Intrinsically Motivated NeuroEvolution for
Vision-Based Reinforcement Learning

Giuseppe Cuccu, Matthew Luciw, Jiirgen Schmidhuber and Faustino Gomez
IDSIA / University of Lugano / SUPSI / 6928 Manno-Lugano, Switzerland
Email: {giuse, matthew, juergen, tino}@idsia.ch

Abstract—Neuroevolution, the artificial evolution of neural
networks, has shown great promise on continuous reinforcement
learning tasks that require memory. However, it is not yet directly
applicable to realistic embedded agents using high-dimensional
(e.g. raw video images) inputs, requiring very large networks.
In this paper, neuroevolution is combined with an unsupervised
sensory pre-processor or compressor that is trained on images
generated from the environment by the population of evolving
recurrent neural network controllers. The compressor not only
reduces the input cardinality of the controllers, but also biases the
search toward novel controllers by rewarding those controllers
that discover images that it reconstructs poorly. The method is
successfully demonstrated on a vision-based version of the well-
known mountain car benchmark, where controllers receive only
single high-dimensional visual images of the environment, from a
third-person perspective, instead of the standard two-dimensional
state vector which includes information about velocity.

I. INTRODUCTION

Neuroevolution, the artificial evolution of neural net-
works [2,27], has advantages over classical, single-agent learn-
ing methods for continuous reinforcement learning tasks that
require memory [6,22]. Despite all the recent progress, how-
ever, such methods are not yet directly applicable to realistic
embedded agents with raw video input, since images are
typically high-dimensional, requiring thousands of network
inputs, and therefore potentially very large networks. Most
approaches to scaling these methods have focused on indirect
encodings where relatively small network descriptions are
transformed via a complex mapping into networks of arbitrary
size [3,8,12].

While this biologically inspired approach is promising,
in this paper, we present an alternative approach to scal-
ing neuroevolutionary RL to high-dimensional input spaces.
Rather than forcing the evolving networks to cope with high-
dimensional observations directly, an unsupervised learner
(UL) is used to “compress” the often very redundant sensory
input into a compact code that requires a only a few input
units from the controller’s side.

To our knowledge, no online system combining UL and
neuroevolution has been explored previously. Up to now, this
general approach of using UL as a preprocessor has been
studied only in the context of single-agent RL (i.e. TD, policy
gradients, etc), where the agent simultaneously learns both
the mapping from the compressed features to actions, and the
features themselves from the observations provoked by the
actions [1,4,11,13,14,16]. A problem with this coupled system
is that, since the learned features depend on how the agent

behaves and vice-versa, good features may never form because
the agent’s initial, poor policy results in biased sampling of
the environment.

The approach presented in this paper addresses this boot-
strapping issue by using a single unsupervised module that
is trained on data generated by all of the individuals in
an evolving population of recurrent neural network (RNN)
policies. Because many different policies are evaluated for
each generation, a potentially broader, less biased sampling of
the observation space is achieved, from which useful features
can be learned more reliably.

Furthermore, since the compressor is adapted online, its
own asynchronous learning process can be used to drive
evolution in search of novelty. If an individual provides data
that the compressor decompresses (reconstructs) poorly, this
means that its behavior has not been seen before (or not very
often), and, therefore its fitness should be boosted to promote
behavioral novelty in the population. This mechanism allows
evolution to make progress even when the raw fitness (i.e.
the fitness related to performing the task) in the population is
flat, in a manner analogous to exploration based on intrinsic
motivation in the single-agent RL setting [18]-[20].

The particular instantiation of this Unsupervised Learning
plus Evolutionary Reinforcement Learning (UL-ERL) frame-
work, evaluated in this paper, is called VQ-SNES, as it uses
online vector quantization (VQ; [7]) for the adaptive compres-
sor and Separable Natural Evolution Strategies (SNES; [17])
for the neuroevolution component. VQ-SNES is tested on a
vision-based version of the mountain car benchmark, with
results demonstrating both the effectiveness of simultaneous
online training of the compressor and neuroevolution, and the
beneficial effect of compressor-based intrinsic motivation on
evolutionary exploration.

The paper is organized as follows. Section II discusses
issues related to sensory compression. Section III describes
the overall UL-ERL architecture, while Section IV details
VQ-SNES. Section V presents the experimental results on the
high-dimensional vision-based mountain car task. Section VI
concludes the paper.

II. SENSORY COMPRESSION

The problem class of interest in this work is concerned
with learning control for reward maximizing tasks under
high-dimensional observations, where the environment can be
continuous and partially observable. A high-level description
of the system is as follows:

yi = C(ot) e)
a;, = m(y;,my) 2
m;y; = G(mt,}’uat) 3)

where 0; € R¥™ is the observation at time t, which is
encoded by compressor C into a code vector y; € R",
where n << dim. The action a;, which can be stochastic,
is determined by the controller 7, based on the current
code, and potentially the entire history of code inputs and
actions, {ys,at,...,Yo,a0}, represented by the internal state
of the controller, m¢. The controller defined by combining
equations 2 and 3

a; = W(thG(mt—laYt—lyat—l))7

can be implemented for example by a recurrent neural net-
work, where y; is the external input, and G(-) computes the
internal activation via the networks feedback connections.

Given a compressed vector, inverse operation provides a
reconstruction 6; = R(C(0¢)). The quality of this reconstruc-
tion is measured in terms of distortion d(o4,0;). A standard
distortion measure is the squared error:

. 1 .
d(o4,04) = 5”01‘, - OtH2 “4)

The overall quality of the compressor is evaluated by
measuring its expected distortion,

D(C,R) = Y Pr(o) d(o, R(C(0))), 5)

where Pr(o) indicates the observation probabilities.

We consider adaptive compressors, for example through
gradient descent. Let the compressor be parameterized by W.
Then, if Vw D(C, R), can be computed or approximated, the
compressor can be improved. Improving a compressor in this
way can be considered unsupervised learning.

An issue with compression of this type is that it may in-
crease the severity of aliasing, where states requiring different
actions map to the same code, adding to the original type
of aliasing due to the fact that the true operating state s;
cannot always be extracted from the observation o;. The code
is guaranteed to be low dimensional but not unambiguous.
However, because our system (described next) evolves RNNs,
which have memory, it can mitigate the effect of possible
compression induced aliasing.

III. SYSTEM ARCHITECTURE

Fig. 1 shows a schematic description of the general frame-
work combining Unsupervised Learning with Evolutionary
Reinforcement Learning (UL-ERL). At a high level, the ar-
chitecture consists of a standard neuroevolution system where
an evolutionary algorithm is used to evolve recurrent neural
networks, with the key addition of an unsupervised compressor
module that preprocesses the inputs to the evolving networks.

In a conventional NE system, evolution proceeds in the
following steps: (1) initialize a random population of neural

Ay
o .y, N 4
V4 DTN .
E./

L

’ K03
’/. \'\

NG
Cmm®

Environment s

-
L
/-\‘\

observation

A

°

o '%. o'

7
' /./.\“' Y

action
Recurrent
Neural Network

E—

input
code

Compressor

Evolutionary
Algorithm

Fig. 1. UL-ERL Architecture. The standard neuroevolutionary RL approach
is augmented by an adaptive compressor that transforms high-dimensional
observations into a compact code which serves as input to the evolving
recurrent neural network controllers. At each generation the compressor is
trained on observations generated by the evaluated controllers, using unsuper-
vised learning. As the compressor improves, the controllers are provided with
increasingly informative features, and, in turn, they provide new data for the
compressor to improve the features.

network encodings or chromosomes, containing candidate val-
ues for the parameters of interest (e.g. synaptic weight values,
connectivity, etc.), (2) evaluate each chromosome after first
transforming it into its corresponding network controller, and
assign a fitness, (3) reproduce the most fit chromosomes to
produce a new, hopefully better, population’.

Normally, during the evaluation phase, controllers can di-
rectly perceive the observable state of the environment, which
means that if the observation is high-dimensional, the networks
will have to be sized accordingly. In UL-ERL (refer to
pseudocode in Algorithm 1) however, each high-dimensional
observation is first transformed by the compressor into a lower-
dimensional code (line 8) that is then fed as input to the
controller (line 13), thereby reducing the required network
complexity. At the end of each generation (i.e. the loop from
line 4 to 19), the compressor is trained on a set of images
generated from the environment by the controllers during
that generation (line 21). Training is conducted in batch,
only between generations, so that all individuals in a given
generation are evaluated fairly using the same sensory system
(compressor).

The compressor not only provides a compact code, it also

'In the case of probability distribution based evolutionary algorithms, such
as CMA-ES and NES, the population of candidate solutions is not explicitly
maintained.

Algorithm 1: UL-ERL

INITIALIZE(EA)
while not solved do
clear imgs
for i < 1 to popsize do
step < 1, feomp ¢ maxerror
while step < mazsteps A not solved do
04 < GETOBSERVATION(S;)
(error, y;) < COMPRESS(0;, W)
if error > foomp then

feomp < error

Omaz < Ot
end
a; < m(ye)
St — ENVDYNAMICS(s, ay)
step < step +1

R R B Y N

e
B W N = O

-
W

end

th — ftask S fcomp
tmgsl[i] < Omax

-
N &

[
*®

end
UPDATEEA()
W < TRAINCOMPRESSOR(W, imgs)

N =
- &

end

153
[

implements a kind of intrinsic motivation by boosting the fit-
ness of those networks that generate action sequences resulting
in novel training images. When a network is evaluated, the
observation (image) with highest reconstruction error is saved
(lines 9 to 12) to the training set, and the error on that image
is used as an additional component, f.omp, that is combined
with the raw fitness, f;,sx (line 17). The specific combination
operator, 6, used is implementation specific.

Evolutionary search and unsupervised compressor work in
synergy. Initially, the untrained compressor produces a spuri-
ous code that is of little use in solving the task. However, once
the compressor is trained on the set of images from the first
generation, useful features begin to emerge that capture task
specific regularities, allowing controllers in the next generation
to make progress. In turn, controllers that generate novel
images receive higher fitness for doing so, which encourages
diversity and drives evolution to discover more controllers that
do the same, in order to improve the compressor further.

IV. VQ-SNES

The particular instantiation of UL-ERL in this paper uses a
computationally efficient variant of Natural Evolution Strate-
gies (NES; [5,23,24,26]), called Separable NES or SNES
[17] as the evolutionary search method, and a competitive
clustering algorithm based on Vector Quantization (VQ; [7])
for the compressor.

A. Separable NES

Separable NES is a restricted version of NES, that sacrifices
generality in favor of low computational complexity. NES is a
class of evolutionary algorithms for real-valued optimization

that maintains a search distribution, instead of an explicit pop-
ulation, and adapts the distribution parameters by following the
natural gradient of expected fitness.

In each generation the algorithm samples a population of
A € N individuals z; ~ 7 (z|0), i € {1,..., A}, i.i.d. from its
search distribution, which is parameterized by 6, with the goal
of maximizing a fitness function f : R¥ — R. The expected
fitness under the search distribution is

o) = [1ta)

The gradient w.r.t. the parameters can be rewritten as

Vo/f

=Ey [f(z) Vylogm(z]0),]

J(0) = m(x|0) d

VoJ (0 (z|0) dz

(see [26] for the full derivation) from which we obtain the
Monte Carlo estimate
12

Vo J(0) ~ Y ;f(zi) Vo logm(z; |6)
of the search gradient. The key step then consists of replacing

this gradient, pointing in the direction of (locally) steepest
ascent w.r.t. the given parameterization, by the natural gradient

Vo] =F1V,J(0) .

where F = E [Vg log 7 (z|0) Vg log7r(z|0)—r is the Fisher
information matrix; leading to a straightforward scheme of
natural gradient ascent for iteratively updating the search
distribution

0 0+nVeJ =0+nF 'VyJ(6) ,

with learning rate parameter 7. The sequence of 1) sampling an
offspring population, 2) computing the corresponding Monte
Carlo estimate of the fitness gradient, 3) transforming it into
the natural gradient, and 4) updating the search distribution,
constitutes one generation of NES.

For a multivariate Gaussian search distribution, the param-
eters § = (u,X), where p € R” is the mean vector and
3 € RF¥F is the covariance matrix, are split canonically into
three invariant components. This amounts to a (non-redundant)
representation similar to CMA-ES [9], were split off a global
step size variable from the covariance matrix in the form
> = ¢%2.B'B, with 0 € RT and det(B) = 1. We write
A = o - B for a factor of the covariance matrix, fulfilling
> = AT A. We obtain the corresponding gradient components

A
VMJ:Zf(Z)
VmJ = Zf

V,J = tr(VMJ) Jk
VeJ =VmJ — V,J 1,

(pip; — 1)

where samples are picked from the standard multinormal
distribution p; ~ N(0,T), before being mapped back into the

Mountain

Car Goal

b
/

Fig. 2. Mountain Car task. In the standard version, the car’s position and
velocity are provided directly to the controller. In the much harder vision-
based version, the observation is a 15 by 30 image taken from the perspective
shown above. Figure courtesy of Sutton, 1996 [25]

original coordinate system z; = p + 0B py. The updates
then become:

p—p+n,-oB-V,J
o 0-exp(n,/2-VsJ)
B <—B-exp(nB/2 -VBJ) s

where 7,,, 75, and np denote learning rates for the different
components (refer to [5] for further details).

Separable NES restricts the search to distributions with
diagonal covariance matrix. This means that it is limited
to search distributions that are factorizable, but reduces the
complexity of each generation dramatically, from O(k?) to

o(k).

B. Online Vector Quantization

Vector Quantization is a simple and stable online, lossy
compression method that maps a dim-dimensional input space
(e.g. observations, 0) to a discrete space, with only n possible
values. VQ maintains n prototype column vectors W =
(W1, ..., wy), which, in this work, represent prototypical states,
so w; € §,Vi. Any observation, o;, will be encoded as the
index of some prototype, e.g., j = C(0;),7 = l..n, and
any index is decoded as the corresponding prototypical state
vector, e.g., w; = R(j).

An optimal encoder maps any observation o; to the index
of the prototype with lowest distortion,

C(o¢) = argmind(oy, R(7)), (6)
K3
which will partition the state space into n distinct regions,
where S; is the set of observations for which prototype state
vector w; has the smallest squared error,

S’i = {0|d(O,Wi) < d(O,Wj),Vj}, (7)

and ¢ is an internal state representing all observations in ;.

The optimal decoder minimizes expected distortion, condi-
tioned on the above encoder. The optimal w; is the expectation
of the observations in S;,

w; = Ep,(ocs,)[0]- ®)

2
g
§
SNES search distribution o /\
o
5
<

updated via natural
gradient

Fig. 3. Conceptual depiction of visual mountain car fitness landscape.
The large flatland is determined by all the possible controllers that cannot
solve the task. Gradient is present only among those who do, making the
problem hard from an evolutionary standpoint.

Done in a batch fashion, the above two steps give the
well-known K-means algorithm. Done on-line, the gradient of
globally decreasing distortion Vw D(C, R) (see equation 5)
is approximated in an unbiased way, which in the case of the
“winner-take-all” compression and squared error distortion,
leads to the following update rule [10] for each prototype,

w;, — w;tay (op—w;)
= (I-ay) w,+ay; o

where y; = 1 for C(o;) = ¢ and y; = 0 otherwise. It is
intuitive to see that moving w; towards o; (i.e. 0 < a < 1)
will decrease the distortion for o;.

The above is a basic “mixture of experts” system, where
each prototype can be considered an expert on some part of
the observation space. However, in on-line training, samples
are not expected to arrive in an i.i.d. fashion, therefore stability
needs to be balanced against plasticity. Prototypes that have
updated over a large number of samples should be fairly stable
and less likely to forget, at the same time there needs to be
a subset of prototypes that can adapt quickly if new data is
observed. To facilitate this, an “age”, h;, is maintained for
each prototype, which is incremented after every sample it is
trained upon, and now instead of a single learning rate, «,
there are n prototype-specific learning rates oy, each set to
1/h;. Units without much experience will adapt very quickly,
while experienced units will not adapt much. To prevent the
learning rates from converging to zero, they are bounded from

below:
1/h;
hs = { w

Equation 9 has an intuitive interpretation: learning rate
descends in a per-prototype way according to 1/h; until it
reaches some lower bound w, which it uses as a constant
learning rate for that prototype thereafter.

if 1/h; >w
otherwise

(€))

V. EXPERIMENTS AND RESULTS
A. Vision-Based Mountain Car

VQ-NES was evaluated on a vision-based version of the
well-known mountain car RL benchmark [15,21], shown in

Fig. 2. The agent controls a car within a deep valley, with
the objective of reaching the highest area beyond a slope in
front of the car. The car has three actions: forward, neutral,
and reverse. Motor power is limited, so that simply selecting
a series of consecutive “forward” actions is not sufficient to
take the car to the goal. A swinging movement is necessary:
speed has to be built up by going back and forth on the valley
sides.

The state of the car is defined by its current position p;
and velocity vy, which are within ranges —1.2 < p < 0.5 and
—0.07 < v £0.07. The car’s dynamics are defined by

[v; +0.001 a¢ + g cos(3py)]
[Pt + vey1],

(10)
(1)

where a; € {—1,0, 1} is the selected action, and g is the force
of gravity. The car’s altitude is cos(3p). If at any ¢, the position
is > 0.5 (top of the slope), the trial terminates. Otherwise, the
trial stops after some maximum number of steps. The fitness of
a controller is typically the number of steps needed to complete
the trial.

In order to test VQ-NES, the state of the environment (p, v)
was mapped to a high-dimensional visual input consisting
of 15 x 30 = 450 pixels, which the controller receives
instead of the state variables. In each input image, the car
is seen as a colored block, around a point depending on its
position, p. In its standard, non-visual form, the mountain
car task is trivial for neuroevolution methods. However, in
testing the UL-ERL framework, we are less concerned with
the demands of the control task itself, and more with the
challenge of coping with high-dimensional inputs and studying
how sensory compression can be made to function in synergy
with evolutionary search. The very simplicity of the underlying
control task allows us to better isolate these aspects.

The task was also made more difficult in other ways. First,
no velocity information is given to the controllers: the recur-
rent network controllers must compute the velocities internally
using their feedback connections (memory). Second, whereas
the initial position and velocity are typically randomized
within any allowable value, here the car is always initialized
the car to the deep part of the valley, from —0.7 < pg < —0.3,
with slight initial velocity, within —0.07/4 < vy < 0.07/4.
Finally, the force of gravity is double: instead of g = —0.0025,
g = —0.005 was used. This makes reaching the top (required
condition for previous RL methods) in the initial population
much more difficult. As a consequence, the number of
individuals receiving minimal fitness after being unable to
reach the goal grows, thus enlarging the size of the relative
fitness plateau (see Fig. 3).

Vt41

Pt+1 =

B. Setup
To assess the advantage of combining UL with ERL and
intrinsic motivation, four different setup were compared:

1) Raw Images: Networks are evolved with SNES but are
fed the images directly, without first compressing them

by VQ.

()

Fig. 4. Internal state learning of the VQ-based compressor. (a): Initial
random weights, (b): After one generation, (c): Final weights. These internal
states cover all possible mountain car’s positions and similar positions tend
to be represented as the same state.

2) Random Weight Guessing (RWG) where networks re-
ceive input from the VQ compressor, but their weights
are selected at random (i.i.d) instead of being evolved.
This approach provides a baseline and a rough indication
of task difficulty.

3) Compression: VQ-SNES where the fitness is simply the
performance on the task, figsk-

4) Compression+novelty: VQ-SNES where the fitness is
computed based on both task performance, fi,sr and
the novelty component, feomp.

All controllers were implemented by single-layer fully re-
current networks, with three sigmoidal output neurons (one per
action). Actions were selected stochastically after applying the
softmax function to the output layer:

exp(ai/T)
Z?Zl exp(a;/T)
where 7 is the temperature, which we set to 0.0001.

The VQ-based compressor used n = 8 clusters, initial-
ized to 8 random 450 dimensional vectors, and the learning
rate lower-bound is w = 0.01 (equation 9). This reduces
the number of network weights by a factor of 41, from
(450 inputs + 3 recurrent connections) x 3 neurons = 1359 to
(8 +3) x 3 = 33 (and the three bias values for each of
the output neurons in both cases). The compressor is trained
after each generation using just a single image from each
individual’s run. To drive compressor improvement, the image
with the highest distortion (per individual per run) is used for
training.

Each of the four approaches was run 20 times for 35 gener-
ations (the outer loop in Algorithm 1). SNES was initialized

Pr(a;) = (12)

1000 WG T T I T T T T T 500
————— BaalN . -, PR
raw images b /»’ ERUPIA // AR S /-4,'\" AT Nt N, - 480
900 compression = \ \.-e ~ NPT
compression+novelty
e | r RWG - - 460
wn 800 RN IR compression
75) . e L compression+novelty 1 440
(]
. é 700 L 1umo
=
© 600 1+ - 400
&
[-1 380
=5 i
b3} 00
> = 1 360
<€ 400 i
’ - 340
T
300 ~ L 1 320
200 | | | | | | | | | | | | | | L1309
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 45
Generations Generations

Fig. 5. Performance of VQ-SNES on the Vision-based mountain car task. Each curve shows number of steps required to reach the goal at generation for
each of the methods (as a running average of 3 generations for smoothness). Left: basic test, with normal gravity and a lenient time limit. Compressing the
mountain car image via VQ reduces the number of generations required to optimize the task significantly compared to the setup using raw images. Adding
intrinsic fitness, fcomp, in this case, has little effect. Right: increased gravity and a short time limit. A higher percentage of failures generates a larger plateau
in the fitness landscape: with less gradient information coming from task fitness, intrinsic fitness from the compressor drives the search toward networks that
provide novel training images, away from the already visited positions, and eventually closer to the goal.

with a random mean vector with component chosen from
[—0.5,0.5], and the variance vector was set to all ones. The
population size is set to 20 and the learning rate at 0.35 for
both mean and variance. These parameter settings are informed
by both NES and CMA-ES defaults; we found them to be
robust over small variations. A run is considered to start from
a new initialization of SNES and the compressor.

The fitness for each network was fiqsk + feomp Where fiosk
was the number of steps required to terminate the task, either
by solving it, or by reaching a maximum of 1000 steps, and
feomp, the error of the image with highest distortion provided
by that individual (before training the VQ).

C. Results

Fig. 4 shows the weight vectors in W' as images, from a
selected run of the algorithm. Fig. 5 shows the average task
performance, fiqsk, for the four approaches. The RWG results
show that the problem is not trivial. Even with the reduced
number of weights for the methods using VQ to pre-process
the input, the number of weights to guess is still high (running
RWG on the uncompressed input always failed). Of course,
even the compressed code is 8-dimensional compared the two
state variables (position and velocity) used in the standard
mountain car task. The poor performance of evolving upon
“raw images” shows the advantage gained by adaptive pre-
processing. Even if comparable performance is achieved after
enough time, the number of weights to find is so high that
in real time the execution of this test took roughly 20 times
longer.

In order to better measure the influence of fiomp, the task
was made harder by halving the number of maximum steps
to 500 and raising gravity further, up to ¢ = —0.00545.
With this setup, it is unlikely for random controllers to solve
the problem, therefore SNES receives almost no gradient
information with which to update its distribution. Yet, the
intrinsic fitness component, fcomp, derived from compressor

performance can provide such information and encourage
exploration. While there is no guarantee that exploration will
lead to increased raw fitness, in the mountain car task it
eventually does. Fig. 5 shows this empirically. Typical starting
generations will produce a flat fitness landscape (see Fig. 3),
the absence of gradient information making evolution difficult.
Now, some amount of skill is needed to even begin task-based
optimization. The novelty-driven controllers are intrinsically
motivated to explore novel places, since the gradient will be
in directions that lead to observations that the compressor does
not deal with well [18], thus finding the task-based goal much
more quickly.

VI. CONCLUSION AND FUTURE DIRECTIONS

We combined adaptive compression and RNN controllers
trained by stochastic search. A compressor learns to ex-
tract regularities within high-dimensional observations and
automatically provides simplified input codes to an evolving
recurrent actor with memory. We tested a combination of
adaptive vector quantization (learning a set of compact internal
representations) and Separable Natural Evolution Strategies,
an efficient stochastic search method, applying it to a difficult,
high-dimensional, vision-based version of the mountain car
task. Results showed that VQ is able to automatically simplify
the observations in a way that permits SNES to evolve success-
ful controllers. An additional intrinsic motivation fitness term
(based on the maximum distortion of the observations provided
to the compressor) was shown to drive curious exploration in a
useful way, providing the compressor with novel observations
that make it improve.

Since VQ will fail in presence of changing backgrounds,
future work will try more sophisticated compressors such as
deep neural nets. We will also utilize feedback from the policy
evolver to inform the compressor, thus developing the latter’s
features not only from unsupervised criteria, but also such that
they are useful for the task at hand. A third future direction is

to have the compressor’s contribution to fitness be based on
compression progress [19,20] instead of reconstruction error
[18] as was done in this paper. A problem with reconstruction
error is that intrinsic reward may be easy to achieve in noisy
environments, yielding individuals that choose simply to go to
noisy places instead of uncovering learnable regularities.

VII. ACKNOWLEDGMENTS

This work was supported by the following grants: Siner-
gia (CRSIKO 122697), NanoBioTouch (228844), CompEVO
(120061) and IM-Clever (231722).

REFERENCES

[1] F. Ferniandez and D. Borrajo. Two steps reinforcement learning.
International Journal of Intelligent Systems, 23(2):213-245, 2008.

[2] D. Floreano, P. Diirr, and C. Mattiussi. Neuroevolution: from architec-
tures to learning. Evolutionary Intelligence, 1(1):46-62, 2008.

[3] J. Gauci and K. Stanley. Generating large-scale neural networks through
discovering geometric regularities. In Proceedings of the Conference on
Genetic and Evolutionary Computation, pages 997-1004, New York,
NY, USA, 2007. ACM.

[4] L. Gisslén, M. Luciw, V. Graziano, and J. Schmidhuber. Sequential
Constant Size Compressors and Reinforcement Learning. In Proceedings
of the Fourth Conference on Artificial General Intelligence, 2011.

[5] T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, and J. Schmidhuber.
Exponential Natural Evolution Strategies. In Genetic and Evolutionary
Computation Conference (GECCO), Portland, OR, 2010.

[6] F. J. Gomez. Robust Nonlinear Control through Neuroevolution. PhD
thesis, Department of Computer Sciences, University of Texas at Austin,
2003.

[7]1 R. Gray. Vector quantization. /[EEE Assp Magazine, 1(2):4-29, 1984.

[8] F. Gruau. Neural Network Synthesis using Cellular Encoding and the
Genetic Algorithm. PhD thesis, 1’Universite Claude Bernard-Lyon 1,
France, 1994.

[9] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation

in evolution strategies. Evolutionary computation, 9(2):159-195, 2001.

T. Heskes. Energy functions for self-organizing maps. Kohonen maps,

pages 303-316, 1999.

S. R. Jodogne and J. H. Piater. Closed-loop learning of visual control

policies. Journal of Artificial Intelligence Research, 28:349-391, 2007.

J. Koutnik, F. Gomez, and J. Schmidhuber. Evolving neural networks in

compressed weight space. In Proceedings of the Conference on Genetic

and Evolutionary Computation (GECCO-10), 2010.

[10]
(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

S. Lange and M. Riedmiller. Deep auto-encoder neural networks in
reinforcement learning. In International Joint Conference on Neural
Networks (IJCNN 2010), Barcelona, Spain. Citeseer, 2010.

R. Legenstein, N. Wilbert, and L. Wiskott. Reinforcement Learning on
Slow Features of High-Dimensional Input Streams. PLoS Computational
Biology, 6(8), 2010.

A. Moore. Knowledge of knowledge and intelligent experimentation
for learning control. In Neural Networks, 1991., IJCNN-91-Seattle
International Joint Conference on, volume 2, pages 683-688. IEEE,
1991.

D. Pierce and B. Kuipers. Map learning with uninterpreted sensors and
effectors. Artificial Intelligence, 92:169-229, 1997.

T. Schaul, T. Glasmachers, and J. Schmidhuber. High dimensions and
heavy tails for natural evolution strategies. In Genetic and Evolutionary
Computation Conference (GECCO), 2011.

J. Schmidhuber. A possibility for implementing curiosity and boredom
in model-building neural controllers. In J. A. Meyer and S. W.
Wilson, editors, Proc. of the International Conference on Simulation
of Adaptive Behavior: From Animals to Animats, pages 222-227. MIT
Press/Bradford Books, 1991.

J. Schmidhuber. Developmental robotics, optimal artificial curiosity,
creativity, music, and the fine arts. Connection Science, 18(2):173-187,
2006.

J. Schmidhuber. Formal Theory of Creativity, Fun, and Intrinsic Motiva-
tion (1990-2010). Autonomous Mental Development, IEEE Transactions
on, 2(3):230-247, 2010.

S. Singh and R. Sutton. Reinforcement learning with replacing eligibility
traces. Recent Advances in Reinforcement Learning, pages 123-158,
1996.

K. O. Stanley. Efficient Evolution of Neural Networks Through Com-
plexification. PhD thesis, Department of Computer Sciences, University
of Texas at Austin, August 2004. Technical Report AI-TR-04-314.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Efficient Natural
Evolution Strategies. In Genetic and Evolutionary Computation Confer-
ence (GECCO), 2009.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Stochastic Search
using the Natural Gradient. In International Conference on Machine
Learning (ICML), number 1, 2009.

R. Sutton. Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding. Advances in neural information
processing systems, pages 1038-1044, 1996.

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural Evolution
Strategies. In Proceedings of the Congress on Evolutionary Computation
(CECO0S), Hongkong. IEEE Press, 2008.

X. Yao. A review of evolutionary artificial neural networks. International
Journal of Intelligent Systems, 4:203-222, 1993.

