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Intrinsic LiNbO3 point defects from hybrid density functional calculations
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The formation energies and charge transition levels of the most relevant LiNbO3 intrinsic point defects, i.e., Nb

antisites and Li as well Nb vacancies, are studied from first principles. Thereby isolated defects are modeled in the

framework of the density functional theory with local and hybrid exchange-correlation functionals. The inclusion

of nonlocal exchange opens the LiNbO3 fundamental band gap by nearly 2 eV and modifies considerably the

relative stability of the investigated defects with respect to values calculated with local functionals. On the other

hand, supercell symmetry and finite-size errors in calculations using periodic boundary conditions are found to

have a major influence on the outcome of the simulations. It is found that, in particular, the Nb vacancy causes

a long-range strain field and requires very large supercells for its adequate modeling. Compared to previous

theoretical results we find an enhanced stability of the Nb vacancy with respect to the other defects. The V−5
Nb is

predicted to be stable for Fermi level positions in the upper part of the band gap.

DOI: 10.1103/PhysRevB.89.094111 PACS number(s): 61.72.J−, 61.66.Fn

I. INTRODUCTION

Lithium niobate (LiNbO3; LN) is a versatile material, due
to its ferroelectric, piezoelectric, photorefractive, and electro-
optical properties, that is widely used for optical waveguides,
piezoelectric sensors, optical modulators, and various other
linear and nonlinear optical applications [1,2]. Numerous
investigations of the structure and chemical composition of
LN have revealed a high degree of ionic disorder and Li2O
deficiency in most LN crystals [3,4]. Many LN physical prop-
erties, such as the refractive index, the photorefractivity, the
birefringence, the linear electro-optical effect, and the Curie
temperature [3,5–8], depend, to a large extent, on intrinsic
defects. Understanding the defect properties is therefore of
key importance for many LN applications, as pointed out in
the recent review by Schirmer et al. [9].

Several experiments [10–12] have excluded the presence
of oxygen vacancies in LN but revealed the presence of
a large amount of Nb antisite (NbLi) defects instead. They
might be charge compensated either by Nb vacancies (VNb)
in the so-called Nb vacancy model [11] or by Li vacancies
(VLi) in the Li vacancy model [13]. Theory has played
an important role in characterizing the interplay of defects
and impurities in LN. Donnerberg et al. [14] pointed out
that the formation of niobium vacancies to compensate for
the niobium antisites is energetically less favorable than the
formation of lithium vacancies. Nahm and Park investigated
the microscopic properties of the NbLi antisite by local-density
approximation (LDA) plus Hubbard-U electronic structure
calculations (LDA + U ) [15], providing strong theoretical
support for the polaron model proposed by Schirmer et al. [9].
A recent first-principles work by Xu et al. [16] showed that the
cluster consisting of a niobium antisite compensated by lithium
vacancies is most stable under Nb2O5-rich conditions, and the
Li-Frenkel defects had the lowest formation energy for Li2O-
rich conditions. However, Wilkinson et al. [17] suggested that
the degree of filling of the Li sites by Nb ions is accidental
and may depend on the growth conditions, so one may expect
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the coexistence of all three defects—NbLi, VLi, and VNb—in
as-grown Li-deficient crystals. Unfortunately, the picture that
arises from the calculations available is not fully conclusive.
While the two ab initio studies that have been performed
on intrinsic LN point defects [16,18] conclude that the
lithium-vacancy model is the most probable LN defect model,
there is appreciable scatter in the reported defect formation
energies (DFEs) and charge transition levels (CTLs). The
former differ by several electron volts, and different charge
states are reported. The Nb vacancy, for example, is reported
to be neutral for Fermi energies in the lower part of the band gap
in Ref. [16], while it is threefold negatively charged according
to Ref. [18]. The striking differences between results obtained
within similar approaches are due to the fact that the calculation
of DFEs and CTLs is a very challenging task.

On the one hand, the modeling of point defects within the

density functional theory (DFT) typically rests on periodic

boundary conditions (PBCs) and is thus plagued by problems

due to the interaction of the defect with its periodic images

[19–24]. This results in calculated DFEs and CTLs that

strongly depend on the size and geometry of the supercell.

Li et al. [18], e.g., calculate V−5
Nb formation energies of −114

and 13 eV using supercells containing 80 and 180 atoms,

respectively. Obviously, the problem is particularly severe for

charged defects and several schemes have been suggested in

order to correct for the spurious interaction between defects

modeled within PBC [21–24].
On the other hand, the commonly used LDA and the gener-

alized gradient approximation (GGA) to DFT systematically
underestimate the band gaps of semiconductors and insulators
[25]. This so-called band-gap problem of the LDA and GGA
severely affects the predictive power of these approximations
when applied to defect levels (see, e.g., Refs. [26] and [27].
Spurious effects due to local functionals for the description of
electron exchange and correlation (XC) are particularly severe
in cases of strong correlations such as occurring in the highly
localized Nb d states. Moreover, LDA and GGA suffer from
the self-interaction error, which can affect the position of defect
levels with respect to the band edges.
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While at first glance the DFT-LDA band gap of 3.48 eV
calculated for ferroelectric LN [28] is comparatively close
to the frequently cited experimental value of 3.78 eV [29],
closer inspection shows that apparent agreement is caused
by the high exciton binding energy in LN, which results
in a strong deviation between the optical and the transport
gap [30]. In fact, quasiparticle corrections calculated within
the GW approximation blue-shift the DFT single-particle
excitation energies by about 2 eV, and, if used as input for the
Bethe-Salpeter equation, result in an excellent reproduction
of the measured LN optical response [8]. Unfortunately, GW
calculations are too time-consuming to be applied to large
supercells as required for the calculation of point defects.
Hybrid DFT calculations, where the XC functionals contain
some amount of exact exchange from Hartree-Fock theory,
such as proposed, e.g., by Heyd et al. [31,32], present a viable
alternative. Indeed, this approach has been demonstrated to
result in a reliable description of DFEs and defect levels in
wide-band-gap semiconductors [33–40].

In the present work the energetics and electronic properties
of the most relevant intrinsic LN point defects NbLi, VLi, and
VNb are studied within DFT with a hybrid XC functional.
In order to properly tackle the two main (yet essentially
unrelated) issues affecting the calculation of the DFEs, namely,
the finite-size problem due to the supercell method and the
poor description of the electronic structure in DFT-GGA, we
employ a two-step approach. In the first step, we perform
local and hybrid DFT calculations for 120-atom supercells, in
order to estimate the hybrid-functional correction to classically
calculated DFEs. In the second step, large supercells, contain-
ing up to 480 atoms, are used to calculate the DFEs within
local DFT. The results obtained for various supercell sizes
are extrapolated to infinite cell dimensions, and the previously
calculated hybrid-functional corrections added to the DFEs. In
this way we model the electronic structure of the point defects
at the hybrid-functional level of accuracy, without suffering
from the limited cell size in the calculation of the DFEs.

II. METHODOLOGY

A. Computational details

The present calculations employ the Vienna ab initio
Simulation Package (VASP) [41,42] implementation of DFT
in conjunction with the projector-augmented-wave (PAW)
formalism [43]. Thereby the Li 2s1, Nb 4p65s14d4, and O
2s22p4 states are treated as valence electrons. The electronic
wave functions are expanded in plane waves using an energy
cutoff of 400 eV. Isolated Nb antisites NbLi, Li vacancies VLi,
and Nb vacancies VNb as shown in Fig. 1 are modeled with
cells of different sizes.

Rhombohedral supercells containing 80 and 360 atoms,
as well as hexagonal supercells containing 120, 240, 270,
360, and 480 atoms, are used for the defect calculations
within the DFT-GGA. Thereby the Perdew-Burke-Ernzerhof
functional (PBE) [44] is used to model the electron XC energy
within the GGA. Structural relaxation is performed using
0.01 eV/Å as the force convergence criterion. Apart from the
largest hexagonal supercells, where only the Ŵ point is used, a

FIG. 1. (Color online) Ball-and-stick models for defect-free LN

(a) and material with NbLi (b), VLi (c), and VNb (d) point defects. O,

small circles; Li, large dark circles; Nb atoms, large light circles.

4 × 4 × 4 Monkhorst-Pack mesh [45] is employed to sample
the Brillouin zone.

Smaller hexagonal supercells containing 120 atoms are
used for the hybrid-functional calculations, instead. Thereby
the electron exchange and correlation energy is modeled with
the Hyde-Scuseria-Ernzerhof (HSE06) screened hybrid func-
tional [31,32]. The short-range component of the exchange
functional contains 25% Hartree-Fock exchange complement-
ing the PBE-type XC description. A 2 × 2 × 2 Monkhorst-
Pack mesh [45] is employed to sample the Brillouin zone.

B. Formation energies and chemical potentials

We calculate the DFE for the charge state q dependent on
the Fermi level position according to [23,46]

Ef (Xq) = Etotal(Xq) − Etotal(bulk) +

∑

i

niμi

+ q(EF + Ev + �V ), (1)

where Etotal(Xq) is the total energy derived from a supercell
with defect X, Etotal(bulk) is the total energy of the defect-free
supercell, ni indicates the number of atoms of species i that
have been added or removed upon defect creation, and μi are
the corresponding chemical potentials. EF is the Fermi level
with respect to the bulk valence-band maximum Ev , and �V
is a correction term which aligns the reference potential in
our defect supercell with that in the bulk [46]. The chemical
potentials μi depend on the preparation conditions. As
shown, e.g., by Phillpot and co-workers [16], thermodynamic
considerations restrict the accessible range of the μi if one
requires the LN stability: Let us define �μLi, �μNb, and
�μO as differences from the respective bulk values of the
chemical potential of Li, Nb, and O. These are calculated
using O2 and the body-centered cubic structures (space group
Im3m) of metallic Li and Nb as reference phases, with the
computational parameters described in Ref. [47]. The stability
of the ternary compound LN against decomposition into its
single components constraints the �μi to negative values.
Furthermore, the stoichiometric sum of the �μi has to equal
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the LN formation enthalpy,

�μLi + �μNb + 3�μO = −�H LN
f . (2)

The thermodynamically stable region is between the two
extremes of LN being in equilibrium with niobium oxide and
lithium oxide, respectively [16,47]. They are described by the
relations

2�μLi + �μO = −�H
Li2O
f and (3)

2�μNb + 5�μO = −�H
Nb2O5

f . (4)

These requirements are visualized in Fig. 2 (see also
Fig. 6 in Ref. [47] for an alternative, three-dimensional
representation). Within the triangle ADG the stoichiometric
sum of �μLi, �μNb, and �μO yields the LN formation
enthalpy, i.e., Eq. (2). Equation (3) defines the region within the
triangle BDF, while the region enclosed between points A, C,
E, and G satisfies Eq. (4). The shaded overlap region indicates
the LN stability range. Values of the chemical potentials
outside this region lead to the precipitation of other phases.
Here we model the point defects using Nb-rich conditions
(line CE), since even nearly stoichiometric LN crystals are
still Li deficient. Thus, the chemical potentials of Li and Nb
used here are −4.37 and −20.19 eV, respectively. A different
choice of the reference state will modify the relative stability
of the investigated defects. Strictly speaking, the Gibbs free
energy of formation has to be used to determine the chemical
potentials instead of the Helmholtz enthalpy in Eqs. (2) to
(4). However, it is customary to replace G(p,T ) with the
Helmholtz enthalpy, as the entropic terms are expected to be of
the same order of magnitude for all the investigated systems, as
explained in some detail in Ref. [16] (and references therein).
Neglecting the entropy term will thus not qualitatively change
our conclusions.

µ
O

µ
Li

µ
Nb

-16.52-1.89

-10.06-9.29
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FIG. 2. (Color online) Stability range of the chemical potentials

(in eV) of the LiNbO3 constituents. The region enclosed between

points B, D, and F satisfies Eq. (3), while the region enclosed between

points A, C, E, and G satisfies Eq. (4). The shaded region is the

intersection between them and represents the thermodynamically

allowed range of the chemical potentials.

C. Finite-size errors

The general concept of finite-size error includes error
sources of different natures that arise from the limited size of
the supercell within PBCs. This term is made up of two main
contributions, namely, the electrostatic interaction between
charged defects in neighboring cell images and the structural
strain introduced by the defect. In strongly piezoelectric
materials such as LiNbO3, where a localized charge generates
a sizable lattice distortion, the two contributions are deeply
merged.

The electrostatic energy of neutral aperiodic systems
converges asO(L−5) in calculations using PBCs [22], where L

is the linear dimension of the supercell. For charged systems,
convergence at this rate can be achieved by the addition of
correction terms as suggested by Makov and Payne [22].
Assuming an essentially point-like charge distribution of the
excess defect charge, the electrostatic energy can be expressed
in a multipole expansion [22,49],

E∞
= E0 +

q2αM

2εsL
+

2πqQ

3L3εs

+O(L−5), (5)

where E0 is the calculated total energy of the system, q is the
total charge, Q is the quadrupole moment of the defect-induced
charge, αM is the geometry-dependent Madelung constant, and
εs is the static bulk dielectric constant. The application of such
a correction for the calculation of DFE indeed works well
for cases that are characterized by strongly localized excess
charges [20,23,24].

Here we apply this scheme and thereby use the weighted
average of the experimental values of the static dielectric
tensor components ε11

s = 84 and ε33
s = 29 given in Ref. [50].

However, only corrections as given by the monopole are
considered. This term is the Madelung energy of a lattice
of point charges immersed in neutalizing jellium [21] and
represents the spurious Coulomb interaction between charged
defects due to the use of PBCs. We neglect the quadrupole
term, as it is about one order of magnitude smaller than the
Madelung energy for all investigated defects. This is due to
the large supercells used in this work and the large dielectric
constant of LiNbO3. As an example, calculating the corrections
for the dominant defect in congruent LN (i.e., the Nb+4

Li

antisite) in a 360-atom supercell (L3
= 3816.8 Å3) results in a

Madelung energy of 0.340 eV and a quadrupole term of only
0.038 eV.

In addition, we linearly extrapolate the formation energies
calculated for various cell sizes to infinite cell dimensions
using a fitting procedure with weighting factors which are
proportional to the number of atoms in the supercell, in order
to account for the accuracy increase for larger supercells. In
contrast to the Madelung correction, this approach addresses
the defect-defect interaction due to strain fields in addition to
the electrostatic interaction between the defect and its images.

III. RESULTS

As explained in Sec. I, modeling point defects in the
framework of the DFT within the supercell approach are
affected both by finite-size issues and by the poor electronic
structure predicted with local XC potentials. The two effects
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TABLE I. Summary of the bulk properties of ferroelectric

LiNbO3 calculated with a local and a hybrid potential. The rhombohe-

dral lattice parameters aR and α and the positions of the valence-band

maximum (VBM) and of the conduction-band minimum (CBM) are

listed, as well as the direct and indirect transition energy gaps.

PBE HSE06 Ref.

aR 5.58 Å 5.55 Å Exp. [48], 5.50 Å

α 55.71◦ 55.87◦ Exp. [48], 55.52◦

VBM Ŵ Ŵ GW [8], Ŵ

CBM Ŵ-K Ŵ-A GW [8], Ŵ-A

Indirect 3.37 eV 5.21 eV GW [8], 5.36 eV

Direct 3.38 eV 5.28 eV GW [8], 5.42 eV

have a different origin and are examined separately in this
work. In the first step we address the differences in LiNbO3

bulk properties and in the DFEs as calculated with local and
hybrid DFT. In the second step we estimate the finite-size error
within DFT-GGA. Finally, DFEs are calculated which take in
account both the hybrid functional description of the electronic
structure and the finite-size error due to the supercell approach
within PBCs.

A. Estimation of the XC-induced error

The approximation of the electron XC by a (semi)local
functional within DFT causes inaccuracies in the description
of the electronic structure, leading to the well-known band
gap problem of DFT. The application of hybrid potentials
drastically improves the description of the LN electronic
structure. Table I summarizes some of the bulk properties
of ferroelectric LiNbO3 calculated within the different ap-
proaches. Figure 3 represents the corresponding calculated
electronic band structure. While the structural properties are
rather similar, the application of hybrid potentials leads to a
band-gap opening of 1.84 eV with respect to the value calcu-
lated within standard DFT. The value of 5.21 eV calculated

FIG. 3. (Color online) Electronic band structure of ferroelectric

LiNbO3 calculated with DFT-PBE (dashed lines) and hybrid DFT

(straight lines). Application of the hybrid potential leads to a band-gap

opening of 1.84 eV.

with the hybrid functional is in very good agreement with
the value of 5.36 eV calculated within the GW approximation
[8]. The electronic band gap is indirect both within DFT-PBE
and within DFT-HSE. However, while the conduction-band
minimum (CBM) is placed between the Ŵ and the K point
in DFT-PBE, it is placed between the Ŵ and the A point
in DFT-HSE. However, within both DFT-PBE and hybrid-
DFT, we find the lowest conduction band to be very flat
around Ŵ. Therefore, the material can be regarded as having
approximately a direct band gap at the Ŵ point.

Besides correcting the electronic band gap, hybrid func-
tionals are expected to improve the description of strong
correlations such as occur in the Nb d states and partially
correct for the electronic self-interaction, which can result in
a wrong alignment of the defect levels with respect to the
band edges. Indeed, calculating the DFEs with hybrid DFT
leads to pronounced energy changes—-up to several electron
volts—with respect to DFEs calculated within DFT-PBE. This
is shown in Fig. 4, where the DFE differences between HSE
and PBE are shown for NbLi, VLi, and VNb dependent on the
charge state. It can be seen that HSE lowers the DFEs of
NbLi with respect to PBE, while it increases the DFEs of VLi

and VNb. The latter shows the largest deviation. As we show
later, this defect causes a pronouced lattice relaxation and a
major rearrangement both in occupied and in conduction band
states, which are more influenced by the nonlocal potentials.
The deviation between PBE and HSE energies increases
with the (absolute) charge state, suggesting that electronic
self-interaction plays a major role. The deviations are most
pronounced for Nb-related defects, i.e., the Nb antisite and
Nb vacancy. This indicates that the strongly localized Nb d

states are poorly described by the semilocal XC functional.
Assuming that the error made by using a semilocal XC
functional is primarily related to the orbital character of
the defect-induced electronic states and their energy position
rather than the size of the supercell, the definition of a nonlocal
exchange correction of DFEs (XC) as the difference in the
DFEs calculated within HSE versus PBE using the same

FIG. 4. (Color online) Defect formation energy difference be-

tween HSE and PBE (at Fermi energy EF = 0) of NbLi, VLi, and

VNb in LN as a function of the charge state.
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120-atom supercell (as in Fig. 4) is meaningful. This allows
for estimation of the error made by finite supercells within
PBCs in addition to the XC-related error. As we show in the
following section, the influence of the PBCs can be corrected
for by extrapolating the DFEs to infinite dimension. Such an
extrapolation procedure, however, cannot be applied directly
to the HSE calculations due to their far larger computational
expense. Instead, we will perform it within DFT-PBE.

B. Estimation of the finite-size error

It is found that even DFEs calculated with a rather large
supercell, containing 240 atoms, are not converged with
respect to the cell size. Indeed, DFEs and CTLs modeled with
cells of different size and geometries lead to different results,
both concerning the relative defect stability and the succession
of the charge states. The discrepancies are particularly severe
in the case of the Nb vacancy. In this case deviations of
several electron volts are found, even for supercells larger
than 270 atoms. The sensitivity of the VNb results with respect
to the application of PBCs confirms earlier findings [16,18].
We remark that not only the size of the supercell, but also
its symmetry is important for a correct description of defect
properties [51]. LN is polarized along the z direction, which
is also the threefold rotation axis that characterizes the C3

symmetry of the defects studied here. In order not to lift this
symmetry due to PBCs, only hexagonal cells have been used.
In fact, defects modeled within nonisotropic repetitions of
the rhombohedral unit cell show pronounced differences with
respect to the sequence of the CTLs, with a tendency for larger
charge jumps.

Using hexagonal unit cells only, the DFEs calculated
within DFT-PBE are extrapolated to infinite unit cell size.
Thereby also the influence of the Madelung correction is
probed. This is illustrated excellently in Fig. 5 for Nb+4

Li , V−1
Li ,

and V−1
Nb . As expected, the Madelung correction reduces the

dependence of the calculated formation energy from the cell
size, for all considered defects. Accordingly, the correction
decreases the slope of the DFEs in Fig. 5. For the most
strongly charged defect investigated, V−5

Nb , the influence of the
Madelung correction on the extrapolated value is about 0.5 eV.
However, since this correction is itself an approximation and
the object of many discussions, we present in the following
DFEs obtained by extrapolating the data calculated without
applying this scheme (blue lines in Fig. 5).

The NbLi and VLi energies calculated using 120-, 240-,
and 360-atom cells show a roughly linear behavior that can
well be extrapolated to infinite cell dimensions. This is not the
case for VNb, which is much more sensitive to the finite-size
effect. The fact that the Madelung correction only marginally
modifies the DFEs indicates that long-range strain fields are
the dominant source of error for the VNb calculations. In order
to probe this presumption we investigate the dependence of
the atomic relaxations around the defect on the supercell size.
Calculations in very large, 540-atom, hexagonal supercells
show atomic displacements larger than 0.01 Å within a radius
of about 6 Å in the case of NbLi and VLi and within a radius of
about 11 Å in the case of VNb. Thus, while NbLi and VLi defects
might be calculated in a nearly strain-free 240-atom cell, the
realistic description of the atomic displacements around VNb

FIG. 5. (Color online) Defect formation energies of Nb+4
Li , V−1

Li ,

and V−1
Nb calculated in hexagonal cells. Lines represent the linear fit

of the calculated points. The effect of the Madelung correction (in

red) is indicated.

clearly requires supercells that contain more than 240 atoms.
Therefore, calculations in 480-, 360-, and 270-atom cells were
used to extrapolate the VNb defect energies.

C. Defect formation energies

If one assumes that the artifacts related to the PBCs
discussed in the previous section, which are mainly due to
spurious electrostatic and strain interactions between the de-
fect and its images, are largely independent of the corrections
needed to account for the use of a semilocal XC functional,
one may calculate DFEs that approximately include both
effects by adding the previously defined XC correction to the
extrapolated PBE results. The results (denoted PBE + XC)
are shown in Fig. 6 (straight lines) in comparison with the
values obtained within HSE and PBE. It is seen that the
PBE + XC results favor the Nb antisite Nb+4

Li for values of
the electron chemical potential in the lower third of the band
gap, while the Li vacancy V−1

Li is most favored for the electron
chemical potential in midgap position. At Fermi level energies
in the upper part of the band gap, the Nb vacancy V−5

Nb is
the most favored isolated point defect. Compared to the PBE
results, the stability of Nb+4

Li is drastically enhanced, while

the stability of V−5
Nb is slightly decreased. The Li vacancy V−1

Li

is more stable than V−5
Nb in PBE + XC for Fermi energies

in the midgap position, whereas these two defects have
almost the same DFEs in PBE. The PBE + XC results thus
support the experimental observations [52,53] that Nb antisites
and Li vacancies are dominant in congruent LN. Our data also
indicate that in some specific cases, where the Fermi energy
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FIG. 6. (Color online) Defect formation energies within PBE,

HSE, and PBE + XC of NbLi, VLi, and VNb in LN as a function

of the Fermi energy.

is in the upper part of the electronic band gap, the Nb vacancy
model describes the LN defect structure. This agrees with
recent LN optical response calculations [8], where the assump-
tion of the Nb vacancy model was found to improve the com-
parison between the simulated spectra and the measurements
for congruent samples. However, in the majority of LN samples
the Fermi energy lies in the lower part of the fundamental
band gap.

The HSE calculations not only affect the relative stability of
the isolated point defects, but also modify the calculated CTLs.
The Nb antisite +1 and +3 states as well as the −4 state of VNb

are unstable in PBE + XC. For Fermi level positions in the
upper half of the band gap, the Nb antisite shows a negative-U
behavior and accepts two additional electrons simultaneously.
Comparing the HSE and PBE + XC results, it can be seen
that the correction of the finite-size error mainly leads to two
changes: The Nb antisite +1 state, which is stable within the
HSE in a very narrow range of electron chemical potentials
close to the CBM, is not observed in the PBE + XC, and the
Li vacancy, which is close to the CBM, is charged −2 in the
HSE and −3 in the PBE + XC. Since these modifications are
restricted to a small range of the Fermi level position close to
the CBM and because Nb+1

Li and V−2
Li are far lower in energy

there, they are not likely to have actual implications for the
LN defect structure. In the majority of congruent LiNbO3

samples, where the Fermi energy is within the lower part of
the electronic band gap, V−1

Li and Nb4+

Li will be the dominant

defect centers. V−5
Nb may occur in strongly n-type samples,

though.
We note that the finite-size and local potential corrections

to the DFEs of the defect centers investigated in this work are
opposite in sign and compensate each other to a certain extent.
This suggests that results obtained within local DFT with
finite-size cells profit from some fortuitus error compensation.

FIG. 7. (Color online) HSE total density of states (arbitrary

units) for stable charge states of NbLi, VLi, and VNb as well as

defect-free LN.

D. Electronic structure

In order to better understand the defect electronic proper-
ties, we have calculated the total electronic density of states
(DOS) and the electronic charge distribution for the stable
charge states of NbLi, VLi, and VNb within hybrid DFT (see
Fig. 7 and Fig. 8, respectively). Thereby, we plot the difference,

ρ(r) = ρ(Xq,r) − ρ(bulk,r) −

∑

i

niρi(r), (6)

in order to highlight the charge redistribution upon defect
formation. Here ρ(Xq ,r) is the total charge density of the
cell with the defect X in the charge state q, ρ(bulk,r) is the
total charge density of a corresponding bulk supercell, ni is
the number of atoms of species i that have been added to
(ni > 0) or removed from (ni < 0) the supercell when the

FIG. 8. (Color online) HSE electron density difference for stable

charge states of NbLi, VLi, and VNb along a (2110) plane. Atomic

color coding as in Fig. 1. Blue and red regions represent electron

depletion and accumulation, respectively.
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defects are created, and ρi(r) represents their atomic charge
distribution.

The antisite NbLi is found to be stable in the charge states
+4 (4d0), +2 (4d2), and 0 (4d4). While the transition (4+/2+)
occurs at midgap and is of crucial importance to understanding
the behavior of congruent LN [9,15], the (2+/0) transition
occurs only for values of the Fermi energy close to the
VBM, where the antisites are energetically unfavorable. Three
empty shallow defect states close to the CBM are observed
for Nb+4

Li , reminiscent of the d0 electron configuration. One
of them is located 0.18 eV below the CBM, and two at
degenerate electronic levels 0.06 eV below the CBM. As
shown in Fig. 8(a), the defect state charge is strongly localized
at the antisite. With rising Fermi level position, this state
captures not a single electron, but two electrons simultaneously
(negative-U behavior), resulting in the Nb+2

Li charge state
(4d2). The now occupied defect level downshifts by 1.28 eV
in midgap position. Thereby the defect complex experiences a
major lattice relaxation, characteristic for negative-U systems.
As shown in Fig. 8(b), the nearest Nb atom along the [0001]
polarization direction moves toward the Nb+2

Li defect by 0.34 Å
and forms a covalent bond. In this charge state the antisite
can be interpreted as a Nb+3

Li (4d1)-Nb+4
Nb(4d1) defect pair. In

turn, this defect complex can be interpreted as a bipolaron,
i.e., the coupling of a neighboring small bound and a small
free polaron [9]. Our hybrid DFT models are in quantitative
agreement with LDA + U calculations by Nahm and Park
[15]. For EF > 4.35 eV, another two electrons are captured
simultaneously, forming two occupied Nb 4d defect states
close to the CBM. Also, in this case there is a strong interaction
between the Nb antisite and the nearest Nb atom in the [0001]
direction.

The Li vacancy V−1
Li is characterized by an almost VBM

resonant defect state. Thereby the charge density localizes at
the O atoms around the Li vacancy. This configuration is stable
for a large range of Fermi energies. For EF > 4.40 eV, two
electrons are captured simultaneously by the empty d orbitals
of the neighboring Nb atoms. A rather delocalized electron
state about 0.3 eV below the CBM is formed [cf. Figs. 7(b)
and 8(c)]. The (−/3−) transition occurs for high values of the
Fermi energy, thus the Li vacancy is expected to be formed
only in the singly negative charge state in the vast majority of
the LN samples.

The Nb vacancy V−5
Nb leads to five defect states that

are energetically about 0.52 eV above the VBM, with a
large defect-induced charge redistribution mainly localized
around the defect and its surrounding O atoms. This defect
practically exists only in the −5 charge state, as the other
stable charge state, i.e., the neutral state, is energetically
strongly unfavorable with respect to other defect centers. The
formation of the defect is accompanied by a sizable structural
relaxation and rearrangement of the Nb 4d states which build
up the VBM. The description of these conduction states is
largely improved within hybrid functionals, which explains the
pronounced dependence of the VNb on the XC formulation.

IV. CONCLUSIONS

In conclusion, the stability and electronic structures of NbLi,
VLi, and VNb point defects in LN have been investigated using
hybrid DFT. Extrapolation of the defect formation energies
calculated for different-sized unit cells to infinite dimensions
allows for the correction of finite-size errors within PBCs. The
inclusion of nonlocal Hartree-Fock exchange provides a value
for the LN band gap much closer to the value calculated at
higher levels of approximation. It also leads to modifications
of the point defect energies and the CTLs. The stability of Nb+4

Li

is enhanced with respect to DFT-PBE simulations. In contrast
to earlier findings [16,18], we find V−5

Nb more favorable with

respect to V−1
Li for Fermi levels in the upper half of the band

gap. This indicates that for specific conditions Nb vacancies
may be formed. These conditions, however, do not correspond
to the majority of the samples, where the Fermi energy is in
the lower half of the electronic band gap. Thus, the present
calculations indicate the coexistence of Nb antisites and Li
vacancies in LN, while Nb vacancies may only be formed
under particular conditions.
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