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Abstract. We provide a Rademacher theorem for intrinsically Lipschitz functions φ : U ⊆

W → L, where U is a Borel set, W and L are complementary subgroups of a Carnot group, where

we require that L is a normal subgroup. Our hypotheses are satisfied for example when W is a

horizontal subgroup. Moreover, we provide an area formula for this class of intrinsically Lipschitz

functions.

1. Introduction

In the last years there has been an increasing interest towards Geometric Measure
Theory in the non-smooth setting, and in particular in the setting of sub-Riemannian
Carnot groups for what concers the notion of rectifiability. This line of research was
initiated by the result in [1] in which the authors proved that the first Heisenberg
group H

1 is not k-rectifiable, according to Federer’s definition (see [7]), for k ≥ 2.
In this note we focus on the notions of intrinsically Lipschitz function and intrin-

sically differentiable function in the setting of Carnot groups. We refer the reader
to [9] for a wide study of the notion of intrinsically Lipschitz function and to [5]
for some recent developments. The notion of intrinsically differentiable function has
been introduced in [11] and then widely studied in the last years: we refer the reader
to [2, 4, 12, 8, 3] for some developments.

One of the main open questions in this area of research is whether a Rademacher
type theorem holds. Namely, is it true that every intrinsically Lipschitz function
between complementary subgroups of a Carnot group is intrinsically differentiable
almost everywhere? Some first answers have been given in [8, 12] in the setting of
Carnot groups G of type ⋆, i.e., a class strictly larger than Carnot groups of step 2,
and for maps φ : U ⊆ W → L, where U is open and W and L are complementary
subgroups of G, with L horizontal and one-dimensional. Very recently, by making
use of currents, the author of [19] has proved the Rademacher theorem for intrin-
sically Lipschitz maps between complementary subgroups of any dimension in the
Heisenberg groups H

n.
In this note we prove that a Rademacher type theorem with normal target is true

in arbitrary Carnot groups. We provide also an area formula for maps that satisfy
our hypotheses.

Theorem 1.1. Let W and L be two complementary subgroups of a Carnot

group G. Let us assume that L is normal and let U ⊆ W be a Borel set. Let
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φ : U ⊆ W → L be an intrinsically Lipschitz function. Let Φ: U → G be the graph

map of φ, i.e., Φ(w) := w · φ(w) for every w ∈ U .

Then W is a Carnot subgroup of G; φ is intrinsically differentiable Hk
xW-

almost everywhere on U , where k := dimH(W); the map Φ is Pansu differentiable

Hk
xW-almost everywhere on U , and the following area formula holds:

(1) Hk(Φ(V )) =

ˆ

V

J(dΦx) dH
k(x), for every Borel set V ⊆ U,

where dΦx is the Pansu differential of Φ at x ∈ V and J(dΦx) is its Jacobian, see

(14).

We stress that the hypotheses of Theorem 1.1 are satisfied for example when
W is horizontal. Thus our theorem holds for intriniscally Lipschitz horizontal sur-
faces in arbitrary Carnot groups. We stress also that an area formula for maps that
parametrizes C1

H-submanifolds, that is a more restrictive condition than being in-
trinsically Lipschitz, has been recently obtained in [13, Theorem 1.1]. In the latter
reference the authors call C1

H-submanifold a subset of a Carnot group G that is, lo-
cally around every point, the zero-level set of a C1

H function f defined on an open
subset of G with value in a Carnot group G

′, and such that moreover the Pansu
differential Df is surjective and Ker(Df) splits G.

The proof of Theorem 1.1 is considerably simpler than the proof of a low-

codimensional Rademacher theorem because in that case it may not be true, as
in our case, that the intrinsic Lipschitz property of φ reads as the graph map Φ
being Lipschitz (see Remark 3.3). In fact we apply Pansu–Rademacher theorem and
Magnani’s area formula to deduce that the graph map Φ is Pansu differentiable al-
most everywhere and the area formula holds. Thus in order to complete the proof
of Theorem 1.1, we are left to relate the Pansu differentiability of the graph map Φ
with the intrinsic differentiability of the map φ, and this is done in Proposition 3.2.

Acknowledgments. The first author is partially supported by the European Re-
search Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’).
The authors are grateful to Enrico Le Donne for several suggestions that led to an
improvement of this note. They are also grateful to Sebastiano Don for precious
comments.

2. Preliminaries

For the basic terminology on Carnot groups and graded groups we refer the reader
to [14]. Every Carnot group in this note will come together with a stratification
Lie(G) = V1 ⊕ · · · ⊕ Vs. We recall some notation. Every graded group has a one-
parameter family of dilations that we denote by {δλ : λ > 0}. We will indicate with
δλ both the dilation of factor λ on the group and its differential.

Given a graded group G, we fix a homogeneous norm ‖ · ‖ on G, which is unique
up to bi-Lipschitz equivalence. Moreover, by [10, Theorem 5.1] on every Carnot group
there exists a slight variation of the anisotropic homogeneous norm that induces a
left-invariant homogeneous distance d. We eventually fix this particular homoge-

neous norm from now on. We also recall that with homogeneous homomorphism we
mean a homomorphism that commutes with δλ, for every λ > 0. We now deal with
complementary subgroups and maps between them.

Definition 2.1. (Complementary subgroups) Given a Carnot group G with
identity e, we say that two subgroups W and L are complementary subgroups in
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G if they are homogeneous, i.e., closed under the action of δλ for every λ > 0,
G = W · L, and W ∩ L = {e}.

Given two complementary subgroups W and L in a Carnot group G, we denote
the projection maps from G onto W and onto L by πW and πL, respectively. Defining
gW := πWg and gL := πLg for any g ∈ G, one has

g = (πWg) · (πLg) = gW · gL.

We recall the following basic terminology: a horizontal subgroup of a Carnot group
G is a homogeneous subgroup of it that is contained in exp(V1), where V1 is the first
layer of the stratification of Lie(G); a Carnot subgroup W of a Carnot group G is a
homogeneous subgroup of it such that the first layer V1(W) := V1 ∩ Lie(W) of the
grading of Lie(W) inherited from the stratification of Lie(G) is the first layer of a
stratification of Lie(W). Before going on we add the following remark, which will be
important in the proof of Theorem 1.1.

Remark 2.1. (The complement of a normal subgroup is Carnot) We claim that
if W and L are two homogeneous complementary subgroups of a Carnot group G,
and L is normal, then W is a Carnot subgroup of G. First we claim that Lie(L) is an
ideal of Lie(G). Indeed, if we set Ad to be the adjoint operator on G, see [6, page 12],
for every X ∈ Lie(G) and Y ∈ Lie(L) we have [X, Y ] = d

dt |t=0

Adexp(tX)Y ∈ Lie(L),

where the last inclusion follows from the fact that Adexp(tX)Y ∈ Lie(L) for every
t > 0, because L is normal. Therefore, if Lie(G) = V1 ⊕ · · · ⊕ Vs is the stratification
of Lie(G), in order to prove that W is a Carnot subgroup of G it is enough to prove
that

(2) Vi+1 ∩ Lie(W) ⊆ [V1 ∩ Lie(W), Vi ∩ Lie(W)],

for every i = 1, . . . , s; indeed the other inclusion Vi+1 ∩ Lie(W) ⊇ [V1 ∩ Lie(W), Vi ∩
Lie(W)] follows from the fact that Lie(W) is a Lie subalgebra of Lie(G) because W

is a homogeneous subgroup of G. The inclusion (2) readily follows from the following
observation, extended linearly: if p1 ∈ V1 and pi ∈ Vi are such that [p1, pi] ∈ Lie(W),
then [πLie(W)p1, πLie(W)pi] = [p1, pi], where πLie(W) is the projection associated to
the splitting Lie(G) = Lie(W) ⊕ Lie(L). Indeed, [p1, pi] + Lie(L) = [πLie(W)p1 +
πLie(L)p1, πLie(W)pi + πLie(L)pi] + Lie(L) = [πLie(W)p1, πLie(W)pi] + Lie(L), since Lie(L)
is an ideal. From the latter equality the last claim follows since [p1, pi] ∈ Lie(W).

We now describe what is the parametrizing function of some translation of the
intrinsic graph of a function. Unless anything different is declared, we eventually fix

from now on two arbitrary complementary subgroups W and L of a Carnot group

G.

Definition 2.2. (Intrinsic graph) Given a function φ : U ⊆ W → L, we define
the intrinsic graph of φ as follows:

graph(φ) := {Φ(w) := w · φ(w) : w ∈ U} =: Φ(U).

Definition 2.3. (Intrinsic translation of a function) Given a function φ : U ⊆
W → L, we define, for every q ∈ G,

Uq := {a ∈ W : πW(q−1 · a) ∈ U},

and φq : Uq ⊆ W → L by setting

(3) φq(a) :=
(

πL(q
−1 · a)

)−1
· φ

(

πW(q−1 · a)
)

.
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For the following proposition we also refer the reader to [9, Proposition 2.21 and
Remark 2.23].

Proposition 2.1. Given a function φ : U ⊆ W → L, and q ∈ G, the following

facts hold:

(a) graph(φq) = q · graph(φ);
(b) if L is normal one gets that, for all a ∈ U ,

(4) πW(q−1 · a) = q−1
W

· a, πL(q
−1 · a) = a−1 · qW · q−1

L
· q−1

W
· a,

and thus

(5) φq(a) = a−1 · qW · qL · q−1
W

· a · φ(q−1
W

· a), Uq = qW · U ;

Proof. The proof of (a) directly follows from (3), which yields

(6) a · φq(a) = q · πW(q−1 · a) · φ(πW(q−1 · a)), ∀a ∈ Uq.

Let us prove (b). Since L is normal, the following holds:

a−1 · qW · q−1
L

· q−1
W

· a = a−1 · qW · q−1
L

· (a−1 · qW)−1 ∈ L.

Moreover it holds that q−1
W

· a ∈ W, and since

q−1
W

· a · a−1 · qW · q−1
L

· q−1
W

· a = q−1 · a,

the equation (4) holds and then (5) is a consequence of (4) and (3). �

For the notion of intrinsically Lipschitz function we refer the reader to [9]. We
explicitly recall here, for the reader’s benefit, only the notions of intrinsically linear
and intrinsically differentiable functions. For these definitions, and the study of some
properties related, we refer the reader to [2, 11, 12, 8, 18, 3]. Eventually, in order to
fix the notation, we recall the notion of Pansu differentiability, see also [17].

Definition 2.4. (Intrinsically linear function) The map ℓ : W → L is said to be
intrinsically linear if graph(ℓ) is a homogeneous subgroup of G.

Definition 2.5. (Intrinsically differentiable function) Let φ : U ⊆ W → L be
a function with U Borel in W. Fix a density point1 a0 ∈ D(U) of U , let p0 :=
φ(a0)

−1 · a−1
0 and denote by φp0 : Up0 ⊆ W → L the shifted function introduced

in Definition 2.3. We say that φ is intrinsically differentiable at a0 if there is an
intrinsically linear map dφφa0 : W → L such that

(7) lim
b→e, b∈Up0

‖dφφa0 [b]
−1 · φp0(b)‖

‖b‖
= 0.

The function dφφa0 is called the intrinsic differential of φ at a0. Notice that one can
take the limit in (7) because, if a0 ∈ D(U), then e ∈ D(Up0). This last claim comes
from the invariant properties of Proposition 2.1.

Remark 2.2. (Intrinsic differentiability and tangent subgroups) Whenever the
intrinsic differential introduced in Definition 2.5 exists, it is unique: see [8, Theo-
rem 3.2.8]. Let us recall the notion of tangent subgroup to the graph of a function.
If we fix φ : U ⊆ W → L, we say that a homogeneous subgroup T of G is a tangent

subgroup to graph(φ) at a0 · φ(a0) if the following facts hold:

(a) T is a complementary subgroup of L;

1If k := dimH(W) is the Hausdorff dimension of W, we say that a0 ∈ U is a density point of U ,
and we write a0 ∈ D(U), if Hk

xW(U ∩B(a0, r))/Hk
xW(B(a0, r)) → 1 as r goes to 0.
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(b) The limit

lim
λ→∞

δλ
(

(a0 · φ(a0))
−1 · graph(φ)

)

= T,

holds in the sense of Hausdorff convergence on compact subsets of G.

We notice that what the authors prove in [8, Theorem 3.2.8] is the following: a
function φ : U ⊆ W → L, with U open, is intrinsically differentiable at a0 if and only
if graph(φ) has a tangent subgroup T at a0 · φ(a0) and moreover T = graph(dφφa0).

Definition 2.6. (Pansu differentiability) Let W and G be two arbitrary graded

groups endowed with two homogeneous left-invariant distances dW and dG, respec-
tively. Given f : U ⊆ W → G with U Borel and a density point a0 ∈ D(U), we
say that f is Pansu differentiable at a0 if there exists a homogeneous homomorphism
dfa0 : W → G, that we call Pansu differential at a0, such that

lim
a→a0 a∈U

dG(f(a0)
−1 · f(a), dfa0[a

−1
0 · a])

dW(a, a0)
= 0.

3. Proof of the theorem

In what follows we prove that, in case L is normal, the intrinsic differentiability
of a function φ can be read as the Pansu differentiability of the graph map Φ. For
the forthcoming lemma we also refer the reader to [8, second item of Corollary 3.1.4].

Lemma 3.1. Let W and L be two complementary subgroups of a Carnot group

G, with L normal. The map ℓ : W → L is intrinsically linear if and only if the

graph map of ℓ, i.e., L : W → G defined as L(w) := w · ℓ(w), is a homogeneous

homomorphism.

The forthcoming proposition is inspired by [4, Proposition 3.25(i)]. We give a
detailed proof in our context, since the last part of the argument, i.e., the part in
which we invoke the forthcoming Lemma 3.3, is different with respect to the reference.

Proposition 3.2. Let W and L be two complementary subgroups of a Carnot

group G, with L normal. Let φ : U ⊆ W → L be a function with U Borel. Given

a density point a0 ∈ D(U), we have that φ is intrinsically differentiable at a0 if and

only if the graph map Φ: U ⊆ W → G is Pansu differentiable at a0. Moreover if

any of the previous two holds we have the following formula:

dΦa0 [w] = w · dφφa0 [w], ∀w ∈ W.

Proof. Let us first notice that p0 := φ(a0)
−1 · a−1

0 = a−1
0 · a0 · φ(a0)

−1 · a−1
0 , and

thus, from the fact that L is normal,

(8) (p0)W = a−1
0 , (p0)L = a0 · φ(a0)

−1 · a−1
0 .

Let us assume that φ is intrinsically differentiable at a0. We are going to prove
that the graph map Φ is Pansu differentiable at a0. From the intrinsic differentiability
of φ, we know that there exists the intrinsic differential dφφa0 as in Definition 2.5,
which is an intrinsically linear map by definition. We define its graph map

(9) dΦa0 [w] := w · dφφa0 [w], ∀w ∈ W.

From Lemma 3.1, it follows that the map dΦa0 is a homogeneous homomorphism.
We show that it is the Pansu differential of the graph map Φ. Indeed, let us take
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w ∈ U and compute

dΦa0 [a
−1
0 · w]−1 · Φ(a0)

−1 · Φ(w)

= dφφa0 [a
−1
0 · w]−1 · w−1 · a0 · φ(a0)

−1 · a−1
0 · w · φ(w)

= dφφa0 [a
−1
0 · w]−1 · φp0(a

−1
0 · w),

(10)

where in the first equality we used the definition (9) and in the second one we used
(8) and the explicit expression in the first equality of (5). Notice that, from the
second equality of (5) and the first equality of (8), we get that Up0 = a−1

0 · U . Thus
(10), jointly with the intrinsic differentiability of φ, see (7), tells us that

lim
w→a0, w∈U

‖dΦa0 [a
−1
0 · w]−1 · Φ(a0)

−1 · Φ(w)‖

‖a−1
0 · w‖

= 0,

that is the Pansu differentiability of Φ at a0 with differential dΦa0 .
Vice versa, let us assume that the graph map Φ is Pansu differentiable at a0.

Thus there exists a homogeneous homomorphism dΦa0 : W → G such that

(11) lim
w→a0, w∈U

‖dΦa0 [a
−1
0 · w]−1 · Φ(a0)

−1 · Φ(w)‖

‖a−1
0 · w‖

= 0.

By using the fact that L is normal, and by simple computations, we get that

πW

(

dΦa0 [a
−1
0 · w]−1 · Φ(a0)

−1 · Φ(w)
)

=
(

(dΦa0 [a
−1
0 · w])W

)−1
· a−1

0 · w, ∀w ∈ U.

Now notice that since there exists a geometric constant C > 0 such that ‖gW‖ ≤
C‖g‖ for every g ∈ G (see [9, Proposition 2.12]), from the previous equality and (11)
we deduce

(12) lim
w→a0, w∈U

∥

∥

∥

(

(dΦa0 [a
−1
0 · w])W

)−1
· a−1

0 · w
∥

∥

∥

‖a−1
0 · w‖

= 0.

Since dΦa0 is a homogeneous homomorphism, the limit in (12) allows us to use the
forthcoming Lemma 3.3 with Ue := a−1

0 ·U . This leads to the equality πW ◦ (dΦa0) =
(id)|W .

Thus, by using the splitting, for every w ∈ W it holds dΦa0 [w] =: w ·dφφa0 [w] for
some map dφφa0 : W → L. Now we are in a position to apply Lemma 3.1 to deduce
that dφφa0 is intrinsically linear, because its graph is a homogeneous homomorphism
being a Pansu differential. Now the intrinsic differentiability of φ at a0, with intrinsic
differential dφφa0 , follows by joining the computations in (10) with (11). �

Lemma 3.3. Let W and L be two complementary subgroups of a Carnot group

G and let Ue ⊆ W be a Borel set containing the identity e and for which e is a

density point. Let us assume F : W → G is a continuous homogeneous map, i.e., it

commutes with δλ for every λ > 0. Let us further assume that

lim
w→e,w∈Ue

‖(F (w)W)−1 · w‖

‖w‖
= 0.

Then F (w)W = w for every w ∈ W.

Proof. Notice first that the map w → (F (w)W)−1 is a homogeneous map. Indeed,
from the homogeneity of F , the homogeneity of the projection onto W and the
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homogeneity of the inverse, respectively, we get

((F (δλw))W)−1 = ((δλF (w))
W
)−1 = (δλ(F (w)W))−1

= δλ((F (w)W))−1, ∀λ > 0.
(13)

Set SW := {w ∈ W : ‖w‖ = 1}. Since e is a density point of Ue ⊆ W, the following
holds: there exists D ⊆ SW, dense in SW, such that for every w ∈ D there exists an
infinitesimal sequence {tj}j∈N such that δtjw ∈ Ue for all j ∈ N.2

Fix w ∈ D. We claim that F (w)W = w so that by density of D and by the
continuity and the homogeneity of F the thesis follows. Indeed, let us fix ǫ > 0.
By hypothesis, and since there exists an infinitesimal sequence {tj}j∈N such that
δtjw ∈ Ue, we get that there is tj0 > 0 such that

‖(F (δtj0w)W)−1 · δtj0w‖ ≤ ǫ‖δtj0w‖.

By the homogeneity in (13), the homogeneity of the norm and the fact that ‖w‖ = 1,
since w ∈ D ⊆ SW, we get

‖(F (w)W)−1 · w‖ ≤ ǫ.

Thus from the fact that ǫ > 0 is arbitrary we get the sought conclusion. �

We are now in a position to prove our Theorem 1.1. Let us recall the definition of
the Jacobian of a homogeneous map. Take a homogeneous map F : W → G between
graded groups W and G, equipped with homogeneous left-invariant distances dW
and dG, respectively. Denote by k := dimH(W) the Hausdorff dimension of W. The
Jacobian of F is

(14) J(F ) :=
Hk(F (B(e, 1)))

Hk(B(e, 1))
,

where B(e, 1) is the ball centered at the identity e of W, and of radius 1.

Proof of Theorem 1.1. Since L is normal, we can use [9, Proposition 3.7] and
thus, from the fact that φ is intrinsically Lipschitz, we deduce that the graph map
Φ: U ⊆ W → G is Lipschitz. Since W is a Carnot subgroup, due to Remark 2.1, we
are in a position to apply Rademacher theorem (see [17] and [15, Theorem 3.9]) to the
graph map Φ: U ⊆ W → G, in order to conclude that it is Hk

xW-almost everywhere
Pansu differentiable on U . Eventually, we apply Proposition 3.2 to conclude that
every point of Pansu differentiability of Φ is a point of intrinsic differentiability of
φ. Finally, the area formula (1) is a direct consequence of the area formula in [16,
Theorem 4.3.4] applied to the graph map Φ, after having noticed that Φ: U ⊆ W →
G is injective. �

Remark 3.1. By joining the result of Theorem 1.1 and Remark 2.2 we conclude
that in the hypotheses of Theorem 1.1 the intrinsically Lipschitz property guarantees
the existence, at (Φ)∗(H

k
xU)-almost every point on the graph of φ, of a tangent

subgroup. Moreover, from Proposition 3.2 we get that, whenever the Pansu differ-
ential dΦx exists, then φ is intrinsically differentiable at x and dΦx[w] = w · dφφx[w]
for all w ∈ W. Taking into account this equality, the definition of the Jacobian
(14) and Remark 2.2 we stress that the area element J(dΦx) in the area formula (1)

2Indeed if U ⊆ W is Borel and for Hk
xW-almost every point x in U there exist a sequence

hj(x) converging to e and 0 < λ(x) < 1 with B(x · hj(x), λ(x)‖hj(x)‖) ∩ E = ∅ for all j ∈ N, then
Hk

xW(E) = 0.
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only depends on the geometry of the tangent subgroup of graph(φ) at Φ(x), which
is graph(dφφx).

Remark 3.2. The hypotheses of Theorem 1.1 are satisfied whenever we take an
intrinsically Lipschitz function φ : U ⊆ W → L, with W horizontal. Thus our result
applies in particular to intrinsically Lipschitz horizontal surfaces in arbitrary Carnot
groups.

Remark 3.3. If we do not assume L to be normal in the hypotheses of Theo-
rem 1.1, but still we assume that W is a Carnot subgroup, the graph map Φ: U ⊆
W → L may not be Lipschitz when φ is intrinsically Lipschitz. The forthcoming
example is also found in [9].

Indeed, let us take the second Heisenberg group H
2, with a basis of the Lie algebra

given by (X1, X2, X3, X4, X5), where the only nontrivial relations are [X1, X3] =
[X2, X4] = X5. Let us identify H

2 with R
5 by means of exponential coordinates of the

first kind. Set, in those exponential coordinates, W := {(0, x2, x3, x4, x5) : x2, x3, x4,
x5 ∈ R} and L := {(x1, 0, 0, 0, 0) : x1 ∈ R}. We notice that W is a Carnot subgroup

and L is not normal.
It is easily verified that the map φ : W → L defined as φ(0, x2, x3, x4, x5) :=

(1, 0, 0, 0, 0) for every (x2, x3, x4, x5) ∈ R
4 is intrinsically Lipschitz. Moreover, if we fix

ǫ > 0 we have that Φ(0, 0, ǫ, 0, 0) = (1, 0, ǫ, 0,−ǫ/2) and Φ(0, 0, 0, 0, 0) = (1, 0, 0, 0, 0).
Thus

‖Φ(0, 0, 0, 0, 0)−1 · Φ(0, 0, ǫ, 0, 0)‖ = ‖(0, 0, ǫ, 0,−ǫ)‖ ∼ǫ→0 ǫ
1/2,

and then Φ cannot be Lipschitz, since ‖(0, 0, ǫ, 0, 0)‖ ∼ǫ→0 ǫ.
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