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A polymer molecule in solution is treated as a porous sphere with a spherically symmetric 
permeability distribution. Solvent motion in and around this sphere is described by the Debiie- 
Brinkman equation (Navier-Stokes equation and Darcy equation combined). The model allows a 
straightforward calculation of the frictional properties of a polymer in shear flow (intrinsic 
viscosity) and in translation (friction coefficient). Calculations have been carried out for a radial 
dependence of the permeability of the form k(r) = K exp(Q&). The calculations provide us with 
detailed information about the solvent flow through and around the macromolecular coil. 

I. Introduction 

In a c e l e b r a t e d  p a p e r  E ins t e in  1) c a l c u l a t e d  the  v i s c o s i t y  of  a d i lu te  suspen -  
s ion of  i m p e r m e a b l e  sphe re s .  E i n s t e i n ' s  e x p r e s s i o n  fo r  the  v i s cos i t y  is o f t en  
u sed  to i n t e r p r e t  the  v i s c o s i t y  of  a so lu t ion  of  m a c r o m o l e c u l e s  in t e rms  of  an 
e f fec t ive  h y d r o d y n a m i c  rad ius .  H o w e v e r ,  a m a c r o m o l e c u l e  in so lu t ion  c a n n o t  
be r e p r e s e n t e d  by  an i m p e r m e a b l e  s p h e r e  b e c a u s e  the  so lve n t  is ab le  to f low 
th rough  as wel l  as a r o u n d  the coil .  H e n c e ,  the  flow of  an i n c o m p r e s s i b l e  fluid 
t h rough  and a r o u n d  a m a c r o m o l e c u l e  r e p r e s e n t e d  by  a p o r o u s  s p h e r e  m a y  be 
so lved  f rom the D e b i j e - B r i n k m a n  equa t ion :  

- V P  + ~ /oAV-  ~° (V - U) = 0, (1) 
k • 

d iv  V = 0. (2) 

In this  equa t ion ,  wh ich  app l i e s  to the  s t a t i o n a r y  s ta te  on ly ,  V and  P d e n o t e  
the  a v e r a g e  local  v e l o c i t y  and  p r e s s u r e  of  the  so lven t ,  U is the  local  v e l o c i t y  
of  the  p o l y m e r i c  mate r i a l ,  ~/0 the  v i s c o s i t y  o f  the  pu re  so lven t ,  and  k the  loca l  
p e r m e a b i l i t y .  

It is impl ic i t  in the  use  of  the  D e b i j e - B r i n k m a n  e q u a t i o n  tha t  the  p o l y m e r  is 
r e p r e s e n t e d  by  a c o n t i n u u m  wi th  a loca l ly  va ry ing  p e r m e a b i l i t y .  This  e q u a t i o n  
has  been  u sed  by  O o m s  et  al. 2) to ca l cu l a t e  s e d i m e n t a t i o n  coef f ic ien ts ;  the  
va lues  thus  o b t a i n e d  ag reed  wi th in  a few p e r c e n t  wi th  the  e x p e r i m e n t a l  
va lues .  A m i c r o s c o p i c  d e r i v a t i o n  of  an e q u a t i o n  v e r y  s imi la r  to (1) was  g iven  
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by Felderhof  and Deutch3); a macroscopic  derivation of (1) with a discussion 
of the effects due to polymer  solvent interaction was given by Wiegel and 
Mijnlieff4). 

In a real macromolecule  the permeabil i ty  will be some function k(r) of the 
radial distance (r) to the centre of the coil. This function is not related in a 
simple way to the local segment  density [c(r)], because permeabil i ty appears  
to depend strongly on the quality of the solvent [see Mijnlieff and JaspersS)]. 

Although an a priori calculation of k(r) is unfeasible,  this function can be 
determined in the following way. First one uses an exact  relation between the 
permeabil i ty and the sedimentat ion coefficient to determine the permeabil i ty 
at a certain concentrat ion [k(c)] f rom the sedimentat ion coefficient at the 
same concentrat ion,  which can be measured accurately [compare Mijnlieff 
and Jaspers  5) and Wiegel and Mijnlieff4)]. Next,  one assumes a certain form 
for  the function c(r), after  which on combining with k(c) the function k(r) is 
obtained. On adopting a gaussian for c(r) one finds in this way that the radial 
dependence  of the permeabil i ty is approximate ly  described by 

k(r) = K exp(Qr2), (3) 

where K and Q are posit ive constants  the values of which depend on the 
tempera ture  and on the nature of the po lymer  and solvent.  

It is the aim of the present  paper  to calculate the intrinsic viscosity and the 
translational friction coefficient of macromolecules  which are character ized 
by a local permeabil i ty given by the last equation. In the past (1) has been 
solved for a few specific choices of k(r). Debije and Bueche 6) solved (1) for a 
sphere of constant  permeabil i ty,  both for shear flow and for translation. 
Felderhof  7) presented a very general formalism for the calculation of fric- 
tional propert ies  of permeable  macromolecules ,  but gave explicit results only 
for the uniform sphere and for the spherical shell. We shall use Felderhof ' s  
methods to study the more realistic case (3). 

The content  of the paper  is divided as follows. Section 2 is devoted to the 
derivation of a general expression for the viscosity. In section 3 we specialize 
to the model character ized by eq. (3) and give the results of the numerical 
solution of the relevant system of differential equations. Similarly, section 4 is 
devoted to the derivation of a general expression for the translational friction 
coefficient and the results for the model character ized by eq. (3) are given in 
section 5. The compar ison between predicted and measured values of the 
intrinsic viscosity and friction coefficient (which turns out to be sat isfactory) 
and the re levance of these results for the understanding of frictional proper-  
ties of polymers  in solution are the subject  of a separate paperS). (Also compare  
ref. 10). 

2. General expression for the viscosity 

Consider  an isolated macromolecule  which is located at the origin of a 
cartesian f rame of coordinates.  Due to the presence of the macromolecule  in 
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the origin the velocity and pressure will be the solutions of eqs. (1) and (2) 
which approach the simple shear flow given by 

v l=  +G~y;  v2=0 ;  v3=0 ,  (4) 

at large distances from the origin. 
The macromolecule is represented by a rigid porous sphere with a per- 

meability k(r) which has spherical symmetry,  but which is otherwise arbi- 
trary. Owing to the interaction with the fluid this sphere will start to rotate 
around the z-axis with an angular velocity w: 

U 1 = - w y  ; U 2  = 4- o Jx  ; U 3 = O. ( 5 )  

In the stationary state the total torque of the forces which the fluid exerts on 
the coil should vanish. It can easily be shown that this implies that the angular 
velocity equals half the shear rate: 

to = -- ½Ge. (6) 

For the actual velocity and pressure fields we make the Ansatz due to 
Felderhof7): 

V = U + t h ( v -  U ) -  Ixr x (r x [ v -  U]), (7) 

r -  v (8) 
P = P 0 - ~ 7 0 X  r 2 • 

Here ~b, ix and X are three unknown functions of the radial distance (r) to the 
origin. It is straightforward to verify that (7) and (8) are indeed the solution of 
(1) and (2) provided 

1 4/,  (9) 

4)" 6 , + r 4~ - k-'4~ + X r = 0, (10) 

X"+ 2 , 6 
r X - ~ x - r ( k  ')'4~ = 0. (11) 

The prime denotes differentiation with respect to r. The boundary conditions 
are that the velocity and pressure stay finite in the origin and approach the 
unperturbed fields v(r) and p0 at distances which are large compared to the 
diameter of the coil; this implies: 

4~(0) finite, (12a) 

X(0) finite, (12b) 

~(oo) = 1, (12c) 

X(°°) = O. (12d) 
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For  r ~  the permeabil i ty goes to infinity and the fourth term on the 
left-hand side of eq. (11) vanishes. The resulting equation has the solution 

x ( r )  ~- 2 A / r  3 ( r  ~ o o ) .  (13) 

Upon substitution into eq. (10) one finds 

B ( r ~ ) ,  (14) ~b(r) ~ 1 - ~ + ~  

where the boundary  conditions (12) were used and where the third term on 
the left-hand side of  eq. (10) was set equal to zero. By substituting into (7) one 
finds the asymptot ic  form of the three components  of the velocity: 

2 

V,  = + G e y  - G ~ A  .~.sY + ~7(r 4), (15a) 

x Y  2 + 
V~ = - G e A  - ~ -  6~(r  4), (15b) 

r 

V~ = - G e A  xy_z G ( r  4), (15c) 
r ~ + 

which formulae determine the viscosity in the following way. Consider  a 
dilute solution which contains np of these macromolecules  per unit volume. 
Let  the solution be contained between two parallel walls situated at y = + L  
and let these wails move with equal but opposi te  velocities (-+ G L )  along the 
x-axis in such a way that the macroscopic  velocity field has a shear rate G. 
We calculate the viscosi ty of the solution following the method of Burgersg). 
The macroscopic  velocity field (macroscopic  shear rate G) should be dis- 
tinguished from the local velocity field in the vicinity of a macromolecule .  The 
velocity field which would be found at the position (ri) of a particular 
macromolecule ,  when that molecule has first been removed,  has a shear rate 
Ge. The presence  of the molecule at ri will add to this unperturbed velocity a 
small correct ion given by (15), and these correct ions have to be summed over  
all the coils in the fluid. 

To be more specific we calculate the correct ion to the velocity in some 
point (x, y, z) due to all coils present  in a thin slice of fluid parallel to the 
x, z-plane and with thickness dy' .  As the coils are distributed with number  
density np the correction to V, can be found from the integral 

+ ~  + ~  

( x -  x ' ) 2 ( y  - 
v, = -   eA.pdy' dx'  dz' 

y') 
I r -  r,{ 5 

y - y '  
= - ~ r G e A n p  ~ dy'.  (16) 

Note that 0AVd0y = O, so the molecules in this slice do not change the local 
shear rate; therefore  the shear at the upper  and lower plates still equals Ge. 
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Hence,  the x -componen t  of the force which the fluid exerts  on a unit area of 
the upper  surface equals rl0Ge. By integrating (16) over  y'  and adding the local 
velocity field one finds the macroscopic  veloci ty field V ~M) described by 

V{ M)= "k" Gy, (17a) 

V~2 M)= 0, (17b) 

V~ M) = 0. (17c) 

Carrying out the integration one finds: 

G = (1 - ~rrnpA)Ge. (18) 

The viscosi ty 77 of the solution is operat ionally defined by measuring the force 
per unit area and dividing by the shear rate. But as the force per unit area has 
an x -componen t  equal to r/0G¢ this gives 

r/G = r/0Ge. (19) 

Combining the last two equations gives, for the relative increase of the 
viscosity,  

( 7  - no ) /no  = ~TrnpA. (20) 

Together  with eqs. (10)-(14) this relation expresses  the viscosity of a dilute 
solution of permeable  macromolecules  in terms of the asymptot ic  behaviour  
of the flow field around one macromolecule .  The result (20) was first obtained 
by Burgers9). 

3. Application to a realistic polymer model 

We now apply the general theory which formed the subject  of section 2 to a 
realistic model for which the radial dependence  of the permeabil i ty  is given 
by (3). When this express ion is substi tuted into (lO) and ( l l )  and the 
dimensionless distance x = r ~ / Q  is introduced as the independent  variable, 
the differential equations become 

d2f , 6 df  + 1 dg 
d x 2 - t - x ~ x - a  e x:f x ~ x = 0 ,  (218) 

d2g q 2 dg 6 
dx 2 x dx  x ~ g + 2 8 x 2  e-x:f = 0. (21b) 

Here  f ( x )  = rb(r), g ( x )  = x ( r ) ,  and a denotes  the dimensionless paramete r  

a = (KQ)  '. (22) 

The boundary  conditions on f and g are the same as those on 4~ and X. 
Whereas  an analytic solution of (21) seems difficult to obtain, a numerical 

solution can be found,  for  example  by a process  of iteration. Note  that g can 
be calculated f rom f by solving (21b): 
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g ( x )  = ~ x  y~ e ": f (y)  dy + ~ x  

On the other hand. once  the function 

1 dg  
F ( x )  = + a  e '~ f ( x ) -  x dx 

is k n o w n ,  (21a )  c a n  b e  s o l v e d  for  f :  

f 'f f ( x ) =  1 - ~ x  ~ y ~ F ( y ) d y - ~  y F ( y ) d y .  

F.W. W1EGEL AND P.F. M I J N I 3 E F F  

y e C f ( y ) d y .  (23) 

(24) 

(25) 

The numerical procedure starts with some guess  for the function f(x).  
Substitution into (23) gives a guess for g(x) and hence  for F(x) by sub- 
stitution into (24). When this approximation of  F(x) is substituted into (25) 
one finds an improved approximation of  f(x).  The iteration is continued till 
the success ive  approximations differ by an amount  which is smaller than 
some error margin. Note  that (23) immediately  leads to the asymptot ic  
behaviour of g(x):  using (131 and (20) this gives for the relative increase of  the 
viscosi ty  

"O- rto_ ~rnpK ,Q ~/2~( K ~Q ,), (26a) 
"rio 

where 

• (~  ) = ~ f x 6 e '~ f(x)  dx. (26b) 
0 

T A B L E  l 

The function qb defined by eq. (26b). and the value of f(x) in the origin 

c~ ~(~  ) f(0) o~ qb(o~) f(0) 

0.0 0.332 1.000 2.0 0.311 0.825 
0.1 0.331 0.990 3.0 0.301 0.754 
0.2 0.330 0.980 4.0 11.292 0.692 
0.3 0.329 0.971 5.0 0.284 0.637 
(1.4 0.328 0.961 6.0 0.277 0.588 
0.5 0.327 0.952 7.0 0.270 0.544 
0.6 0.325 0.942 8.0 0.263 0.505 
0.7 0.324 0.933 9.0 0.257 0.470 
0.8 0.323 /).924 I 0 0.251 0.439 
0.9 0.322 0.915 1 I 0.246 0.411 
1.0 0.321 0.907 12 0.241 0.385 
1.1 0.320 0.898 13 0.236 0.362 
1.2 0.319 11.889 14 0.231 0.341 
1.3 11.318 0.881 15 0.227 0.321 
1.4 0.317 0.873 16 0.223 0.304 
1.5 0.316 0.865 17 0.219 0.288 

18 0.215 0.273 
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T 
1.0 ~ 

° I 
0.6~ 

f (x) 

0.4- g (x) 

0 

1.0 2.0 3.0 4.0 X 

Fig. 1. Behaviour  of  the funct ions  f(x) and g(x) for a = 10. 

This  funct ion  has been calculated numerically for values of a up to 18. The 
results  are collected in table I. Note that ~(0) = ~,k/~. The behaviour of f(x) 
and g(x) is drawn in fig. 1 for the typical value a = 10. If m denotes the mass 
of a single macromolecule the intrinsic v i s c o s i t y  [~ ]  is given by 

[B]  = ~ T r m  1K-10-5/Z~(K t O i). (27 )  

Together  with the numerica l  results  in table I this formula enables us to 
predict  the intrinsic v i s c o s i t y  of  dilute p o l y m e r  so lut ions .  This  is the subject  
of  a separate  paper8). (Also  c o m p a r e  ref.  10). 

Table  I a lso  g ives  the v a l u e / ( 0 )  of  f(x) in the origin of  the coi l ,  wh ich  is a 
measu re  for the degree  of  draining of  the coil .  The  v e l o c i t y  on the y-axis  is 
found by subst i tut ing x = z = 0 into (7): 

VI - - -~ ½Gey(1 + d ~ ) +  ½Gey3 3rl d~bdr, (28) 

w h e r e  x = rl, y = r2, z = r3. This  v e l o c i t y  has been drawn in fig. 2 for a = 10. 

I 3 

2 

1 

-4 -3 -2 -W~;t  . . . .  

~1 t 
v =rS6" 

Fig. 2. The velocity componen t  V~ in the rt direction as a funct ion of r2~/Q for a = 10. The  
vertical coordinate measures  the value of V~Q~I2G;~. 
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4. General expression for the friction coefficient 

When  a hard sphere of  radius R moves  through a viscous fluid with a 
cons tan t  relative veloci ty  vo, the force  on the sphere is given by S tokes '  
fo rmula  

F = -67r~ooRvo ,  (29) 

and the fr ict ion coefficient f is given by the ratio of  force  and veloci ty:  

f = IF/vo] = 67rr/0R. (30) 

These  fo rmulae  are of ten  used to assign an effect ive h y d r o d y n a m i c  radius to a 
mac romolecu l e  of  which f has been measured .  H o w e v e r ,  the same criticism 
applies here as in the case of  the intrinsic veloci ty ,  and in this sect ion we 
calculate  the frict ional coefficient f rom the D e b i j e - B r i n k m a n  equat ion  (1), 
where  now U - - 0 .  

Cons ider  an isolated mac romolecu le  located  at the origin of  a car tes ian 
sys tem of  coordina tes .  In the absence  of  the molecule  the fluid would  be in 
a state of  uni form flow and the veloci ty  v has the c o m p o n e n t s  

vl - 0; v2 = 0: v3 = + v0. (31) 

The  pressure  would  equal a cons tan t  P0 e v e r y w h e r e  in the fluid. Owing to the 
p resence  of  the m a c r o m o l e c u l a r  coil in the origin the actual  ve loci ty  and 
pressure  will be the solut ions o f  (1) and (2) which  app roach  the unper tu rbed  
fields at large dis tances  f rom the origin. 

The mac romolecu l e  is again represen ted  by a rigid porous  sphere  with a 
permeabi l i ty  k ( r )  which  has spherical  s y m m e t r y ,  but  which is o therwise  
arbi t rary.  For  the actual  ve loci ty  field and pressure  field we use the Ansa tz  
due to Felderhof7):  

V = ~b(r )v  - v ( r ) r  × ( r  x v ) ,  (32a) 

r ' v  
P = p o -  n o ~ ( r )  - -  (32b) 

r 

Here  0, v and ~: are three u n k n o w n  func t ions  of  the radial d is tance to the 
origin. It is s t ra igh t forward  to ver i fy  that  (32) solves (1) and (2) provided  

1 
v = ~rr 0 ' ,  (33a) 

~0" + 4 4" - k-~tO + ¢' = 0, (33b) 
r 

~:,, 2 , 2 
+ r ~: - ~ ~: - (k l),~ = 0. (33c) 

The  pr ime deno tes  different iat ion with respec t  to r. The b o u n d a r y  condi t ions  
are that the ve loc i ty  and pressure  s tay finite in the origin and approach  the 
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unperturbed fields at large r; this implies 

~b(0) finite, (34a) 

¢(0) finite, (34b) 

6(~) = 1, (34c) 

~b(~) = 0. (34d) 

For  r---> ~ the function k- '  vanishes and the last term on the left-hand side of 
(33c) vanishes. The resulting equation has the solution 

~(r) ~- C[r 2 ( r ~  ~), (35) 

where the boundary condition (34d) was used. Substituting into (33b) and 
using the boundary condition (34c) one finds the asymptotic  behaviour 

~b(r) ~ 1 _ C + D  r ~ (r---> ~). (36) 

These asymptotic  formulae determine the friction coefficient in the following 
way. From the macroscopic derivation of the Debi je-Brinkman equation, 
given for example by Wiegel and Mijnlieff4), it is clear that the z-component  
of the total force which the fluid exerts on the coil equals 

F3 = 71o f k-J(r) V3(r) d3r. (37) 

Using (1) this can be written in the form 

F3= f / OP+ V3) ~ -  -~z "0°A d3r" 

With Gauss 's  theorem the volume integral can be replaced by a surface 
integral over  the surface of a sphere with a large radius r; subsequently the 
limit r ~ o~  will be taken. Denoting the surface element of this sphere by d2S 
one finds 

~ p Z  ~ (OV3x..F OV3y..F OV3Z~d2S" (38) 
F~ = - r d2S + rl° \ Ox r ay r Oz r/ 

The advantage of this approach is that only the asymptotic form of V3 and P 
is needed. 

Using the results (32), (33), (35) and (36) one finds 

voC voCz 2 
V3 ~ v0 2r 2r T -  + ~(r-3) '  (39a) 

voCz 
P ~ P o -  rio 7 "  (39b) 

Substituting this into (38) and taking the limit r ~ oo one finds 

F3 = 4rrrl0Cv0. (40) 
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Hence by (30) the friction coefficient is 

f = 4~rn0C; (41) 

its value depends only on the value of the constant C, i.e. on the leading term 
in the asymptotic behaviour of pressure and velocity. 

5. Application to a realistic polymer model 

We now apply the general theory which formed the subject of section 4 to 
the model for which k(r) is given by eq. (3). When this expression is 
substituted into (33b) and (33c) and when the dimensionless distance x = rX/Qis 
introduced as the independent variable, the differential equations become 

d2h 4 dh e_~2 dq 
dx 2 F- X dxx ot h + dxx = 0, (42a) 

d 2 q + 2 d q  2 e x2 
dx 2 x d x  x 2 q + 2 a x  h =0 .  (42b) 

Here h ( x ) =  O(r) and q ( x ) =  O-]/2~(r). The boundary conditions on h and q 
are the same as those on g, and ~:. It is straightforward to show that the boundary 
condition that h and q should be finite in the origin, is equivalent to the 
boundary conditions 

q(0) = 0, (43a) 

h'(0) = 0, (43b) 

which are easier to use. 
Whereas an analytic solution of (42) seems difficult to obtain, a numerical 

solution can be found in the following way. We set 

C 
h ( x ) =  1 - c + ~ ,  q(x) = 7 (x > x0), (44) 

X 

for x larger than some large positive constant x0, then use (42) to calculate 
q(0) and h'(0). In general these values will violate the boundary conditions 
(43). The values of c and d are then adjusted till (43) is fulfilled within some 
error margin. Denoting the correct value of c by a ~ ( a )  we have 

C = O 1/2c = O m a ~ ( ~ ) .  (45) 

For the record only we just mention that it can easily be shown that 

= ~ f x 4 e x2 f ( x )  dx.  (46) ~ ( a )  

0 

This implies, among others, that 

2 f X 4  e x 2 I - -  • (0) = 3 dx = aX/~ ". (47) 
J 
0 
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TABLE II 
The function ~ ,  defined by eq. (46) 

395 

a ~t'(a) a q ' ( a )  a ~ ( a )  a ~I'(a) 

0 0.443 5 0.209 10 0.141 15 0.108 
1 0.359 6 0.190 11 0.133 16 0.103 
2 0.303 7 0.175 12 0.125 17 0.099 
3 0.263 8 0.162 13 0.119 

4 0.233 9 0.151 14 0.113 

The friction coefficient follows upon substitution of (45) into (41): 

f = 4 7 r ' r / 0 Q - l / a a x i t ( a ) .  (48) 

The values of the function ~ ( a )  have been calculated for values of  a up to 
17; the results are collected in table II. The behaviour  of h(x) and q(x) is 
drawn in figs. 3 and 4 for  some typical values of  a. For  a compar ison between 
the predicted and measured values of  the friction coefficient we again refer  to 
Mijnlieff and Wiegel8). 

hi 
1.0 

0.8 

0.6 

0.4 

02 

0 

2 j 

0.8 16 2A 32 40 X • 

Fig. 3. The function h(x) for ~ = 0, 1, 2, 6 and 14. 

!'01 0.8 

0.6 

o41 
10 20 3.0 ~ x 40 

Fig. 4. The  f u n c t i o n  q(x) f o r  a = 0, I,  2, 6 and 14. 



396 F.W. WIEGEL AND P.F. MIJNLIEFF 

T h e  v e l o c i t y  in t h e  z - d i r e c t i o n  is g i v e n  b y  

Vo dO 
V3 = ~Ovo+ (x 2 + y2) 2 r  d r '  (49) 

w h e r e  x = r~, y = r2, a n d  z = r3. H e n c e ,  a l o n g  t h e  z - a x i s  t h e  v e l o c i t y  is g i v e n  

b y  V3(0, 0, z)  = 0v0;  t h i s  p r o f i l e  is e s s e n t i a l l y  g i v e n  in fig. 3. A l o n g  t h e  x - a x i s  
t h e  z - c o m p o n e n t  o f  t h e  v e l o c i t y  e q u a l s  

v0 dO. 
V3(x, O, O) = qJvo + x 2 2r  d r '  (50) 

t h i s  p ro f i l e  is d r a w n  in fig. 5 f o r  a = 14. 

I io 

08 ~ I  06 
O4 

o I 
10 20  30  40 X - r~VQ' 

Fig. 5. The velocity component V 3 as a function of r~',/Q for a = 14. The vertical coordinate 
measures the value of V~vo ~. The limiting value 1 is indicated by a short horizontal bar. 
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