
EPJ manuscript No.
(will be inserted by the editor)

Intrinsic vs. spurious long-range memory
in high-frequency records of environmental
radioactivity

Critical re-assessment and application to indoor 222Rn
concentrations from Coimbra, Portugal

Reik V. Donner1,a, Stelios M. Potirakis2, Susana M. Barbosa3,4, José A.O. Matos5,
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Abstract. The presence or absence of long-range correlations in the en-
vironmental radioactivity fluctuations has recently attracted consider-
able interest. Among a multiplicity of practically relevant applications,
identifying and disentangling the environmental factors controlling the
variable concentrations of the radioactive noble gas radon is important
for estimating its effect on human health and the efficiency of possible
measures for reducing the corresponding exposition.
In this work, we present a critical re-assessment of a multiplicity of
complementary methods that have been previously applied for eval-
uating the presence of long-range correlations and fractal scaling in
environmental radon variations with a particular focus on the specific
properties of the underlying time series. As an illustrative case study,
we subsequently re-analyze two high-frequency records of indoor radon
concentrations from Coimbra, Portugal, each of which spans several
weeks of continuous measurements at a high temporal resolution of
five minutes.
Our results reveal that at the study site, radon concentrations exhibit
complex multi-scale dynamics with qualitatively different properties at
different time-scales: (i) essentially white noise in the high-frequency
part (up to time-scales of about one hour), (ii) spurious indications
of a non-stationary, apparently long-range correlated process (at time
scales between some hours and one day) arising from marked periodic
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components, and (iii) low-frequency variability indicating a true long-
range dependent process. In the presence of such multi-scale variability,
common estimators of long-range memory in time series are prone to
fail if applied to the raw data without previous separation of time-scales
with qualitatively different dynamics.

1 Introduction

Identifying and quantifying environmental factors controlling the fluctuations of natu-
ral radioactivity is one of the great open challenges in this field of research [1]. Among
others, the concentration of the radioactive noble gas radon in soil, water and air has
been considered as a potential tracer for a broad variety of geological and geophysi-
cal processes ranging from groundwater contamination [2] over preparatory stages of
earthquakes [3–5] to atmospheric dynamics [6]. One of the most direct consequences
are health hazards due to exhalation of the radioactive gas emitted from the ground
in certain geological environments, which is known to be one of the major causes
of lung cancer in many regions of the world [7]. All these examples underline that
a better understanding of the dynamics of radon fluctuations is key to quantifying
environmental risks in many areas.

It is widely accepted that the variability of radon concentrations can be affected
by a multiplicity of mechanisms involving geophysical as well as climatological vari-
ables as potential controlling factors [1]. Identifying and disentangling these factors
is, however, a highly context-specific and still largely unsolved problem. The main
reasons for this are the typical properties of radon time series, which strongly restrict
the applicability of most common techniques from linear as well as nonlinear time se-
ries analysis. Particularly problematic features typically found in recordings of radon
fluctuations are:

multi-scale dynamics: In many situations, radon variations exhibit marked di-
urnal as well as annual cycles. These cycles could be related to either climatic (e.g.,
temperature, air pressure) or geophysical controls (tidal forces), and a clear attribu-
tion to either of both types of mechanisms has not yet been achieved. In addition,
radon time series often exhibit complex variability patterns on other time-scales as
well, ranging from hours to multi-day variability [8–10].

heteroskedasticity: This feature often arises associated with the emergence of
periodic components, where the overall level of variability (i.e., the variance of fluctu-
ations) depends on the mean amplitude of fluctuations [11,12]. For example, in many
cases both the overall radon concentration and its temporal fluctuations are larger
during day than night-time.

non-normality: The probability distribution function (PDF) of radon concentra-
tions estimated from observational records is often not symmetric and, hence, cannot
be appropriately approximated by a Gaussian distribution (which is taken as a com-
mon assumption in many classical time series analysis methods). There are various
factors that may contribute to this behavior. First, one potential mechanism naturally
leading to such a non-normality could be the combination of diurnal or seasonal cy-
cles in mean and variance of radon concentrations [12,13]. Second, variables resulting
from a multiplicity of independent random factors are expected to follow a log-normal
distribution according to the central limit theorem, which could be another explana-
tion for the observed non-normality of radon time series [14–17]. However, due to the
complex dependence of radon emanation on the geological setting and the (unknown)
history of (possibly mutually dependent) physical processes, a log-normal PDF does
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not necessarily provide a reasonable model assumption either [18]. Finally, we empha-
size that 222Rn concentrations are obtained from detections of ensembles of particles
individually emitted by radioactive decay. Since the decay processes of individual
atoms are mutually independent of each other, considering a Poisson process as a
stochastic model for particle emission is a reasonable approximation, providing yet
another explanation for the non-normality of radon time series.

non-stationarity: Beyond the complex interplay of variability patterns with dif-
ferent natural time-scales, the relative contribution of these scales also commonly
varies with time, making the resulting radon recordings non-stationary. As a conse-
quence, many traditional methods of linear time series analysis (such as correlation
analysis or the closely related spectral analysis) are unable to properly capture these
dynamical patterns and may thus cause misleading results.

non-linearity: Finally, it is notable that due to the multiplicity of potential ex-
ternal factors controlling radon concentrations, such time series commonly cannot be
approximated by autonomous linear stochastic processes, but require the involvement
of nonlinear terms and/or explicit external forces to statistically describe the observed
dynamics [11].

Based on these generic features of observed radon time series, a critical discussion
of possible strategies contributing to a statistical-dynamical process characterization
of radon variations appears necessary. We emphasize that the aforementioned features
are not unique to radon, but are also exhibited by other types of geophysical time
series from a wide range of fields. Therefore, we believe that the considerations pre-
sented in this manuscript are also valid and relevant for a broad range of geoscientific
problems beyond fluctuations of environmental radioactivity.

As a specific aspect, in the present work we focus on the problem of assessing
the general type of correlations underlying radon time series. Under general condi-
tions, there are two different types of correlations: short-range dependent time series,
where the influence of previous values decays exponentially with time, and long-
range dependent time series, where this decay rather follows a power-law [19,20].
While short-range dependent stochastic processes are often considered as benchmark
models of “environmental noise”, processes exhibiting long-range memory are equally
wide-spread in Earth sciences. Moreover, one needs to distinguish persistent from
anti-persistent behavior, i.e., cases where the subsequent increments of the process
under study are positively and negatively correlated, respectively. For this purpose,
one convenient way is estimating the Hurst exponent H [21], which can be assessed
using a multiplicity of techniques [22–24,20]. Specifically, H > 0.5 for persistent and
H < 0.5 for anti-persistent behavior, whereas the case H = 0.5 corresponds to the
dynamics exhibited by classical Brownian motion (i.e., a process with uncorrelated
increments).

In the context of the present work, we emphasize that identifying and quanti-
tatively characterizing the possible presence of long-range memory (in combination
with the associated persistence properties) in radon variability presents one of the
first steps to constraining the underlying dynamical processes and their possible en-
vironmental drivers.

Over the last two decades, there have been various studies on the presence of
long-range memory in radon time series obtained under very different conditions (see
Tab. 1 for an overview of selected recent results). Notably, these studies have lead to
inconclusive and partly even contradictory results, suggesting cases with persistent as
well as anti-persistent dynamics without allowing for a clear discrimination between
settings leading to one or the other type of dynamics. One main reason for this
inconsistency could be the utilization of different methods of time series analysis
in these recent studies, which are based on different assumptions on the inherent
properties of the data under study. However, in many recent publications, an in-
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depth discussion of the latter assumptions and if they have been met in the case of
the respective time series (particularly given the common observational features of
radon time series mentioned above) has been missing.

This work provides a critical discussion of some methods for detecting long-range
dependence that have been previously applied in the context of radon time series anal-
ysis. For this purpose, we initially provide a brief summary of selected approaches to-
gether with a short discussion of their intrinsic assumptions and practical limitations.
In order to illustrate the performance of these methods, we re-examine some high-
frequency records of indoor radon concentrations from Coimbra (Portugal), which
have been previously studied [8] by some of the authors of this work with respect
to periodicities (e.g., due to tidal forces) contained in these data and their possible
physical constraints (e.g., a possible driving by different atmospheric variables such
as air temperature and pressure), revealing a multi-scale structure of the observed
variability pattern. We emphasize that a more detailed assessment of the relevant
statistical and dynamical properties of such multi-scale dynamics is a challenging
task by itself and may relate to phenomena such as multifractality, but also the ne-
cessity of proper time-scale decomposition of the data. Regarding the variability of
radon concentrations, the two latter aspects have been addressed recently by various
authors [39–43] for some specific geological settings.

This paper is organized as follows: In Section 2, we describe some methodological
approaches for assessing long-range dependence and fractal scaling in radon time
series. The data used for exemplifying the performance of these different approaches
are described in Section 3. Section 4 describes the results obtained with the different
methods and highlights their conceptual problems when applied to typical radon
data. A possible strategy for solving of some of these problems based on time series
decomposition is presented and further discussed in Section 5.

2 Detecting long-range memory in observational data

In this section, we provide an overview on some of the techniques that have been
previously applied for studying long-range dependence in radon time series. The list
is not fully exclusive, for example, we intentionally exclude the classical R/S analysis
[21] since it is known to exhibit rather problematic features in terms of bias and
variance when being applied to, e.g., non-Gaussian time series [20]. In turn, we focus
on a subset of possible approaches that will be further utilized in the course of this
work in an application to some exemplary radon time series.

2.1 ARFIMA modelling

One way of characterizing possible long-range dependence in observational time series
is fitting some appropriate stochastic process model to the data which may or may not
exhibit this kind of variability. A natural choice for a class of such models are auto-
regressive fractionally integrated moving average (ARFIMA) models, which have the
form [19]

α(B)(1−B)dXt = β(B)εt, 0 < d <
1

2
, (1)

where d is the order of fractional differentation characterizing the memory of the pro-
cess, B is the backshift operator (BXt = Xt−1), α(B) and β(B) are two polynomials
of degrees p and q, respectively, represented in terms of powers of the backshift opera-
tor applied to the process {Xt}, and {εt} ∼ N (0, σ2

ε) represents a standard Gaussian
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Table 1. Selection of recent results on possible long-range dependence and fractal scaling
in 222Rn time series from different environments.
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white noise process with zero mean and variance σ2
ε . The fractional differentiation

can be expressed in terms of a series expansion

(1−B)d =

∞∑
k=0

Γ (d+ 1)

Γ (k + 1)Γ (d− k + 1)
(−1)kBk. (2)

Specifically, if d is non-integer the underlying process exhibits long-term memory.
For stationary series, d ∈ (−0.5, 0.5), and the Hurst exponent associated with the
process is given by H = (2d+ 1)/2. Consequently, long-range memory is present for
d ∈ (0, 0.5), while d ∈ (−0.5, 0) indicates anti-persistent fluctuations.

In this work, parameter estimation of ARFIMA models for the observed radon
time series is based on the classical maximum-likelihood principle approximated by
the Haslett-Raftery method [44] using the implementation in the R package fracdiff.
The validity of the model can be tested using classical model selection approaches
like likelihood ratio tests or penalized-likelikood criteria (e.g., the Akaike or Bayesian
information criteria) by comparing the goodness-of-fit of a model with free parameter
d with that of an alternative model where d is kept fixed at an appropriate integer
value (ARIMA model) or d = 0 (ARMA model).

2.2 Spectral analysis

While the ARFIMA model parameter d provides a quantitative characterization of
long-range memory, the underlying assumption of a specific parametric model can
be quite restrictive. Therefore, the most common approach in environmental sciences
is directly estimating the Hurst exponent H, which can be obtained without mak-
ing explicit assumptions on the underlying model structure (however, most available
estimators typically impose certain assumptions implicitly). Among others, a widely
applicable strategy (which is superior to many other approaches in rather general
cases [20]) is based on the observation that short- and long-term correlations lead
to distinctively different scaling properties in Fourier space due to the link between
power spectral density (PSD) and auto-correlation function via the Wiener-Khinchine
theorem. Specifically, in case of long-range dependent time series, the PSD exhibits
a power-law behavior with a characteristic exponent β related to the Hurst exponent
of the process via H = (β − 1)/2. Stationarity requires 1 < β < 3 corresponding to
H ∈ (0, 1).

For the purpose of estimating the PSD, there is a variety of methods available.
In this work, we will restrict ourselves to two approaches: the time-averaged wavelet
spectrogram (i.e., the mean of the time-frequency unfolding of the signal by means of
continuous wavelet transform, CWT, evaluated individually at all time-scales) [45–
47] and the maximum taper method (MTM) [48]. We refer to the corresponding
references for detailed discussions of both methods. To this end, we only emphasize
that the MTM is well suited for identifying individual periodic components contained
in a time series with high precision and confidence, whereas the CWT-based methods
shares the property of an intrinsic (time-)frequency uncertainty generically shown by
all wavelet-based methods and therefore provides a smooth spectral estimate rather
than great detail in the frequency domain.

As an important note, we emphasize that estimating H from the PSD requires
assessing the low-frequency behavior. However, the latter is usually affected by the
finite time series length and therefore provides insufficient information for obtaining a
proper estimate. In turn, assuming that the studied process obeys a consistent scaling
over the whole spectrum, β is commonly obtained via regression of a power-law model
fitted to the high-frequency tail of the spectrum.
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2.3 Fractal dimensions

Long-range dependence is typically accompanied by fractal scaling properties of the
time series. Specifically, for certain types of stochastic processes the fractal dimension
D0 of the geometric object formed by the graph of a time series (which is to be
clearly distinguished from the fractal dimension of a dynamical system generating
this series [49,50]) is known to exhibit a unique relationship with the Hurst exponent.
Specifically, for a univariate time series, D0 = 2−H. However, this relationship is not
unique and typically assumes the presence of a fractional Brownian motion (fBm)
or related process, whereas it breaks down for other processes [51]. Nevertheless,
independent of a specific process model, calculating the fractal dimension from time
series can give complementary information about the scaling properties of the process,
which are commonly not independent from its dynamical persistence.

In this work, we use two different estimators of the fractal dimension D0: a box-
counting algorithm designed for application to one-dimensional time series data [52]
and the celebrated Higuchi method [53,54]. Notably, we do not discuss other types of
fractal dimensions like information (D1) or correlation dimension (D2), which could
further reveal possible multifractality. However, the latter aspect will not be further
discussed in this paper.

2.4 Detrended fluctuation analysis

Many classical methods for estimating the Hurst exponent from time series data are
based on the evaluation of certain scaling characteristics arising from long-term per-
sistence. Besides the classical R/S analysis and the estimation of the scaling exponent
of the PSD, one of the most widely used methods is detrended fluctuation analysis
(DFA) [55]. Given its simple implementation and wide-spread use in various fields of
science, we will utilize this method in the present work as well, being aware that sys-
tematic studies have revealed that methods based on the PSD are commonly superior
to DFA in terms of bias and variance of the estimated Hurst exponents [20].

Unlike R/S analysis, DFA is based on evaluating the scaling characteristics of the

time series profile Yt =
∑t
τ=1Xτ (here, the process {Xt} is commonly transformed

to zero mean prior to computing the profile), implicitly assuming that {Yt} is de-
scribed by an (intrinsically non-stationary) fBm model. Specifically, {Yt} is divided

into bT/wc non-overlapping boxes of w points each. Next, the local trend z
(k)
t (where

k indicates the box number in the sequence) within each box is removed by fitting

a polynomial of order n, z
(k)
t =

∑n
p=0 a

(k)
p tp, to the data within the k-th box. The

order n of z(k) is referred to as the order of DFA. n = 0 corresponds to classical
fluctuation analysis suitable for stationary data, whereas n > 0 is recommended for
non-stationary series [56].

The characteristic scaling property utilized by DFA is based on the detrended
fluctuation function

F 2
k (w) =

1

w

(k+1)w∑
t=kw+1

∣∣∣Yt − z(k)t

∣∣∣2 , k = 0, · · · , bT/wc − 1. (3)

Averaging F 2
k (w) over the bT/wc intervals gives the fluctuation F (w) as a function

of the window size w:

F (w) =

 1

bT/wc

bT/wc−1∑
k=0

F 2
k (w)


1/2

. (4)
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If the original variable Xt exhibits long-range correlations, the detrended fluctuation
function follows a power-law

F (w) ∼ wH . (5)

By definition, DFA avoids possible artifacts due to inherent trends of arbitrary order
(and, due to the discrete sampling of the data, present at different time scales) in the
data [57,56]. Specifically, by increasing the DFA order n, trends at different scales are
effectively removed [56], so that the effect of local correlations can be easily probed
[58].

3 Description of the data

The concentration of the noble gas radon tends to build-up in indoor environments,
particularly in basements and poorly ventilated places. In order to assess the indoor
radon concentration in an unventilated archive room at the Faculty of Sciences and
Technology of the University of Coimbra, the radon concentration was continuously
monitored in a closed room located at the floor level and in direct contact with
sandstones of Triassic age.

The monitoring set-up has already been described in detail by Neves et al. [8].
The radon concentration was measured in terms of alpha particles counts during 5-
minutes intervals within a period of about 6 months, from 1 March to 18 September
2007. For these measurements, a RM-80 detector (Aware, USA) sensitive to gamma
radiation and X-rays above 10 keV was used. The system was calibrated in a cali-
bration chamber (Genitron, Germany) with a certified radon source NIST SRM-4973
(National Institute of Standards & Technology, USA). Furthermore during one week,
an AlphaGUARD monitor was operated simultaneously with the RM-80 detector in
the room selected for the study in order to establish a relation between the average
radon concentration and average counts per minute registered by the two instruments.
Based on the obtained detector characteristic of 0.516 Bq m−3 per cpm (counts per
minute), the measured particle counts were transformed to Bq m−3 [8].
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Fig. 1. Time series of indoor radon concentrations used in this study: COI1 (top), COI2
(bottom). The gray part of COI2 is not utilized.
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COI1 COI2

Mean 35.8541 35.1861
Standard deviation 5.1620 4.0975
Median 34.8816 34.4688
Mean absolute deviation 4.0328 3.1509
Skewness 0.9238 1.0116
Kurtosis 3.9583 4.3441

Table 2. Basic statistical properties of the two radon time series used in this study.

Continuous measurements were interrupted for about four weeks (from 21 April
to 19 May) due to an instrumental failure (Fig. 1). Moreover, data recorded after 28
July 2007 have been discarded because of a marked change in the behavior of the
radon variations following a change in the measurement setup (gray part in Fig. 1).
Accordingly, we split the available data into two time series with a temporal resolution
of 5 minutes, corresponding to the periods before 21 April 2007 and after 19 May 2007
(N = 14, 591 and 19, 999 data points, respectively). In what follows, these subsets
will be referred to as COI1 and COI2. The very detailed temporal resolution and
the resulting lengths of the available time series permits the utilization of modern
nonlinear techniques of time series analysis [59]. Some basic statistical properties of
the two data sets are summarized in Tab. 2.

The data were previously examined by Neves et al. [8], focusing on the periodicities
embedded in the records (particularly the diurnal cycle) and on the investigation
of their possible drivers. The study concluded that the daily patterns were mainly
influenced by the outdoor temperature and by rainfall.

It is important to note that the two subseries COI1 and COI2 are continuous and
complete, i.e., both are not affected by missing values due to measurement interrup-
tions, instrumental malfunctions, datalogger failures or similar problems commonly
appearing in environmental recordings. Otherwise, there would be two possible strate-
gies to cope with such problems in the context of the present work unless the corre-
sponding gaps become too large. On the one hand, there are sophisticated gap-filling
approaches that allow imputing missing parts of the time series while maintaining
the underlying multi-scale correlation structure [60,61]. On the other hand, missing
data can be either ignored in the evaluation of sums (as in the case of DFA) or ex-
plicitly accounted for by specifically tailored estimators (such as the Lomb-Scargle
periodogram for the PSD).

4 Long-range dependence and fractal scaling

In this section, we report the results of the different analysis techniques detailed in
Section 2 when näıvely applied to the high-frequency radon time series described in
Section 3. As we will see, this “black-box” strategy leads to ambiguous and poten-
tially hard-to-interpret results. The underlying conceptual problems, that likely apply
to some previous studies on long-term persistence in radon time series, are further
detailed.

4.1 Basic signal properties

As briefly mentioned in Section 2, some estimators of the Hurst exponent can show
a systematic bias and increased variance when applied to data with non-Gaussian
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shape. Specifically, the existence of strong deviations from a Gaussian indicates that
a fBm cannot be an appropriate model for explaining a possible long-range memory
in the data. In fact, this is the case for both COI1 and COI2 (Fig. 2), which exhibit a
strongly asymmetric and positively skewed PDF. Still, a fractional random walk-like
process with a non-Gaussian distribution could be compatible with the observed data
structure.
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Fig. 2. Histogram of the indoor radon concentrations for the COI1 (black) and COI2 (red)
data sets.

In order to get a first impression on whether or not a possible extension to a mul-
tifractal process might be necessary, we additionally consider the increments of radon
fluctuations with different time lags (Fig. 3). Unlike the radon concentrations them-
selves, the increments exhibit a clearly symmetric distribution without indications of
heavy (power-law shaped) tails, suggesting that the intermittency often observed in
multifractal processes [62,63] is missing in these data. We emphasize that this is no
proof of the absence of multifractality, but provides some first hints that a description
by a classical mono-fractal process might be sufficient for the considered radon time
series.

4.2 ARFIMA models

Fitting parametric models to the two time series segments clearly suggests the pres-
ence of long-range memory in the time series. Specifically, for a simple fractional dif-
ferences (FD) model (an ARFIMA model with the auto-regressive and moving average
orders p = q = 0) fitted to the raw data, we find fractional orders of d = 0.468±0.001
and d = 0.423 ± 0.001 for COI1 and COI2, respectively, pointing to long-range cor-
related behavior. However, we also observe that the fractional orders found for both
subsets do not match each other, which could be related to non-stationarity in the
correlation structure of the considered radon variations.

The results become less obvious when allowing for nontrivial coefficient polyno-
mials α(B) and β(B), i.e., considering the full class of ARFIMA(p, d, q) models. For
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Fig. 3. Histogram of the increments the indoor radon concentrations for the COI1 (black)
and COI2 (grey) data sets for different time lags between 5 minutes and 1 day.

convenience, we apply linear detrending to the radon time series prior to model esti-
mation, and select the best models according to the Akaike Information Criterion. In
this case, model selection recommends an ARFIMA(1, d, 2) model with d = 0.20 for
COI1, and an ARFIMA(2, d, 1) model with d = 0.061 for COI2, suggesting that the
possible long memory is more strongly expressed in COI1 than COI2. Comparing the
power spectral densities of the observed radon time series with those of the FD and
full ARFIMA models (Fig. 4), we conclude that the more complex models with less
expressed long-range dependence fit the distribution of spectral power better than
simple long-range dependent FD models.

4.3 Power spectral density

For studying the dynamical characteristics of the observed radon concentrations in
some more detail, we next turn to the corresponding PSD. Figure 5 shows the estimate
based on the time-averaged wavelet spectrogram. It is clearly seen that the spectrum
does not exhibit a clear power-law shape in the high-frequency part, but reveals rather
distinct behaviors within different frequency ranges.

At high frequencies corresponding to periodicities of up to about one hour, the
spectrum is essentially flat (note that the decay shown by the wavelet-based estimate
at the highest frequencies is mainly an artifact of the method and is not revealed
when considering, e.g., the MTM estimate). This implies that the high-frequency
variability in the radon time series essentially corresponds to a stochastic process
without memory (i.e., white noise). The most likely interpretation of this finding is
that the overall level of environmental radioactivity at the study site is comparably
low, so that there are too few alpha counts originating from radon exhalation within
each five-minutes measurement interval to actually represent a meaningful signal.
This finding also supports the setting previously used in [8] where the signals were
integrated over one hour periods prior to further analysis.

For time scales between about 3 hours and 1 day (the peak associated with the
diurnal cycle of radon variations), the spectrum displays a marked decay. Näıve es-
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Fig. 4. Cumulative periodograms of the original data, FD and best ARFIMA models (from
top to bottom) for COI1 (left) and COI2 (right), indicating that an appropriate represen-
tation of the distribution of spectral power among different frequencies requires the more
complex models with less indication of long-range memory.
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Fig. 5. Wavelet power spectrum (WPS) amplitudes (defined as time-averages of the associ-
ated wavelet spectrograms inside the respective cones-of-influence obtained with a complex
Morlet mother wavelet) as smooth estimates of the power spectral density of the COI1 (solid,
black) and COI2 (dashed, gray) time series. Vertical (dash-dotted) lines indicate 1-day (left)
and 1-hour (right) periods, respectively.

Fig. 6. MTM estimates of the power spectral density for the COI1 (left) and COI2 (right)
time series using three eigentapers to reduce the variance of the spectral estimates [48].

timation of the associated slope for periods clearly below 1 day gives values β > 3
exceeding the limit for stationary processes. However, this result is not to be overem-
phasized, since utilizing the alternative MTM estimator (providing a higher frequency
resolution) reveals a sequence of smaller peaks in the spectrum (Fig. 6). The latter
finding is consistent with previous results demonstrating the presence of additional
periodicities of about 12, 8, 6 hours, etc., in the Coimbra data [8] as well as other
environmental radon records [64–67]. Taken together, the part of the spectrum be-
tween about 3 hours and 1 day should not be used for estimating a spectral slope
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associated with possible long-range memory, since it mainly reflects the presence of
periodic components in the signal.

Finally, the low-frequency range comprising periodicities of more than one day is
the only part of the spectrum that might be used for assessing the possible presence
of long-range correlations in Radon. However, there are two problems associated with
this strategy. On the one hand, regarding the longer time-scales the available data
are comparably short, which implies that we may expect a large variance of spectral
estimates of the Hurst exponent. On the other hand, the dominant presence of the
diurnal peak in the spectrum can lead to a systematic bias of the spectral slope
compared with what a similar signal without diurnal cycle would exhibit. We will
revisit this aspect below.

4.4 Detrended fluctuation analysis

The analysis of the PSD of the considered radon time series has revealed a distinctively
different behavior at different time scales. In the following, we demonstrate that the
same information is also manifested in the detrended fluctuation functions. Figure 7
displays the corresponding results for both time series. As can be clearly seen, the
observed behavior of F (w) is – in doubly-logarithmic scale – far away from being
linear as one would expect for a “normal” long-range dependent process. Instead, we
can again distinguish three different ranges of scales:
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Fig. 7. (Color online) Detrended fluctuation functions F (w) in dependence on the scale w
for different orders n of detrending for the COI1 (left) and COI2 (right) time series.

First, time-scales corresponding to high-frequency variations show a very shallow
increase of the fluctuation function with a slope of the order of 0.5, which is compatible
with classical Brownian motion (resulting from aggregating Gaussian white noise).
The upper cutoff of this range increases with increasing order of detrending, indicating
that the detrending by higher-order polynomials effectively removes the impacts of the
oscillatory components down to time-scales of several hours. Conversely, we emphasize
that when filtering the observed cycles as well as all low-frequency variability beyond
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time-scales of one day, the resulting time series might essentially show the features of
short-term correlated records.

Second, intermediate scales (with the exact range depending on the DFA order)
are characterized by a steep increase of the fluctuation function with a slope of about
1.5 (depending on the exact range of time-scales for which the slope is estimated).
Taking this regime for obtaining a scaling exponent, the conclusion would be that the
underlying process is non-stationary. In turn, the correct interpretation of this finding
is that the dominance of the diurnal cycle – together with semi-diurnal cycle and other
sub-diurnal oscillations – dominates this frequency range [8], and what is seen by the
fluctuation function (similar as for the PSD) is essentially the superposition of broad
spectral peaks corresponding to these oscillatory modes plus possible sidebands [66].

Finally, at time-scales beyond 1 day, the fluctuation function shows again a shal-
lower slope, which would correspond to the scales at which we might expect long-range
memory to be detectable. Taking this slope for estimating the Hurst exponent yields
values of the order of H ∼ 0.8 compatible with this expectation, i.e., providing an
indication for long-range correlations being actually present in the signals. Unfortu-
nately, with the available data, this scaling can only be traced up to about 20 days,
since for longer scales that amount of data is far too small, leading to a saturation of
the fluctuation function. Notably, the problem of properly addressing any kind of scal-
ing over such a small range of time-scales is not intrinsic to DFA, but also shared by
all other time series analysis techniques utilized in this study and beyond. Therefore,
longer time series appear necessary to unambiguously detect the possible presence
of long-range memory. However, in many real-world situations, such longer records
are not available (e.g., due to the general costs of extended measurement campaigns
or instrumentation problems), so that we consider the conditions met in the present
example a rather typical case in environmental radioactivity studies.

We emphasize that the emergence of different scaling regimes in the fluctuation
function is a common effect when studying time series with monotonous or even
low-frequency oscillatory trends. Specifically, the presence of periodic components
necessarily results in artificial slopes of the fluctuation function. A detailed discussion
of the corresponding effect is provided in [56,57].

4.5 Fractal dimensions

For the sake of completeness, we report the results for the two different estimates of
the fractal dimensions discussed in Section 2. Notably, both box-counting and Higuchi
method again make use of scaling characteristics, i.e., they evaluate some statistical
property in dependence on the level of coarse-graining applied to the time series under
study. As for PSD and DFA, we find that the resulting functional dependences on the
scale are not perfectly linear in doubly-logarithmic representation (not shown), but
exhibit less dependence on the specific scale so that an overall linear fit appears jus-
tified. As a result, we obtain estimates of the fractal dimension of 1.78 (1.8) for COI1
(COI2) with the box-counting method, and 1.93 (1.95) with the Higuchi method.
Note that under the classical assumption of a fBm process, these values would imply
an anti-persistent process (0 < H < 0.5), which is in sharp contrast with the findings
based on PSD and DFA. We therefore conclude that (unlike frequently assumed in
the literature) the observed variability is of a type that is not appropriate for studying
long-range dependence based on fractal dimension estimates. We emphasize that sim-
ilar apparently (i.e., when sticking to the fBm hypothesis) inconsistent results have
been found in at least one other previous studies [27], while others reported values
matching H = 2−D [25,26,28].
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5 Separation of essential and background variability

The results of spectral analysis and DFA presented in Section 4 (but also those of
other complementary methods making use of scaling properties of the time series,
e.g., R/S analysis – not shown here) suggest that the inherent scaling properties of
the radon time series depend crucially on the considered range of time-scales, which is
predominantly due to the strong oscillatory modes in combination with the relatively
low average level of environmental radioactivity dominating the behavior in the high-
frequency part of the signal. There appear to be two potential strategies for coping
with this situation.

On the one hand, one could accept the Hurst exponent as being a scale-specific
characteristic and use the PSD or DFA results for estimating scale-based Hurst ex-
ponents [68] from the local slope of the PSD or fluctuation function, respectively.
However, due to the limited amount of data and the generic variance of scale-local
estimates, we expect this procedure to result in numerically rather unstable values.
Therefore, this idea will not be further considered here, but shall be addressed in
more detail in future work.

On the other hand, we emphasize that the problems with identifying and quan-
tifying possible long-range persistence in radon time series are mainly due to the
multi-scale dynamics characterized by various oscillatory components at different
time-scales (diurnal, semi-diurnal, etc.) as well as the complex multi-day variability.
Therefore, time-scale decomposition for (i) removing the oscillatory components and
(ii) filtering the noisy high-frequency contributions prior to further analysis appears
an intuitive strategy. In this section, we will further explore this potential approach.

5.1 Time series decomposition by singular spectrum analysis

There exist a multiplicity of techniques for decomposing time series into components
corresponding to oscillatory variability patterns with more or less distinct natural
frequencies. In the context of radon time series, wavelet methods [9,69,70], singular
spectrum analysis (SSA) [42,43] as well as empirical mode decomposition (EMD) [41]
have been applied in recent studies. Among these techniques, discrete wavelet anal-
ysis [9] has the potential disadvantage of providing a decomposition into frequency
bands rather than signals with specific periodicities. In turn, continuous wavelet anal-
ysis [69,70] provides such specific components, but on the cost of the reconstruction
of the signal after removing selected components being a challenging task. Finally,
EMD is known to be powerful when applied to signals exhibiting oscillations with
time-varying frequencies, but can display mixed modes if distinct but close frequen-
cies are contained in the signal under study. As a consequence, in what follows we
will restrict our attention to SSA for decomposing our radon time series. Since both
series of indoor radon concentrations from Coimbra are apparently very similar (see
Section 4), we will only show the results for the COI1 time series.

Figure 8 shows the variances of the reconstructed SSA components (correspond-
ing to the eigenvalues of the Toeplitz matrix containing the lagged auto-correlation
coefficients of the underlying time series). It is evident that three components clearly
stand out of the continuum of eigenvalues, implying that three SSA modes appear
to provide a reasonable approximation of the original time series. This finding is
supported by Fig. 9 which shows the original time series together with the recon-
struction obtained by a superposition of the first three SSA modes weighted by the
associated eigenvalues. As can be seen, the reconstruction nicely traces the diurnal
and multi-day variability, while the high-frequency (supposedly noisy) variations are
effectively removed from the signal. Our corresponding results are consistent with the
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Fig. 8. SSA eigenvalues (variances of the reconstructed SSA components) for the COI1 data
set.

fact that the reconstruction of strong periodic components (in our case, the diurnal
cycle) requires a pair of SSA eigenmodes, whereas the third SSA component appears
to mainly reflect the multi-day variations (i.e., the supposed carrier of possible long-
range dependence).
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Fig. 9. Top: Original time series (black) and reconstruction based on the first three SSA
components (grey) for the COI1 data set. Bottom: Residual variability after subtraction of
the first three SSA components from the original signal.
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5.2 Filtered time series: Power spectral density

In order to further demonstrate that the proposed decomposition provides a reason-
able approximation to the original data, we consider the PSD of the thus reconstructed
(aka filtered) signal and the “background variability” (i.e., the superposition of all
remaining SSA components). Note that we have used a finite number of m = 50 SSA
components in this example. Consequently, there is still some residual variability not
explained by the 50 considered components; however, the variance of this residual is
of the order of the numerical accuracy of our computations and does not contain any
systematic temporal structure.
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Fig. 10. MTM estimates of the PSD of the COI1 time series: original data (grey), re-
constructed signal consisting of the first three SSA components (solid, black), and residual
(dashed, black). In all cases, six discrete prolate spheroidal sequences have been employed as
data tapers together with a fast Fourier transform of length N = 512. Vertical (dash-dotted)
lines indicate 1-day (left) and 1-hour (right) periods, respectively.

Looking at the resulting PSD of SSA reconstruction and residual, a couple of
observations are made:

On the one hand, the reconstruction displays the same sub-diurnal fluctuations
(e.g., the semi-diurnal cycle) as the original data, suggesting that the presence of
diurnal and sub-diurnal periodicities with integer frequency ratios might be coupled
to each other due to the nonlinearity and heteroskedasticity of the data. A more
detailed study of this aspect is beyond the scope of this work. In addition, we also
observe that the residual still exhibits a clear diurnal cycle as well as sub-diurnal
periods (although being orders of magnitude weaker than in the original signal),
implying that the SSA decomposition (based on linear transformations of the data)
is not capable of fully removing these oscillations from the (nonlinear) signal.

On the other hand, the residual essentially contains the high-frequency variability
of the original radon time series, with time-scales below one hour essentially show-
ing a flat spectrum corresponding to a white noise process. In turn, for the SSA
reconstruction this high-frequency part exhibits a steep power-law slope.
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5.3 Implications for inferring long-term memory

From the previous results, we conclude that classical time-scale decomposition tech-
niques may not be capable of properly removing undesired components hampering
the study of long-range persistence in the data. In the present example, it is possi-
ble to eliminate the high-frequency noise from the data, however, the same could be
achieved by just aggregating the data to hourly values as done in the previous work
by some of the authors [8]. Hence, SSA leaves the choice of continuing with a signal
that still exhibits diurnal as well as sub-diurnal cycles or the white noise background,
both of which are not helpful in our problem of inferring the presence of long-term
correlations from the data.
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Fig. 11. Detrended fluctuation function of the reconstructed signal based on the first three
SSA modes (left) and the corresponding residual (right).

In Fig. 11 we exemplify this situation for the case of DFA. Specifically, con-
sidering the behavior of the detrended fluctuation function for SSA reconstruction
and residuum, we find that in both cases two characteristic scalings remain. For the
residuum, we have find a slope (in doubly-logarithmic representation) of 0.5 at short
scales (corresponding to the high-frequency continuum characterized by an absence
of correlations), while the rest of the fluctuation function essentially remains constant
for larger scales above about 5-6 hours. In turn, for the reconstruction there is a steep
slope of about 1.9 for time-scales below about 1 day, indicating again the apparent
non-stationarity of the signal induced by the diurnal and sub-diurnal variability com-
ponents, whereas we observe a slope of H ≈ 0.84 for longer time-scales. We expect
this slope to represent the “true” long-range dependence of the observed radon time
series.

Similar findings are made for the fractal dimension estimates. For example, when
applying the box-counting method to the SSA reconstruction of the COI1 data set, we
find two slopes with exponents of 1.88 and 1.19, respectively, the latter approximately
matching the estimate of the Hurst exponent from DFA under the fBm assumption.

6 Conclusions

We have demonstrated that typical features of radon time series, predominantly their
multi-scale dynamics in combination with heteroskedasticity and, in general, non-
linearity systematically hampers the investigation of long-range memory in environ-
mental radioactivity fluctuations. Our results for two time series of indoor radon
concentrations from Coimbra (Portugal) have illustrated that a näıve application of
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time series analysis methods for studying long-range dependence and fractal scaling is
prone to provide misleading results if the multi-scale nature is not appropriately taken
into account. Specifically, different time-scales need to be carefully distinguished: (i)
high-frequency dynamics, which can lead to systematically biased results especially
in low concentration environments, (ii) sub-diurnal to diurnal scales characterized
by a multiplicity of oscillatory components, and (iii) multi-day variations being the
essential carrier of information on possible long-range dependence.

A second main finding of this work is that established techniques for time-scale
decomposition of observational time series are not necessarily appropriate for clearly
distinguishing the effects of the aforementioned three time-scale ranges, since the
latter mutually overlap and interact (as far as cyclic components are concerned)
with each other in some potentially nonlinear way. Among the available methods,
we speculate that empirical mode decomposition [41] might cope somewhat better
with this situation than the singular spectrum analysis used in this study, however,
on the cost of probably less stable modes estimated by the underlying algorithm. We
therefore emphasize that new methodological developments are required to better
separate different mutually entangled components contained in radon time series.

Finally, it should be noted that the complex features displayed by radon time series
are not unique to this type of record, but can also be found in many other geophysical
data sets. Consequently, we believe that the cautionary notes raised in this work and
supported by our exemplary analysis apply to many other studies in different fields of
Earth sciences as well. To this end, we outline corresponding in-depth investigations
of some further examples as a subject of our future research.
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