

Lemma 5.6. For any r > 0 we have
∞∑

n=1

e−
r

n+1

n(n + 1)
≤ 5

r
.

Proof. We have
∞∑

n=1

e−
r

n+1

n(n + 1)
=

e−r/2

2
+

∞∑
n=2

e−
r

n+1

n(n + 1)
.

Note that 1/(2er/2) ≤ 1/r. We also have
∞∑

n=2

e−
r

n+1

n(n + 1)
≤

∫ ∞

2

e−
r

s+1

(s − 1)s
ds ≤ 2

∫ ∞

2

e−
r
2s

s2
ds =

4
r

∫ r/4

0

e−udu ≤ 4
r
. �
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Lemma 5.7. For N − 1 < |x| ≤ N , n0 ≤ k ≤ N − 2, t > 0 and a > 0 we have

Ex(τN < t, X(τN) ∈ Rk; e−τN a)

≤ C1(t)
(min{N − k, k}) d−1

2

(N − k)
d+α+1

2

e−m1/α(N−k) 1
a
.

(5.2)

Proof. Using last two lemmas we obtain

Ex(τN < t, X(τN ) ∈ Rk; e−τN a)

=
∞∑

i=1

Ex

(
t

i + 1
≤ τN <

t

i
, X(τN ) ∈ Rk; e−τN a

)

≤
∞∑

i=1

e
−ta
i+1 Px

(
t

i + 1
≤ τN <

t

i
, X(τN) ∈ Rk

)

=
∞∑

i=1

e
−ta
i+1 Ct

t

i(i + 1)
(min{N − k, k}) d−1

2

(N − k)
d+α+1

2

e−m1/α(N−k)

≤ C1(t)
(min{N − k, k}) d−1

2

(N − k)
d+α+1

2

e−m1/α(N−k) 1
a
.

Of course the constant C1(t) also depends on α, d and m. �

Now we define events, sequences of jumps, which will help to estimate Tt(1Rd).
This notation is very essential in the sequel. Roughly speaking the main idea of the
paper is to estimate Tt(1Rd) by estimating the appropriate jumps of the process
between rings. This idea comes from the paper [BK].

For k ≥ n0, n ≥ k + 2 and t > 0 we define

• S(n, k, 1, t) = {X(τn) ∈ Rk, σk < t},
• S(n, k, l, t) =

⋃n−2
p=k+2 S(n, p, l − 1, t) ∩ S(p, k, 1, t) for any l ≥ 2,

• R(n, k, l, t) = S(n, k, l, t) ∩ {τk > t}.
When n ≥ k+2, n−2 < k+2 and l ≥ 2, one should understand that S(n, k, l, t) =

∅ and R(n, k, l, t) = ∅. Note also that for fixed n and k the events S(n, k, l, t) are
empty for large enough l.

S(n, k, 1, t) is the event that the process while leaving An jumps directly to Rk

and σk = inf{t ≥ 0 : Xt ∈ Rk}, the entry time to Rk, is smaller than t. Note that
if X(τn) ∈ Rk, then σk = τn.

S(n, p, 1, t) ∩ S(p, k, 1, t) for n − 2 ≥ p ≥ k + 2 is the event that the process
while leaving An jumps directly to Rp and then while leaving Ap jumps directly
to Rk and σk < t, σp < t. S(n, k, 2, t) for n − 2 ≥ k + 2 (l = 2) is the sum of
S(n, p, 1, t)∩ S(p, k, 1, t) for all p between k + 2 and n− 2. Roughly one may think
of S(n, k, 2, t) as the event that the process goes from An to Rk in 2 “appropriate
jumps” (and σk < t).

Similarly, by induction we define S(n, k, l, t). One may think of S(n, k, l, t) as the
event that the process goes from An to Rk in l “appropriate jumps” (and σk < t).

R(n, k, l, t) is the event that the process goes from An to Rk in l “appropriate
jumps”, σk < t, and that the process remains in Ak from σk to t.

Note that “jumps” are defined so that when the process jumps to Rp = B(0, p)\
B(0, p−1), then the next jump is from Ap = (B(0, p − 2))c (not from (B(0, p − 1))c).
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This is done for technical reasons. It would be difficult to estimate the probability
of jumps from Rp to (B(0, p − 1))c. The same method was used in [BK].

Let t > 0, n ≥ 2n0 + 4 and x ∈ Rn. We take n ≥ 2n0 + 4 so that [n/2] ≥ n0 + 2.
Note also that n − [n/2] ≥ 2. For such t, n and x we have

Tt(1Rd)(x) = Ex(e−
∫ t
0 V (Xs)ds) ≤ Ex(τ[n/2] > t; e−

∫ t
0 V (Xs)ds)

+
[n/2]∑

k=n0+2

∞∑
l=1

Ex(R(n, k, l, t); e−
∫

t
0 V (Xs)ds)

+
n0+1∑
k=n0

∞∑
l=1

Ex(R(n, k, l, t); e−
∫ t
0 V (Xs)ds).

(5.3)

The terms under the sum
∑[n/2]

k=n0+2

∑∞
l=1 correspond to events that the process

will make l “appropriate jumps” from An to Rk and then remain in Ak up to time
t. The terms under the sum

∑n0+1
k=n0

∑∞
l=1 correspond to events that the process

will make l “appropriate jumps” from An to Rk and here we do not control the
behaviour of the process after σk (τn0 = ∞, τn0+1 = ∞). Roughly speaking these
terms for k = n0 and k = n0 + 1 appear separately because we can control the
expression of the type Ex(S(n, k, l, t), e−

1
2

∫ σk
0 V (Xs)ds) only when k is big enough

(see Lemma 5.9). We have 2 parameters k = n0 and k = n0+1 for technical reasons
(because of our definition of jumps).

Now we focus on estimating the single terms from the above sums. For x ∈ Rn,
k ≥ n0 + 2, n ≥ k + 2, l ≥ 1 and t > 0 we have

Ex
(
R(n, k, l, t); e−

∫ t
0 V (Xs)ds

)
≤ Ex

(
R(n, k, l, t); e−

1
2

∫ σk
0 V (Xs)dse−

1
2

∫ t
0 V (Xs)ds

)
≤ Ex

(
S(n, k, l, t), τk > t; e−

1
2

∫ σk
0 V (Xs)dse−

t
2L(k−2)

)
≤ e−

t
2L(k−2)Ex

(
S(n, k, l, t); e−

1
2

∫ σk
0 V (Xs)ds

)
.

(5.4)

By similar arguments we get for k = n0 and k = n0 + 1

Ex
(
R(n, k, l, t); e−

∫ t
0 V (Xs)ds

)
≤ Ex

(
S(n, k, l, t); e−

1
2

∫ σk
0 V (Xs)ds

)
.

Now we need the following auxiliary fact.

Lemma 5.8. Let n > k > l > 0. We have

W =
min{n − k, k}

n − k

min{k − l, l}
k − l

≤ C2
min{n − l, l}

n − l
.

Proof. One can easily see that the following inequality holds:

(5.5) (n − k)(k − l) ≥ 1
2
(n − l) min{n − k, k − l}.

Thus

W ≤ 2
min{n − k, k}min{k − l, l}

min{n − k, k − l}
1

(n − l)
.

Hence it is sufficient to show that

Y =
min{n − k, k}min{k − l, l}

min{n − k, k − l} ≤ c min{n − l, l}.
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Now we have three cases:
• n − k ≤ k − l,

Y = min{k − l, l} ≤ min{n − l, l},
• n − k > k − l and k − l ≤ l,

Y = min{n − k, k} ≤ min{n − l, 2l} ≤ 2 min{n − l, l},
• n − k > k − l and k − l > l,

Y =
min{n − k, k}l

k − l
≤ kl

k/2
= 2l

and

Y =
min{n − k, k}l

k − l
≤ (n − k)(k − l)

k − l
= n − k ≤ n − l.

�

The following lemma is crucial in our considerations. Roughly speaking we
estimate e−

∫ t
0 V (Xs)ds depending on the number of “appropriate jumps” the process

made. The idea of the proof of this lemma is taken from [BK], Lemma 4.5.
In this lemma we will not use our convention that constants may change their

value from line to line. All constants which appear in the formulation and the proof
of the lemma will not change their value. This is because in the induction proof we
need to know that constants do not depend on the parameter l.

Lemma 5.9. Fix t > 0. Let C3(t) = 16c̃2C1(t), where c̃ is a constant from Defini-
tion 1.4 and C1(t) is a constant from Lemma 5.7. Let n0 ∈ N (n0 depends on t) be
large enough so that

(5.6) L(n0) ≥ 1 and
C3(t)
L(n0)

8C2

d−1
2

∞∑
p=1

1
p1+ α

2
≤ 1,

where C2 is a constant from Lemma 5.8.
Then for x ∈ Rn, k ≥ n0, n ≥ k + 2, l ≥ 1 we have

Ex(S(n, k, l, t); e−
1
2

∫ σk
0 V (Xs)ds) ≤ C3(t)

2l
e−m1/α(n−k) (min{n − k, k}) d−1

2

(n − k)
d+α+1

2 L(n)
.(5.7)

Recall that (Definition 1.4) the function L(n) is nondecreasing and tending to ∞,
so for large enough n0 (5.6) holds. We also point out that in the proof of Theorem
1.6 there will be some additional conditions on n0.

Proof. First let l = 1. This is the case when the process makes only one appropriate
“jump”. Recall that S(n, k, 1, t) = {X(τn) ∈ Rk, σk < t} and for X(τn) ∈ Rk we
have τn = σk. Note that for s ∈ [0, τn) we have Xs ∈ An = (B(0, n − 2))c, so by
Definition 1.5 V (Xs) ≥ L(n − 2). Using Lemma 5.7 we obtain

Ex(S(n, k, 1, t);e−
1
2

∫ σk
0 V (Xs)ds) ≤ Ex(X(τn) ∈ Rk, τn < t; e−τnL(n−2)/2)

≤ C1(t)e−m1/α(n−k) (min{n − k, k}) d−1
2

(n − k)
d+α+1

2

2
L(n − 2)

.

Recall that n ≥ k+2 ≥ n0 +2, so L(n−1), L(n−2) are no smaller than L(n0) ≥ 1.
By Definition 1.4(3) L(n) ≤ c̃L(n−1)+c̃ ≤ 2c̃L(n−1). Similarly L(n) ≤ 4c̃2L(n−2).
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Therefore for C3(t) = 16c̃2C1(t) (5.7) holds for l = 1. We will show that for such
C3(t) (5.7) also holds for all l ≥ 1. We will prove (5.7) by induction on l. Recall
once again that in this proof we will not use our convention that the constants may
change their value from one use to the next.

Let l ≥ 2. Suppose we have proved (5.7) for 1, . . . , l−1 and all k ≥ n0, n ≥ k+2.
We will show (5.7) for l. By Definition of S(n, k, l, t) we have

Ex(S(n, k, l, t); e−
1
2

∫ σk
0 V (Xs)ds)

=
n−2∑

p=k+2

Ex(S(n, p, l − 1, t)︸ ︷︷ ︸
=A

, S(p, k, 1, t); e−
1
2

∫ σp
0 V (Xs)dse

− 1
2

∫ σk
σp

V (Xs)ds)

≤
n−2∑

p=k+2

Ex(A, S(p, k, 1, t + σp); e−
1
2

∫ σp
0 V (Xs)dse

− 1
2

∫
σk
σp

V (Xs)ds).

By the strong Markov property the last expression is equal to
n−2∑

p=k+2

Ex(A; e−
1
2

∫ σp
0 V (Xs)dsEX(σp)(S(p, k, 1, t); e−

1
2

∫ σk
0 V (Xs)ds)).

Now by our induction hypothesis this is bounded from above by
n−2∑

p=k+2

C3(t)
2l−1

e−m1/α(n−p) (min{n − p, p}) d−1
2

(n − p)
d+α+1

2

1
L(n)

× C3(t)
2

e−m1/α(p−k) (min{p − k, k}) d−1
2

(p − k)
d+α+1

2

1
L(p)

.

The function L(n) is nondecreasing, so this is bounded from above by

(5.8)
C3(t)
2l

e−m1/α(n−k)

L(n)
C3(t)
L(n0)

n−2∑
p=k+2

(min{n − p, p}) d−1
2

(n − p)
d+α+1

2

(min{p − k, k}) d−1
2

(p − k)
d+α+1

2

.

By Lemma 5.8 and (5.5) the last sum is smaller than
n−2∑

p=k+2

C2

d−1
2

(min{n − k, k}) d−1
2

(n − k)
d+α+1

2

21+α/2

(min{n − p, p − k})1+ α
2

≤ 4C2

d−1
2

(min{n − k, k}) d−1
2

(n − k)
d+α+1

2

n−2∑
p=k+2

(
1

(n − p)1+
α
2

+
1

(p − k)1+
α
2

)

≤ 8C2

d−1
2

(min{n − k, k}) d−1
2

(n − k)
d+α+1

2

∞∑
p=1

1
p1+ α

2
.

Eventually, by (5.8) and (5.6) we obtain

Ex(S(n, k, l, t); e−
1
2

∫ σk
0 V (Xs)ds) ≤ C3(t)

2l
e−m1/α(n−k) (min{n − k, k}) d−1

2

(n − k)
d+α+1

2 L(n)
.

�

Now we can prove the main result of this paper.
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Proof of Theorem 1.6. To prove intrinsic ultracontractivity of Tt we will use Con-
dition 1.2, that is, for all t > 0 there exists ct such that for all x ∈ Rd, Tt(1Rd)(x) ≤
ctTt(1D)(x), where D = B(0, 1).

First we estimate Tt(1Rd)(x). Fix t > 0. We assume that n0 satisfies condtion
(5.6) from Lemma 5.9. Let n ≥ 2n0 + 4 and x ∈ Rn. Applying the last lemma and
(5.4) to the equality (5.3), we have

Tt(1Rd)(x) ≤ Ex(τ[n/2] > t; e−
∫ t
0 V (Xs)ds)

+
[n/2]∑

k=n0+2

∞∑
l=1

C3(t)
L(n)

1
2l

e−m1/α(n−k)e−
t
2L(k−2) k

d−1
2

(n − k)
d+α+1

2

+
n0+1∑
k=n0

∞∑
l=1

C3(t)
L(n)

1
2l

e−m1/α(n−k) k
d−1
2

(n − k)
d+α+1

2

= I + II + III.

We have
I ≤ e−tL([n/2]−2).

Note that the function L is comparable on unit intervals (see Definition 1.4).
Therefore there exists a constant A > 0 such that L(n) ≤ eA n. We also have
L(n)/n → ∞. Let us recall that t > 0 is fixed. Thus we can choose n0 (depending
on t) large enough so that for n ≥ n0 we have tL([n/2] − 2) > m1/αn + (A + 1)n.
For such n0 we have

I ≤ e−tL([n/2]−2) ≤ e−m1/αne−(A+1)n ≤ c

L(n)
e−m1/αn 1

n
d+α+1

2

.

By similar arguments we can choose n0 large enough so that for k ≥ n0 we have
tL(k − 2)/2 − m1/αk > k. Note also that k ≤ [n/2], so we have n − k ≥ n/2. For
such n0 we have

II ≤ ct

L(n)
e−m1/αn

n
d+α+1

2

[n/2]∑
k=n0+2

e−kk
d−1
2 ≤ ct

L(n)
e−m1/αn 1

n
d+α+1

2

.

For III we get similar estimates. It follows that for n0 chosen as above, x ∈ Rn

and n ≥ 2n0 + 4 we have

Tt(1Rd)(x) ≤ I + II + III ≤ ct

L(n)
e−m1/αn 1

n
d+α+1

2

.

Recall that by (5.6) we have L(n0) ≥ 1. By Definition 1.5 for |x| ≥ n0 we get
that V (x) ≤ CL(|x|) + C ≤ 2CL(|x|), so L(|x|) and V (x) are comparable. Since
n ≥ |x| > n − 1 (x ∈ Rn) we get

Tt(1Rd)(x) ≤ ct

V (x) + 1
e−m1/α|x| 1

(|x| + 1)
d+α+1

2

,(5.9)

for |x| ≥ 2n0 + 4.
Now we estimate Tt(1D)(x). Fix t > 0. Recall that D = B(0, 1) and let |x| ≥

n0 + 1, B = B(x, 1) (recall that n0 ≥ 2 so |x| ≥ 3). We have

Tt(1D)(x) = Ex(Xt ∈ D; e−
∫ t
0 V (Xs)ds)

≥ Ex(X(τB) ∈ D/2, τB < t, ∀s∈[τB ,t+τB ] Xs ∈ D; e−
∫ τB
0 V (Xs)dse

−
∫ t+τB
τB

V (Xs)ds)

≥ ctEx(X(τB) ∈ D/2, τB < t, ∀s∈[τB ,t+τB ] Xs ∈ D; e−
∫ τB
0 V (Xs)ds).
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By the strong Markov property this is equal to

ctEx(X(τB) ∈ D/2, τB < t; e−
∫ τB
0 V (Xs)ds PX(τB)(τD > t))

≥ ctEx(X(τB) ∈ D/2, τB < t; e−
∫ τB
0 V (Xs)ds).

For y ∈ B we have |y| < |x| + 1, so for s ∈ [0, τB) we get |Xs| < |x| + 1. Since
|x| ≥ n0 + 1 we have L(|x| + 1) ≥ 1. Hence for s ∈ [0, τB) we have V (Xs) ≤
CL(|x| + 1) + C ≤ 2CL(|x| + 1) ≤ c′L(|x|). It follows that

Tt(1D)(x) ≥ ct

∞∑
i=1

Ex

(
X(τB) ∈ D/2,

t

i + 1
≤ τB <

t

i
; e−

∫ τB
0 V (Xs)ds

)

≥ ct

∞∑
i=1

e−tc′L(|x|)/iPx

(
X(τB) ∈ D/2,

t

i + 1
< τB <

t

i

)
.

By Lemmas 5.1 and 5.2 we get

Tt(1D)(x) ≥ ct

∞∑
i=1

e−tc′L(|x|)/i t

i(i + 1)
1

|x| d+α+1
2

e−m1/α|x|

≥ ct

|x| d+α+1
2

e−m1/α|x| 1
tc′L(|x|) + 1

≥ ct

(|x| + 1)
d+α+1

2 (V (x) + 1)
e−m1/α|x|.

(5.10)

This and (5.9) gives Condition 1.2 for |x| ≥ 2n0 + 4. For small x this condition
is obvious, because both sides are bounded, continuous and bounded away from 0.
Therefore the semigroup Tt is IU.

When Tt is IU we can also show asymptotic behavior of the first eigenfunction
φ1(x):

φ1(x) = e−λ1T1(φ1)(x) ≤ e−λ1( sup
x∈Rd

φ1(x))T1(1Rd)(x) = CT1(1Rd)(x),

because φ1(x) is bounded.
On the other hand for D = B(0, 1) we have

φ1(x) = e−λ1T1(φ1)(x) ≥ e−λ1T1(1Dφ1)(x)

≥ e−λ1( inf
x∈D

φ1(x))T1(1D)(x) = cT1(1D)(x),

because φ1(x) is strictly positive, and continuous. Now (5.9) and (5.10) give (1.5)
for large x (|x| ≥ 2n0 +4). For small x (1.5) is trivial because φ1 is continuous and
strictly positive.

Finally we will show that if V ∈ V and condition lim|x|→∞ V (x)/|x| = ∞ is not
satisfied, then the semigroup Tt is not intrinsically ultracontractive. Since V ∈ V
we have lim|x|→∞ V (x) = ∞. So there exists r0 > 1 such that for |x| > r0 we
have V (x) > 1. For such x we get L(|x|) ≤ V (x) ≤ 2CL(|x|). L is comparable on
unit intervals, so V is comparable on unit balls. Therefore we may assume that
there exists a constant M < ∞ and a sequence of balls Bn = B(xn, 1), |xn| → ∞,
|xn| > r0 + 1, |xn| ≥ 3, n ≥ 1, such that V (x) > 1, V (x)/|x| < M for any
x ∈

⋃∞
n=1 Bn.

Now we will show that Condition 1.3 does not hold. This implies that the
semigroup Tt is not IU.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5056 TADEUSZ KULCZYCKI AND BART�LOMIEJ SIUDEJA

Let D = B(0, 1) and x ∈
⋃∞

n=1 Bn. We have

Tt(1D)(x) = Ex(Xt ∈ D; e−
∫ t
0 V (Xs)ds) ≤ Px(Xt ∈ D) =

∫
D

p(t, x, y)dy.

Since |xn| ≥ 3 we have |x| ≥ 2 and |x − y| ≥ 1 for y ∈ D. By Lemma 2.2 we get

Tt(1D)(x) ≤ c1te
mt|D|e−c2(|x|−1).

To estimate Tt(1Rd)(x) we will again use the fact that V is comparable on unit
balls. That is, there exists a constant c3 such that for x ∈

⋃∞
n=1 Bn we have

supy∈B(x,1) V (y) ≤ c3V (x). It follows that

Tt(1B(x,1))(x) ≥ Ex(τB(x,1) > t; e−
∫ t
0 V (Xs)ds)

≥ Px(τB(x,1) > t)e−tc3V (x) ≥ P0(τB(0,1) > t)e−tc3M |x|

= cte
−tc3M |x|.

If we choose t small enough to have c2 > tc3M , then Condition 1.3 will not be
satisfied for large enough x. This implies that the semigroup Tt is not IU. �
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Probabilités XXII, Lect. Notes in Math. 1321 (1988), 1-50. MR0960507 (90h:58084)

[Bo] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math.
123 (1997), no. 1, 43-80. MR1438304 (98g:31005)

[BB1] K. Bogdan and T. Byczkowski, Potential theory for the α-stable Schrödinger operator on
bounded Lipschitz domains, Studia Math. 133(1) (1999), 53-92. MR1671973 (99m:31010)

[BB2] K. Bogdan and T. Byczkowski, Potential theory of Schrödinger operator based on frac-
tional Laplacian, Prob. Math. Statist. 20 (2000), 293-335. MR1825645 (2002a:31002)

[BK] K. Burdzy and T. Kulczycki, Stable processes have thorns, Ann. Probab. 31 (2003), no.
1, 170-194. MR1959790 (2003k:60079)

[C1] R. Carmona, Path integrals for relativistic Schrödinger operators, Lect. Notes in Phys.
345 (1989), 65-92. MR1037317 (91g:60088)

[CMS] R. Carmona, W.C. Masters and B. Simon, Relativistic Schrödinger operators: asymptotic
behavior of the eigenfunctions, J. Funct. Anal. 91 (1990), 117-142. MR1054115 (91i:35139)

[CS1] Z. Chen, R. Song, Intrinsic ultracontractivity and conditional gauge for symmetric stable
processes, J. Funct. Anal. 150 (1997), no. 1, 204-239. MR1473631 (98j:60103)

[CS2] Z. Chen, R. Song, Intrinsic ultracontractivity, conditional lifetimes and conditional gauge
for symmetric stable processes on rough domains, Illinois J. Math. 44 (2000), no. 1, 138-
160. MR1731385 (2001m:60166)

[CS3] Z. Chen, R. Song, Estimates of Green functions and Poisson kernels for symmetric stable
processes, Math. Ann. 312 (1998), 465-501. MR1654824 (2000b:60179)

[CZ] K.L. Chung, Z. Zhao “From Brownian Motion to Schrödinger’s equation”, Springer, New
York, 1995. MR1329992 (96f:60140)

[Db] I. Daubechies, One electron molecules with relativistic kinetic energy: properties of discrete
spectrum, Comm. Math. Phys. 94 (1984), 523-535. MR0763750 (86j:81023)

[DL] I. Daubechies and E.H. Lieb, One electron relativistic molecules with Coulomb interaction,
Comm. Math. Phys. 90 (1983), 297-310. MR0719430 (85j:81007)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1124298
http://www.ams.org/mathscinet-getitem?mr=1124298
http://www.ams.org/mathscinet-getitem?mr=1206335
http://www.ams.org/mathscinet-getitem?mr=1206335
http://www.ams.org/mathscinet-getitem?mr=0941980
http://www.ams.org/mathscinet-getitem?mr=0941980
http://www.ams.org/mathscinet-getitem?mr=0960507
http://www.ams.org/mathscinet-getitem?mr=0960507
http://www.ams.org/mathscinet-getitem?mr=1438304
http://www.ams.org/mathscinet-getitem?mr=1438304
http://www.ams.org/mathscinet-getitem?mr=1671973
http://www.ams.org/mathscinet-getitem?mr=1671973
http://www.ams.org/mathscinet-getitem?mr=1825645
http://www.ams.org/mathscinet-getitem?mr=1825645
http://www.ams.org/mathscinet-getitem?mr=1959790
http://www.ams.org/mathscinet-getitem?mr=1959790
http://www.ams.org/mathscinet-getitem?mr=1037317
http://www.ams.org/mathscinet-getitem?mr=1037317
http://www.ams.org/mathscinet-getitem?mr=1054115
http://www.ams.org/mathscinet-getitem?mr=1054115
http://www.ams.org/mathscinet-getitem?mr=1473631
http://www.ams.org/mathscinet-getitem?mr=1473631
http://www.ams.org/mathscinet-getitem?mr=1731385
http://www.ams.org/mathscinet-getitem?mr=1731385
http://www.ams.org/mathscinet-getitem?mr=1654824
http://www.ams.org/mathscinet-getitem?mr=1654824
http://www.ams.org/mathscinet-getitem?mr=1329992
http://www.ams.org/mathscinet-getitem?mr=1329992
http://www.ams.org/mathscinet-getitem?mr=0763750
http://www.ams.org/mathscinet-getitem?mr=0763750
http://www.ams.org/mathscinet-getitem?mr=0719430
http://www.ams.org/mathscinet-getitem?mr=0719430


INTRINSIC ULTRACONTRACTIVITY OF FEYNMAN-KAC SEMIGROUP 5057

[D] E. B. Davies, “Heat Kernels and Spectral Theory”, Cambridge Univ. Press, Cambridge,
1989. MR0990239 (90e:35123)

[DS] E. B. Davies and B. Simon, Ultracontractivity and heat kernels for Schrödinger operators
and Dirichlet Laplacians, J. Funct. Anal. 59 (1984), 335-395. MR0766493 (86e:47054)

[Da] B. Davis, Intrinsic ultracontractivity and the Dirichlet Laplacian, J. Funct. Anal. 100
(1991), no. 1, 162-180. MR1124297 (92k:35065)

[F] C. Fefferman, The N-body problem in quantum machanics, Comm. Pure and Appl. Math.

39 (1986), S67-S109. MR0861484 (88e:81171a)
[FL] C. Fefferman and R. de la Llave, Relativistic stability of matter-I, Rev. Math. Iberoamer-

icana 2 (1986), 119-223. MR0864658 (88g:81155)

[H] I.W. Herbst, Spectral theory of the operator (p2 + m2)1/2 − Ze2/r, Comm. Math. Phys.
53 (1977), 285-294. MR0436854 (55:9790)

[IW] N. Ikeda and S. Watanabe, On some relations between the harmonic measure and the Levy
measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), 79-95.
MR0142153 (25:5546)

[K] T. Kulczycki, Intrinsic ultracontractivity for symmetric stable processes, Bull. Polish Acad.
Sci. Math. 46 (1998), 325-334. MR1643611 (99j:60115)

[L] E. Lieb, The stability of matter, Rev. Modern Phys. 48 (1976), 553-569. MR0456083
(56:14314)

[LY] E. Lieb and H.T. Yau, Stability and instability of relativistic matter, Comm. Math. Phys.
118 (1988), no. 2, 177-213. MR0956165 (90c:81251)

[R] M. Ryznar, Estimates of Green function for relativistic α-stable process, Potential Analysis
17 (2002), 1-23. MR1906405 (2003f:60087)

[S] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), no. 3, 447-526.
MR0670130 (86b:81001a)

[Z] Z. Zhao, A probabilistic principle and generalized Schrödinger perturbation, J. Funct. Anal.
101 (1991), no. 1, 162-176. MR1132313 (93f:60116)

Institute of Mathematics, Wroc�law University of Technology, Wyb. Wyspianskiego

27, 50-370 Wroc�law, Poland

E-mail address: tkulczyc@im.pwr.wroc.pl

Department of Mathematics, Purdue University, West Lafayette, Indiana 47906

E-mail address: siudeja@math.purdue.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0990239
http://www.ams.org/mathscinet-getitem?mr=0990239
http://www.ams.org/mathscinet-getitem?mr=0766493
http://www.ams.org/mathscinet-getitem?mr=0766493
http://www.ams.org/mathscinet-getitem?mr=1124297
http://www.ams.org/mathscinet-getitem?mr=1124297
http://www.ams.org/mathscinet-getitem?mr=0861484
http://www.ams.org/mathscinet-getitem?mr=0861484
http://www.ams.org/mathscinet-getitem?mr=0864658
http://www.ams.org/mathscinet-getitem?mr=0864658
http://www.ams.org/mathscinet-getitem?mr=0436854
http://www.ams.org/mathscinet-getitem?mr=0436854
http://www.ams.org/mathscinet-getitem?mr=0142153
http://www.ams.org/mathscinet-getitem?mr=0142153
http://www.ams.org/mathscinet-getitem?mr=1643611
http://www.ams.org/mathscinet-getitem?mr=1643611
http://www.ams.org/mathscinet-getitem?mr=0456083
http://www.ams.org/mathscinet-getitem?mr=0456083
http://www.ams.org/mathscinet-getitem?mr=0956165
http://www.ams.org/mathscinet-getitem?mr=0956165
http://www.ams.org/mathscinet-getitem?mr=1906405
http://www.ams.org/mathscinet-getitem?mr=1906405
http://www.ams.org/mathscinet-getitem?mr=0670130
http://www.ams.org/mathscinet-getitem?mr=0670130
http://www.ams.org/mathscinet-getitem?mr=1132313
http://www.ams.org/mathscinet-getitem?mr=1132313

	1. Introduction
	2. Preliminaries
	3. Compactness of the Feynman-Kac semigroup
	4. Estimates of transition probability of the killed process
	5. Intrinsic ultracontractivity
	References

