
Introduce: An Open Source Toolkit for Rapid Development
of Strongly Typed Grid Services

Shannon Hastings & Scott Oster &

Stephen Langella & David Ervin & Tahsin Kurc &

Joel Saltz

Received: 7 June 2006 /Accepted: 15 February 2007 / Published online: 9 March 2007
Springer Science + Business Media B.V. 2007

Abstract Service-oriented architectures and applica-
tions have gained wide acceptance in the Grid
computing community. A number of tools and mid-
dleware systems have been developed to support
application development using Grid Services architec-
tures. Most of these efforts, however, have focused on
low-level support for management and execution of
Grid services, management of Grid-enabled resources,
and deployment and execution of applications that
make use of Grid services. Simple-to-use service
development tools, which would allow a Grid service
developer to leverage Grid technologies without
needing to know low-level details, are becoming
increasingly important for wider application of the

Grid. In this paper, we describe an open-source,
extensible toolkit, called Introduce, that supports easy
development and deployment of Web Services Re-
source Framework (WSRF) compliant services. Intro-
duce is designed to reduce the service development and
deployment effort by hiding low level details of the
Globus Toolkit and to enable the implementation of
strongly typed services. In strongly typed services, a
service produces and consumes data types that are
well-defined and published in the Grid. This enables
data-level syntactic interoperability so that clients and
services can access and consume data elements
programmatically and correctly. We expect that en-
abling strongly typed Grid services while lowering the
difficulty of entry to the Grid via toolkits like Introduce
will have a major impact to the success of the Grid and
its wider adoption as a viable technology of choice in
the commercial sector as well as in academic, medical,
and government research.

Keywords Grid . Grid computing .Web services . Grid
service . Globus .WSDL

1 Introduction

Grid computing is quickly becoming the new means
for creating distributed infrastructures and virtual
organizations for multi-institutional research and
enterprise applications. The Grid has evolved from
being a platform targeted at large-scale computing

J Grid Computing (2007) 5:407–427
DOI 10.1007/s10723-007-9074-8

S. Hastings (*) : S. Oster : S. Langella :D. Ervin :
T. Kurc : J. Saltz
Department of Biomedical Informatics,
The Ohio State University,
Columbus, OH, USA
e-mail: hastings@bmi.osu.edu

S. Oster
e-mail: oster@bmi.osu.edu

S. Langella
e-mail: langella@bmi.osu.edu

D. Ervin
e-mail: ervin@bmi.osu.edu

T. Kurc
e-mail: kurc@bmi.osu.edu

J. Saltz
e-mail: jsaltz@bmi.osu.edu

applications to a new architecture paradigm for
sharing information, data, and software as well as
computational and storage resources. A vast array of
middleware systems and toolkits has been developed
to support applications in the Grid. These include
middleware and tools for service deployment and
remote service invocation [1], security [2–4], resource
monitoring and scheduling [5–8], high-speed data
transfer [9–11], metadata and replica management
[12–16], component based application composition
[17–19], and workflow management [20–22]. Earlier
efforts focused on providing the core functionality
needed by applications to use the Grid environment.
As the number of Grid-enabled resources and appli-
cations has increased, interoperability has become a
major concern, since applications and resources are
heterogeneous, oftentimes managed autonomously,
and programmatic access to resources is desired. In
recent years, a services oriented view of the Grid has
emerged to address interoperability concerns. The
Open Grid Services Architecture (OGSA) [23, 24] has
been developed through standardization efforts coor-
dinated mainly by the Global Grid Forum (http://
www.ggf.org), which includes both academic
researchers and corporate IT leaders, and OASIS
(http://www.oasis-open.org). OGSA specifies a Grid
Services framework and Grid Services standards. The
Grid Services framework builds on and extends Web
Services [25, 26] for scientific applications. It defines
mechanisms for such additional features as stateful
services, service notification, and management of
service/resource lifetime. A more recent effort, the
Web Services Resource Framework (WSRF) stan-
dardization [27], has paved the way for closer
interoperability and unification between stateful Grid
services and Web services.

The most widely used reference implementations
of OGSA, as realized by OGSI (Open Grid Services
Infrastructure), and WSRF are the Globus Toolkit
(GT; http://www.globus.org) version 3.2 (GT 3.2) and
version 4.0 (GT 4.0), respectively. The GT enables
Grid architects to create Grids using standard building
blocks. It also implements support for deployment
and invocation of Grid services, and provides runtime
support for common services such as an Index service
for service registration and discovery and the Globus
Security Infrastructure (GSI) for security. These
components enable service providers to stand up Grid
services, advertise them, discover them, and secure

them. The OGSA, WSRF, and GT provide a foundation
upon which domain specific secure services, tools, and
applications can be developed. However, additional tools
that will make it easier to use Grid technologies in service
and application development and deployment are needed
for wider adoption of the Grid in application domains.

In this paper we present the design and implementa-
tion of an open-source toolkit, called Introduce, which
provides support for development and deployment of
strongly typed, secure Grid services. The goals of our
work are twofold. The first is to reduce the development
time and knowledge required to implement and stand up
Grid Services using the GT. Developing services with
the Globus Toolkit requires a good knowledge of Grid
Services technologies and of the details of the toolkit.
Introduce hides from service developers the complexi-
ties of low-level tools and processes for service
development and deployment. The second goal is to
enable greater levels of interoperability in the Grid
environment. To this end, we implement support in
Introduce for development of strongly typed services. A
strongly typed service is one that consumes and
produces data types that are well-defined and published
in the environment. The use of published types enables
a developer to create compatible and interoperable Grid
services without needing to communicate with other
Grid service developers. We believe that the availability
of tools like Introduce will greatly impact the efficacy
of the Grid in fields where Grid style architectures are
a great change to the everyday development and
management of data and analytical services.

The current implementation of Introduce uses the
GT as the underlying core Grid infrastructure and the
Global Model Exchange (GME) service of the Mobius
framework [16, 28, 29] to support strongly typed Grid
service development. The salient features of Introduce
can be summarized as follows:

& It provides a graphical user interface (GUI) and
high-level functions that encapsulate and hide the
common complexities and low level command-
line tools of the GT for generating a suitable
service layout. These include client and server
wrappers to encapsulate the “boxed” document
literal Grid service calls, functions to create
configurable service properties, functions to spec-
ify resource properties and register metadata,
functions to specify the security configurations

408 S. Hastings, et al.

http://www.ggf.org
http://www.ggf.org
http://www.oasis-open.org
http://www.globus.org

of the service operations of the service, and
support to deploy a service to commonly used
Grid service containers. The service developer can
create and modify Grid service interfaces using a
GUI. Developers can also write their own service
description documents, which the Introduce tool-
kit can use to create and modify a service
programmatically.

& It enables development of strongly typed services.
Using plug-ins, Introduce enables discovery of data
types from virtually any style of data type providers.

& It is customizable and extensible via the use of
extension plug-ins. Plug-ins allow for Introduce to
be customized and its base functionality to be
extended (1) for custom and common service
types in an application domain and (2) to employ
customized discovery mechanisms for common
data types for creating strongly typed services.

& It allows for implementation of secure services. It
leverages all aspects of the GSI in order to provide
customizable service- and method-level security
configuration and code generation. It provides
support for service developers to optionally turn on
authentication and authorization support for individ-
ual service methods as well as the entire service itself.

& It manages all the service-specific files and
directories required by the GT for correct compi-
lation and deployment. It also generates appropri-
ate, object-oriented client APIs which can be used
by client applications to interact with the service.

Introduce is available with the caGrid version 0.5 and
1.0 distributions (https://cabig.nci.nih.gov/workspaces/
Architecture/caGrid); caGrid is the Grid architecture
and middleware infrastructure of the NCI-funded
cancer Biomedical Informatics Grid (caBIG™;
https://cabig.nci.nih.gov) program [30]. Originally
implemented as a tool to assist analytical service
developers in caBIG, Introduce has evolved into a
more generic Grid service development and deploy-
ment toolkit. The current version of Introduce has been
used as the core caBIG service development toolkit in
caGrid version 1.0, which was released in December
2006, to build various types of services ranging from
data services to core security infrastructure services to
biomedical image analysis services. Introduce was also
accepted as an Incubator project for the GT in
November 2006; it is planned to be a subproject of
the GT after the incubation period.

The rest of this paper is organized as follows. We
present the motivation behind Introduce and the
notion of strongly typed service in greater detail in
Section 2. Section 3 provides a review of related work
in toolkits for Grid application development. The
main components of the Introduce toolkit are de-
scribed in Section 4. Additional features of Introduce
and its extension framework are presented in Sections 5
and 6. We conclude in Section 7.

2 Motivation

The need for the Introduce toolkit primarily arose in
the cancer Biomedical Informatics Grid program
(caBIG™, https://cabig.nci.nih.gov), funded by the
National Cancer Institute (NCI). The goal of this
program is to implement a nationwide cancer research
network in order to significantly enhance basic and
clinical research on all types of cancer disease. This
large scale effort uses the Grid Services architecture
as the underlying Grid framework. In this section,
using caBIG as an example, we discuss the motiva-
tions for the two main goals of the Introduce effort;
easy development of secure Grid services and support
for strongly typed service development.

2.1 Easy Development and Deployment of Secure
Grid Services

The principle idea in caBIG is to leverage combined
strengths of individual cancer centers and research
labs by creating common applications, standards,
common data and analytical resources, and software
infrastructure to link these applications and resources.
In this effort, a core Grid infrastructure, called caGrid,
is being developed to facilitate sharing of data and
analytical resources, and to support development of
Grid-enabled applications that make use of these
resources. The infrastructure is designed as a ser-
vice-oriented system, building on the WSRF stan-
dards.1 Being the most complete and widely deployed
reference implementation of the WSRF standard, the
Globus Toolkit (GT) is employed as the Grid

1 The initial release of the caBIG architecture, called caGrid
version 0.5, is built using the OGSA standards and Globus
Toolkit 3.2. The new release, caGrid version 1.0, is developed
using the WSRF standards and Globus Toolkit 4.

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 409

https://cabig.nci.nih.gov/workspaces/Architecture/caGrid
https://cabig.nci.nih.gov/workspaces/Architecture/caGrid
https://cabig.nci.nih.gov
https://cabig.nci.nih.gov

middleware backbone and runtime environment in
caGrid.

caBIG is envisioned to span hundreds of institu-
tions and possibly thousands of investigator and
research laboratories. These institutions may host
software systems of different complexity and maturi-
ty. They may consist of users and application
developers with varying levels of understanding of
distributed systems and the Grid. Thus, one of the
goals of caGrid is to provide tools to make it easier
for institutions, laboratories, and individual research-
ers to leverage the Grid without requiring a great deal
of knowledge of the Grid technologies. The GT
provides support for a suite of core runtime services
and tools for developing and deploying Grid services.
However, these are low level tools, requiring service
developers to understand the details of the GT and
how and in what order the tools should be invoked,
and to keep track of several files and directories that
are required for successful compilation and deploy-
ment of services. The Introduce toolkit helps a service
developer by coordinating the various steps of the
service development and deployment via the tools
provided by the GT and by managing the necessary
directories and files. It abstracts away the details of
invoking the various tools so that the developer is
freed up to concentrate on the details of implementing
his/her domain-specific code.

Security is a required component in caBIG both for
protecting intellectual property and to ensure protec-
tion and privacy of patient related information. In
caBIG, a service provider should be able to enforce
secure and controlled access to resources based on
policies set by the owners of the resources. The
caGrid infrastructure provides higher level services
such as Dorian [4] and the Grid Trust Service (GTS)
for managing and enforcing security. Introduce allows
a service developer to configure the service as a
secure service. When configured, the service can
interact with Grid-wide and local authentication and
authorization services to enforce controlled access to
its methods.

2.2 Strongly Typed Service Development

Interoperability is critical in environments where it is
desirable to access heterogeneous resources program-
matically and the resources are developed and
managed by different groups independently. In

caBIG, for example, there can be multiple data
sources that maintain databases of Gene expression
data at different institutions; similarly, there can be
multiple analytical resources providing microarray
analysis methods. To make the sharing of and remote
access to such resources easy and efficient in caBIG,
applications should be able to access the resources
through common interface syntax and protocols, and
interact with their data structures programmatically.

The Introduce toolkit aims to support and enhance
interoperability in two main categories; architecture-
level and information-level interoperability. The
architecture-level interoperability requires use of
common data and control information exchange
protocols and common interface syntax for program-
matic access to the functionality of a Grid resource.
The OGSA and WSRF enable architecture-level
interoperability by defining standards for data and
information exchange protocols, service creation and
management, and service invocation. A Web or Grid
service exposes its structure and interface definitions
in WSDL so that clients can invoke the service’s
methods and interact with the service remotely.
Introduce leverages WSRF to support architecture-
level interoperability. The information-level interop-
erability, on the other hand, is concerned with
programmatic access to information produced by a
Grid resource and the correct interpretation and
consumption of the information. It is especially
important when information is exchanged between
disjoint groups of data providers and consumers. The
information-level interoperability requires the use of
controlled vocabularies, common data types, and
common information models to represent the infor-
mation. In the context of information-level interop-
erability, we define the notion of strongly typed
service as the class of services in which the input and
output data types of service methods are well-
defined and registered in the Grid environment.

We developed the concept of a strongly typed
service first in the Mobius project [16, 29] in the
context of XML virtualization of data sources. In
Mobius, the structure of a XML document or a data
element provided by a service is required to conform
to a XML schema registered in the environment. In
caBIG, information-level interoperability is addressed
through coordinated management of metadata and
curated objects, bound to underlying semantic con-
cepts. Objects are exchanged between two Grid end

410 S. Hastings, et al.

points (i.e., between services or between clients and
services) in the form of XML documents. The
structure of an object is represented by a registered
and published XML schema. That is, a strongly typed
caBIG service has service methods, whose input and
output data types conform to registered XML
schemas.2 The Introduce toolkit makes use of XML
schemas to enable strongly typed service development
and define data types.

The support for strongly typed services requires the
availability of data type repository services, which
maintain the definition and structure of Grid supplied
data types. Data type repositories are used by service
developers to locate data types which suite their needs
and use them as method input and output parameters.
Having Grid-wide accessible data type repository
services can promote the usage of common data types
across the Grid. Introduce leverages the Global Model
Exchange (GME) service of the Mobius framework as
a data type repository. The GME provides tools and
services for coordinated management of XML
schemas. A XML schema describes the structure of
a simple or complex data element (data object) that is
consumed or produced by a service and is exchanged
between two endpoints in the environment. In GME,
all schemas are registered under namespaces and can
be versioned. A schema can be a new schema, or can
contain pointers to other registered schemas and the
attributes of schemas, or can be generated by ver-
sioning an existing schema (e.g., by adding or deleting
attributes). The concept of versioning schemas is
formalized in GME; any change to a schema is
reflected as either a new version of the schema or a
totally new schema under a different name or name-
space. In this way, data types can evolve while
allowing clients and services to make use of old
versions of the data type, if necessary. Namespaces
enable distributed and hierarchical management of
schemas; two groups can create and manage schemas
under different namespaces without worrying about
affecting each other’s services, clients, and programs.

In domains which publish semantic ontologies,
semantic interoperability can also be facilitated
through the use of ontology aware data type discovery
extensions of Introduce.

3 Related Work

The Globus Service Build Tools Project (http://gsbt.
sourceforge.net/) consists of GT4IDE and globus-
build-services components. The GT4IDE component
is an Eclipse (http://www.eclipse.org) plug-in
designed to aid in the development of GT 4.0
compatible services. The plug-in enables a service
developer to create a service and add methods to the
service. It then generates the stub service to be
implemented by the service developer. Unlike the
Introduce toolkit, which leverages tools provided by
the Eclipse project such as the Java Emitter Templates
(JET), but is a stand-alone application, the GT4IDE
plug-in can only be used in the Eclipse development
environment. Introduce has several additional fea-
tures, which are not part of the GT4IDE implemen-
tation. These features include support for strongly
typed services, hiding of document literal bindings
behind user defined service interfaces, extensibility,
and ability to leverage advanced features of GT 4.0
such as resource properties framework, compositional
inheritance, and service and method level security
configuration. Moreover, GT4IDE mainly facilitates
development of server side capabilities, whereas
Introduce can be used to generate both server side
and client side methods and APIs. The Sun Studio
Creator, JAXR, and JAX-WS 2.0 are Java based
toolkits for development of Web applications and
Web Services (http://java.sun.com/webservices/index.
jsp) and provide an integrated environment to support
development life cycle. Introduce is a toolkit targeted
at WSRF compliant services. The IBM Grid Toolbox
(http://www-1.ibm.com/grid/solutions/grid_toolbox.
shtml) is a suite of integrated tools to aid with
creation and hosting of Grid services using the GT
3.0 platform. Unlike Introduce, which provides access
to service development and deployment functions
from a graphical user interface, the IBM Toolbox
consists of command-line tools (e.g., Ant task and
XML batch file based tools) and APIs that have to be
invoked individually by the service developer. In
addition, the toolbox does not provide support for
strongly typed service development.

Smith et. al. and Friese et. al. [31, 32] lay out the
importance of a model driven architecture (MDA)
approach to generating Grid service oriented archi-
tectures. Their work primarily deals with creating a
service generation system for GT4 which uses an

2 A schema may represent a simple data element such as integer
or a more complex object.

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 411

http://gsbt.sourceforge.net/
http://gsbt.sourceforge.net/
http://www.eclipse.org
http://java.sun.com/webservices/index.jsp
http://java.sun.com/webservices/index.jsp
http://www-1.ibm.com/grid/solutions/grid_toolbox.shtml
http://www-1.ibm.com/grid/solutions/grid_toolbox.shtml

MDA along with a code annotation approach. They
propose an architecture for generating Grid services
using Java annotations. The user can create the Java
service implementation and simply annotate the
methods and resources and their components with
use Java Annotations to process service implementa-
tion and create the Grid service. This work is a nice
concept for easily separating the business logic of a
service from the Grid service implementation; how-
ever, it does not enable the user to clearly stay away
from the complexities of the underlying security,
registration, invocation, or composition processes.
The MDA concepts, however, do hold true in the
Introduce toolkit. The separation in layers between
the business logic (Code Layer), platform binding
(PSM), and overall conceptual design (PIM) are very
relevant to the design philosophies exposed by the
Introduce Toolkit.

gEclipse is a recent project in its definition stages
(http://www.geclipse.eu/). It will develop a framework
as plug-in extensions to the Eclipse infrastructure to
both integrate various existing tools in a unified
environment and build new tools for easy develop-
ment of Grid applications using Java, C/C++, and
other programming languages. Our work differs from
gEclipse in that our effort is focused on development
of WSRF compliant services, strongly typed service
development, and secure service configuration and
deployment.

Morohoshi and Huang [33] propose a toolkit
designed to support service development on top of
the GT3 platform, which is based on the OGSA
standards. An application developer can use the
toolkit GUI to create a basic service by inputting a
set of parameters or a service from a template,
generate service stub from GWSDL (Grid Web
Service Description Language) specification, generate
GWSDL from service method interfaces (imple-
mented in Java), and deploy or undeploy the service.
Mizuta and Huang [34] develop a prototype cartridge
for AndroMDA (http://www.andromda.org), an open-
source model driven architecture (MDA) based code
generation framework, to facilitate GT3-compliant
service development using UML. In their framework,
Grid services are expressed as class diagrams and
models in UML. Their approach allows a service
developer to use existing UML-based modeling
systems to design Grid services. The cartridge
developed for the AndroMDA implements the neces-

sary functions and extensions so that all the files,
directories, source codes, and service data elements are
generated for the service under development. One
limitation of their work is their tool can be used only in
the AndroMDA framework. Introduce has several
features not available in these toolkits. These features
include (1) a more comprehensive extension frame-
work (see Section 6), which goes beyond just
providing service templates and allows complex
plug-ins (providing both logic and custom graphical
components) to be integrated to the toolkit, (2)
support for strongly typed services, and (3) ability to
leverage resource framework of GT4 and composi-
tional inheritance. On the other hand, Introduce could
use a component like AndroMDA and the cartridge as
an extension plug-in in the Introduce extension
framework so that a service can be designed using
UML models.

The Java CoG kits [35, 36] offer a rich set of client
side capabilities to develop clients and access Grid
functions and services. Limited support is provided
for server side capabilities and service development.
The goal of the WSRF .NET [37] project is to develop
a reference implementation of the WSRF standards on
the .NET platform. It supports creation of services
using the ASP.NET and Visual Studio .NET environ-
ments and a set of WSRF .NET tools (e.g., the
PortTypeAggregator tool for service deployment).
The tools are mainly targeted at service side devel-
opment and provide limited functionality for client
side implementation. The Introduce toolkit, on the
other hand, is a stand-alone program and consists of
self-contained suite of components targeted at service
development on the GT4 platform.

P-GRADE [38] and ASKALON [39] are examples
of toolkits that provide support for development of
high-performance applications on cluster platforms
and in the Grid. ASKALON provides a suite of tools
in a service-oriented architecture for performance
measurement, experiment management, performance
bottleneck detection, and performance prediction.
P-GRADE implements a graphical interface and
runtime support to develop and execute PVM and
MPI parallel programs in the Grid. It supports both
interactive and job mode execution of program and
uses scheduling systems like Condor-G [7] for job
scheduling and execution. The graphical interface
allows a developer to define components, component
processes, and communication patterns between com-

412 S. Hastings, et al.

http://www.geclipse.eu/
http://www.andromda.org

ponent processes. GEMLCA [40] is a suite of tools
and services that facilitate deployment of a legacy
program as a Grid service. It employs a non-intrusive
approach in that deployment can be carried out
without making code modifications to the legacy
application; the owner of the application provides a
description of the input and output parameters of the
application, where the application is located, and the
execution environment of the application in a Legacy
Code Interface Description file. The GEMLCA
components and services allow a user to register and
deploy a legacy application in the framework, invoke
it remotely through Grid service interfaces, and get
the status and output of the execution. FORTE HPC
(http://developers.sun.com/sunstudio/products/previ-
ous/fortran/index.html) provides an integrated envi-
ronment for development, debugging, and execution
of high-performance applications written in Fortan
and C. Introduce is complementary to these toolkits in
that it provides tools for development of WSRF
compliant services. P-GRADE, ASKALON, FORTE
HPC, and GEMLCA as well as tools for high-
performance bulk data transfer [10, 11], job schedul-
ing and monitoring [5, 7], could be used in the
Introduce framework to support services that involve
parallel application execution, legacy programs, job
scheduling, and large data transfer.

The Grid Interoperation Now (GIN) community
group of the Open Grid Forum (OGF) (https://forge.
gridforum.org/sf/projects/gin) is leading efforts to
facilitate operational and infrastructure level interop-
erability between different production Grids. The
main areas focused on by the group include interop-
erability between authorization and authentication
services, data management and movement, job de-

scription and submission, and information services.
Introduce promotes the development and use of
strongly typed services through the use of well-
defined and published data types in WSRF compliant
services. This aspect of Introduce can be viewed as
one of the enabling technologies for interoperability at
the level of data structures produced and consumed
by services in different Grids. The User Program
Development Tools research group (http://www.ggf.
org/7_APM/UPDT.htm) has investigated tools to
support development cycle of Grid-enabled applica-
tions with a focus on tools for debugging and tuning
applications. Introduce is a program development
tool, but focuses on support for exposing data and
analytical resources as WSRF compliant services. An
application developer could use performance tuning
and debugging tools along with Introduce to optimize
the performance of their service implementation.

4 Introduce Toolkit

The Introduce toolkit is designed to support the three
main steps of service development (see Fig. 1): (a)
Creation: The service developer describes at the
highest level some basic attributes about the service
such as service name and service namespace. Once
the user has set these service configuration properties,
Introduce will create the basic service implementa-
tion, to which the developer can add application-
specific methods and security options through the
service modification steps. (b) Modification: The
modification step allows the developer to add,
remove, and modify service methods, properties,

Fig. 1 Overall service development process

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 413

http://developers.sun.com/sunstudio/products/previous/fortran/index.html
http://developers.sun.com/sunstudio/products/previous/fortran/index.html
https://forge.gridforum.org/sf/projects/gin
https://forge.gridforum.org/sf/projects/gin
http://www.ggf.org/7_APM/UPDT.htm
http://www.ggf.org/7_APM/UPDT.htm

resources, service contexts, and service/method level
security configuration. In this step, the developer
creates strongly typed service interfaces using well-
defined schemas, which are registered in a system like
the Mobius GME as type definitions of the input
and output parameters of the service methods. (c)
Deployment: The developer can deploy the service
which has been created with Introduce to a Grid
service container (e.g., a Globus or Tomcat service
container).

A service developer can access the functions
required to execute these three steps through the
Graphical Development Environment (GDE) of In-
troduce. The runtime support behind the GDE
functionality is provided by the Introduce engine,
which consists of the Service Creator, Service
Synchronizer, and Service Deployer components. In
this section, we describe the GDE and the core
components of the Introduce engine. Section 5
presents the additional features of the engine, includ-
ing resource framework, support for compositional
inheritance, and support for multi-service/multi-
resource implementations. Introduce is an extensible
toolkit. The extension framework, which allows for
integration of custom service types and discovery of
custom data types, is described in Section 6.

4.1 External Middleware Systems and Tools

Introduce assumes the availability of two external
components to implement its functions. (1) A Grid
runtime environment that provides the support for
compiling, advertising, and deploying Grid services;
(2) A repository of data types, accessible locally or
remotely, that the toolkit can pull common data types
for strongly typed services. The toolkit is designed as a
modular system, in which the specific implementations
of external components can be replaced.

The current implementation of Introduce leverages
the Globus Toolkit (GT), Apache Axis (http://ws.
apache.org/axis/), and Java Naming and Directory
Interface (JNDI; http://java.sun.com/products/jndi/).
Apache Axis is an open source middleware providing
the actual Web Services layer, i.e., SOAP based Web
Service protocol and support for Java bean genera-
tion, resource support via JNDI, and other Web
Service middleware components. Introduce uses the
GT, Axis, and JNDI as the underlying middleware

systems to support development of stateful services,
advertisement of metadata in the form of resource
properties, and deployment of services for execution.
Introduce uses the Mobius GME service [16] as a
repository of XML schemas to support the develop-
ment of strongly typed services. It also has the ability
for custom data type discovery plug-ins, detailed later.

4.2 Introduce Graphical Development Environment

The Introduce Graphical Development Environment
(GDE) is the graphical service authoring tool which
can be used to create, modify, and deploy a Grid
service (see Fig. 2). It is designed to be very simple to
use, enable using community excepted data types, and
provide easy configuration of service metadata,
operations, and security. It also allows customized
plug-ins to be added. These plug-ins enable custom
extensions to Introduce that can be used by service
developers.

The interface contains several screens and options
for the service developer. The service creation screens
enable the developer to create a new service. Using
the interface, the service developer can provide some
basic information such as the name of the service,
package name to use for creating the source code, and
domain name to use in service description (specified
in WSDL), when defining the methods of the service.
The service modification screens allow the service
developer to customize the service by adding,
removing, and modifying service methods and the
input and output parameters of the methods. The
developer can also configure the service to enforce
authentication and authorization via Grid security
infrastructure. Using the data types registration and
discovery screens, the developer can obtain the data
types that he/she wants to use for the service
parameters and return types from any data type
discovery plug-in. The Introduce toolkit comes with
a set of pre-installed discovery plug-ins, such as the
Mobius GME and a basic file system browser which
can be used to locate local schemas. The deployment
component of the GDE allows the service developer
to deploy the implemented Grid service to a Grid
service container. The toolkit currently supports
deploying a service to either a Globus or Tomcat
Grid service container; however, support for other
deployment options can easily be added to the GDE.

414 S. Hastings, et al.

http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://java.sun.com/products/jndi/

4.3 Introduce Engine

The runtime support to enable service creation,
modification, and deployment of Grid services is
provided by the Introduce engine. The engine is the
core piece that tracks changes in a service being
implemented, modifies the service to reflect these
changes, and rebuilds the service to verify that it is
ready to be edited or deployed. In this section, we
describe the main components of this engine.

4.3.1 Service Creator

The service creator is composed of a series of
templates using the Java Emitter Templates (JET)
component, which is part of the Eclipse Modeling
Framework (http://www.eclipse.org/emf/), for gener-
ating source code and configuration files, and a
skeleton set of directories which is used to generate
a Grid service that can be built, registered, and
deployed in the Grid environment.

Fig. 3 Service creation
tools and use of JET tem-
plates for service creation

Fig. 2 The Introduce
Graphical Development
Environment (GDE)

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 415

http://www.eclipse.org/emf/

Templates for source code and configuration files
are used to create all the custom Java source code for
the service and the client APIs, and to generate the
files required by the GT in order to build and deploy a
Grid service (see Fig. 3). Deployment configuration
files are used for resource and resource property
configuration in the form of Java Naming and
Directory Interface (JNDI), resource property regis-
tration configuration, Web Service Deployment De-
scriptor (WSDD), and security configuration. The
basic service created by Introduce is the skeleton of
the service application developer wants to develop

and it does not include such additions as multi-
service/multi-source properties and compositional
inheritance properties. Such additional configuration
and modifications can be performed in the service
modification step. The basic service consists of the set
of method interfaces defined by the service developer
and has the core set of files and processed needed to
compile the service and deploy by the lower level
Grid middleware:

& ANT processes (http://ant.apache.org) for build,
deploy, and test operations,

Fig. 4 Service resynchronization process

416 S. Hastings, et al.

http://ant.apache.org

& Custom configuration files for IDE integration, e.g.,
Eclipse project files for editing the service using the
Eclipse platform (http://www.eclipse.org),

& Standard interfaces for both client and service to
implement,

& Fully implemented client APIs,
& Stub implemented service,
& Configuration to support service metadata and

resource properties and the registration of meta-
data and properties, and

& Configuration for secure service deployment and
authorization.

Examples of the various files and directories
managed by Introduce for a service are illustrated in
the Appendix.

4.3.2 Service Synchronizer

Service resynchronization is the process by which the
source code and configuration generation tools of the
Introduce toolkit analyzes the service’s current imple-
mentation with that of the desired service description.
The overall high level process of service resynchro-
nization is illustrated in Fig. 4. This process adds,
removes, and modifies any service methods, resource
properties, and service settings based on the service
description. The descriptions and configurations for
methods, metadata, and security are those that are
generated from the GDE, programmatically or by
hand, and that can be validated by the Introduce
service schema (Figs. 5 and 6). The service descrip-
tion is the basis by which the code generation tools

Fig. 5 Base Introduce ser-
vice description schema

Fig. 6 Schema for Introduce services

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 417

http://www.eclipse.org

add, remove, and modify operations and metadata,
and change the security configuration of the service by
editing the source code, configuration files, and meta-
data files. This is similar to the way that Axis uses the
WSDL to generate the Grid stubs of the service.

The service synchronizer component manages the
service WSDL description. If a service or method has
been added or removed, the respective WSDL files
must be updated to reflect the changes. Updating the
files requires many auto generated code segments.
External XML schemas, which describe published
data types, must be imported into the respective WSDL
files so that the data types can be located and used to
generate the required Java beans and SOAP bindings.
Both themessage types, which represent the data types
of the input parameters and the return type of a service
method, and the complete operation, which reflects the
Java based signature of the method being exposed,
have to be described in the WSDL file. The synchro-
nization operation automatically keeps this file in sync
so that the service implementation and the Grid service
description represented by the WSDL match up. This
ensures that the methods implemented in the Grid
service can actually be invoked.

The service can have an inheritance model by
adding methods from another service, possibly along
with the implementations of those methods (see
Section 5.3). If a method were imported from another
Grid service, the service synchronizer component
would also pull in the WSDL description of the
method and copy it into the portType of the new
service. This enables the service to have a completely
protocol compatible implementation of the method.

4.3.3 Service Deployer

The service deployment component currently sup-
ports deploying Grid services to a Globus or Tomcat
container. The deployment framework, which is an
ANT based deployer, can easily be extended to
provide deployment capability to other Web Service
containers as well as remote containers. It utilizes the
layout of the Grid Archive (GAR) structure to
organize and package a deployable service. The
deployment process first populates template files (e.g.,
the WSDD and JNDI of the service) which specify
service deployment path or security configuration file
locations. It then gathers the library files required for the
service as well as those library files which contain the

actual runtime code of the service. All configuration
files and service resources are also collected. Finally, a
GAR file is generated for this service. Once the GAR
file has been generated, it can be handed off to the
particular deployment handler for the desired or
appropriate container.

The deployment framework also allows for deploy-
ment-time service properties to be acquired from the
application developer or the user deploying the service.
These custom service properties can be used to define
configurable options for a particular deployment of the
service. For example, if a service implementation
accesses a local database, the username and password
of the database can be specified as service properties.
This allows a very convenient way for those deploying
the service to configure it appropriately for their
environment, without requiring knowledge of how the
Grid service implements these configuration points or a
code change prior to deployment.

5 Additional Features of Introduce Engine

In addition to basic service support, the Introduce
engine has several additional components that imple-
ment features such as compositional inheritance,
resource properties framework, multi-service/multi-
resource contexts, security configuration, and auto-
boxing/unboxing. In this section, we provide an
overview of these components.

5.1 Auto-boxing/Unboxing of Service Operations

Code generation for Grid service interfaces has to
associate the service interface as defined by the
service developer to the actual port type generated
by the GT via Axis. The overall process is compli-
cated due to fact that the GT and Axis use document
literal bindings to create the services portType and
bindings to SOAP. For example, if the service
developer describes a method as shown below:

int foo int bar1; int bar2ð Þ;

The port type method that will be created for the
corresponding Java interface call will look like the
one below:

FooReturn foo FooParameters paramsð Þ;

418 S. Hastings, et al.

This style is known as document literal binding. This
boxing or wrapping of the parameters and the return
type of the service method can be confusing to the
service user and service developer. Since this docu-
ment literal style is exposed directly through the client
API or the service implementation API, every client
using the service will have to box up the parameters
to call the operations of the service and un-box the
results. Not only will this task be cumbersome for
service users, but the document literal interface is not
the interface that the service designer intended to be
provided to its users. The Introduce toolkit will hide
the boxing and un-boxing of methods by providing an
interface to the service, which looks exactly as
described by the service developer and not as
interpreted by Globus via Axis. In order to do this,
the toolkit creates a wrapping layer in the client and
service which both implement the clean interface (non
document literal). These wrapper layers auto-box and
un-box and map the calls from the clean client to the
document literal port type client generated by Globus/
Axis and vice versa for the service (see Fig. 7). It is
worth noting that Introduce created services can still be
accessed via the standard document literal interfaces.

5.2 Resource Properties Framework

Introduce provides support for exposing service state
and metadata provided by the WSRF-ResourcePro-
perties (WSRF-RP) specification by abstracting away
the details of common patterns of use. The WSRF
specifications and the GT implementation of these
specifications allow the creation of stateful Grid
services, whilst remaining compatible with existing
Web Service standards. The state (and metadata) of a
Grid service is maintained in Resources in the WSRF
specification, and is exposed to clients by way of
Resource Properties. Introduce allows its users to
expose state or metadata of their services by manag-
ing the definition, creation, and population of the
Resources and Resource Properties of a service.

Upon creating a service, a service developer is able
to simply select from a list of common resource usage
patterns, and Introduce manages the complete gener-
ation of the necessary backend code and configuration
to implement that pattern. For example, if the user
wants to use a resource pattern which has the ability
to control the lifetime of the resources which are
created, the user will choose the resource lifetime

style of resource pattern, and Introduce will generate a
stubbed resource framework which supports the WS-
ResourceLifetime specification. Once the resource
pattern is defined, a service developer can then use
the existing data type discovery tools (as used to
specify operation inputs and outputs) in order to
expose the state or metadata of its resources by way
of Resource Properties. Developers can either pro-
grammatically control the values of the property at
runtime (as is common for exposed dynamic resource
state), or supply the value from a file at service startup
(as is common for exposed static metadata). Introduce
also allows service developers to maintain soft-state
registration of resource properties. The combination
of these simple-to-use, yet powerful features, allows a
service provider to, for instance, automatically pro-
vide and register a description of its service to a
central repository when the service is instantiated by
the container.

Fig. 7 Mapping from and to document literal port types and
client/service level method syntax

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 419

5.3 Compositional Inheritance

Introduce enables the service developer to import
methods from other services (i.e., from other port-
Types). This notion is called compositional inheri-
tance . Services under the new WSDL 2.0
specification cannot extend portType definitions as
previously accomplished by the pre-WSDL based GT
3.2. In order to simulate portType extension, Intro-
duce implements the ability to copy operation
descriptions from other portTypes and put them in
the service’s own description. When using this
feature, there are various configuration options the
engine must know such as the namespaces of the
operations, and whether or not an implementation of
the operations are already provided or should a
stubbed method be generated just as any other
Introduce defined operation. In order to be sure that
the operation can be correctly imported and copied into
the new portType, the WSDL of this operation and any
referenced schemas must be brought into this new
service and imported. If the operation implementation
is not being provided, the synchronization engine must
add this operation to the services base interface, and
the un-boxing wrapper for this operation must be
generated. If the implementation of this operation is
being provided, the extra code in the interface, its
implementation, and the wrapper do not need to be
added. However, the implementation code, in the form
of a JAR file, must be brought into the new service,
and the operation class must be added to the
operationProviders variable of the WSDD configura-
tion file of this service.

5.4 Multi Service/Multi Resource

In Grid Services architecture it is sometimes required
that a service not only maintain some extra informa-
tion about the service, but also maintain information
(state) which is of particular interest to one or several
particular clients. These styles of Grid services use
cases have driven the requirements for specifying a
mechanism for stateful Grid services via the WSRF
based specifications. Each WSRF service manages its
state by creating and manipulating Resources. The
main restriction is that a given service can only
manage a single given resource type.

Consider a Grid data source, such as the one
shown in Fig. 8, which provides access to a database.
Assume this data source is designed to provide two
capabilities: a “Query” capability, which allows a
client to query into the backend database, and a
“Results Delivery” capability, which provides the
support to iteratively access query results (similar to
a remote cursor). In a Grid service implementation of
the data source, such capabilities are supported
through the Service Context concept in Introduce.
The “Query” capability is implemented as “Query
Context” and the “Results Delivery” capability as
“Results Delivery Context.” Introduce implements
these Service Contexts by creating a WSRF service
for each context (i.e., a Query Service for the Query
context and a Results Delivery Service for the Results
Delivery context), and a corresponding Resource
type. In this example, the Query Service would have
a Resource type that represents the backend database
(s), and the Results Delivery Service would have a

Fig. 8 Stateful Grid service
pattern

420 S. Hastings, et al.

Resource type that represents query results. When a
client submits a query by invoking the query
operation on the Query Service, the service can query
the backend database and then create an instance of
the Results Delivery Service Resource. The query
operation then returns a pointer, or EndPointRefer-
ence (EPR), based on the WS-Addressing specifica-
tion, to this Resource. The client is then able to
interact with the results of the query via the Results
Delivery Service’s client API, passing in the returned
EPR. Through its support for multiple Service
Contexts, Introduce enables this and other Resource
patterns for stateful Grid services.

Each Introduce service has at least one Service
Context (the main service), and can create an arbitrary
number of additional Service Contexts to support more
complex resource usage patterns. Each created context
has a corresponding source directory containing its
own server, client, common, resource, etc. In this way,
resource properties, operations, and security config-
urations can be added, removed, and modified for each
additional context. The corresponding service and
resource of each additional context are modified,
compiled, and deployed with the main service.

5.5 Security

Introduce facilitates the creation and configuration of
secure Grid services using the Grid Security Infra-
structure (GSI) and allows security to be configured at
both the service level and the service method level.
Moreover, security can be enforced on both the client
and service sides. Service developers can specify the
secure communication mechanism(s), in which clients
are allowed to communicate with the service. An
Introduce generated client can automatically be
configured to communicate over the secure commu-
nication mechanism specified by the service. In the
case where multiple secure communication mecha-
nisms are supported by the service, Introduce will allow
the service developer to choose which mechanism the
client will use.

Grid Services often need credentials such that they
may authenticate with one another or so they may
authenticate with clients. Depending on the commu-
nication mechanisms supported and the deployment
scenario, a service may inherit its credentials from
the container hosting the service, or it may be
configured to have its own credentials. In Introduce,

service credentials can be configured in the form of
certificate/private key or in the form of a Grid
proxy. Introduce also facilitates of additional client
security aspects, these include anonymous secure
communication and delegation.

The toolkit allows for the configuration of both
client-side and service-side authorization. Clients can
be configured to perform Self Authorization, Host
Authorization, or Identity Authorization, on a Grid
service before allowing the Grid service to be
invoked. Client side authorization is done based on
the service credentials presented to the client by the
service. On the service side, Introduce allows the
configuration of the Globus Authorization Framework,
which enforces authorization policies on services.

At synchronization time, the Introduce engine
interprets the security configuration and uses it to
configure the service accordingly. Configuration of
service security requires the engine to make modifi-
cations to the client source code, service source code,
security descriptor, and server deployment WSDD.
The client source code is modified to use the
appropriate secure communication mechanism, en-
force the specified client authorization mechanism,
use the delegation mode specified, and whether or not
to communicate anonymously. The service source
code is modified to support the delegation code
specified. A security descriptor is created to specify
the secure communication mechanism supported by
the service, configure the authorization framework,
and to configure the service credentials. Finally the
server deployment WSDD is edited to add any
configuration parameter that may be needed.

6 Introduce Extension Framework

Introduce extension points enable custom plug-ins/
extensions to be added to the Introduce engine to
facilitate customization of services it can create. The
Introduce Extension Framework currently consists of
two styles of extensions; service and data type
discovery. Extensions are added to the toolkit in the
form of extension plug-ins, which the toolkit can then
make it available to the service developer. To provide
an extension to Introduce, the extension provider
must implement or extend the appropriate classes for
the style of extension they wish to provide, and must
fill out the extension XML configuration document.

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 421

6.1 Service Extensions

A service extension is one which enables custom-
ization of the service creation and modification
processes. These extensions can add required oper-
ations, service resources or resource properties, or
security settings, for example. The service extension
allows the user to provide custom code that will be
executed at different times throughout the creation
and modification processes of service development. A
service extension consists of 5 main extension
components that can be implemented and provided
by the developer: CreationUI, ModificationUI, Crea-
tionPostProcess, ModificationPreProcess, and Modifi-
cationPostProcess. Each of these extension components
have a predefined class and interface that must be
extended or implemented. Two of the service extension
components, CreationUI and ModificationUI, are
graphical components provided to the Introduce GDE,
and the other three are Introduce engine plug-ins.

Each service extension component is invoked at a
specific point in the creation or modification steps
(Fig. 9). These different time points for each
component execution are critical for making certain
changes. For example, when the CreationUI compo-
nent for a particular extension is executed, the service
has been created as a blank service and no modifica-

tion or synchronization has been done on the service.
At this point the CreationUI component might prompt
the user for particular information about the creation
processes. This component would only be executed/
displayed once for any given service and its non
graphical component, the CreationPostProcess com-
ponent, will also only be ran one time after the service
has been created and before it will ever be modified.

The modification components are run every time a
service is saved and synchronized. The graphical
modification component is always available in the
Introduce GDE during modification time. The two
service modification engine components, Modification-
PreProcess and ModificationPostProcess are executed
respectively, before and after the synchronization
process is executed. This enables ModificationPrePro-
cess to do such things as modify the service description,
represented by the Introduce service description file, or
the WSDL files of the services. The ModificationPost-
Process, on the other hand, might move in required
files, or populated stubbed methods, etc.

6.2 Data Type Discovery Extensions

These extensions are Introduce GDE components that
are accessed at the service modification step. They are

Fig. 9 Execution of Introduce extension components

422 S. Hastings, et al.

intended to provide support for custom data type
discovery for the service developer. They must allow
the developer to browse types and chose to use those
types in the developed service. This means that a data
type discovery extension will have to be able to copy
the schemas which represent the data types down to
the service’s schema directory and produce a Name-
spaceType object for the namespace of each separate
data type. This enables the Grid service to utilize the
schemas for describing the data types which are used
in the WSDL messages traveling in and out of the
created service.

7 Conclusion

Grid computing has become the technology of choice
that enables more effective use of distributed data,
analytical, information, computational, and storage
resources in coordinated, multi-institutional efforts
and for large scale applications. The need for highly
interoperable infrastructure is becoming more impor-
tant in order to address the highly heterogeneous and
dynamic nature of organizations and groups within
them. The Grid Services technology offers a viable

platform to meet this need and facilitate the applica-
tion of Grid computing in a wider range of application
domains. In this paper, we have proposed and
presented a toolkit, called Introduce, that is designed
to facilitate rapid development of strongly typed,
WSRF-compliant secure Grid Services and that
supports the main steps of service development;
service creation, service modification, and service
deployment. In addition to ease-of-use and hiding the
complexity of low-level Grid middleware infrastruc-
ture, Introduce encapsulates several novel features:
(1) It supports development of strongly typed ser-
vices, in which input and output parameters of service
methods are drawn from published, community-
accepted data types. Strongly typed services enables
increased syntactic interoperability among services
and are critical to programmatic access to and correct
handling of data returned from services. (2) It allows
for service developers to easily leverage advanced
features of WSRF and the GT 4.0 such as resource
framework, multi-resource/multi-service, and compo-
sitional inheritance. (3) It provides a powerful
extension framework for Introduce users to customize
and extend the base Introduce functionality. Through
use of plug-ins, this framework goes beyond simple

Fig. 10 Basic service layout of an example service created by Introduce

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 423

extensibility via service templates and enables integra-
tion of both custom code/template generation logic and
custom graphical components as complex plug-ins.

The design of Introduce is motivated mainly by the
caBIG effort and its Grid infrastructure, called caGrid,

designed to support implementation, execution, and
management of services and applications in the caBIG
environment. Introduce has been successfully employed
in the development of services within the caBIG caGrid
infrastructure as well as data and analytical services that

Fig. 11 Source files used in an example service created by Introduce

Fig. 12 Example common/configuration files on an example service created by Introduce

424 S. Hastings, et al.

make use of the caGrid functionality. We believe that
Grid service development tools such as Introduce and
other related technologies will help bring the technology
of Grid Computing to the forefront of distributed
infrastructure and greatly increase the adoptability of
Grid service technologies in areas from scientific
research to business computing.

In the future we plan to provide even higher level
of service interoperability at the semantic level. We
plan to investigate the notion of not only designing
services from common public data types but also from
publicly available modeled operation signatures or
even service interfaces. We anticipate that increasing
the availability of these types of information and
providing tools which can aid in the creation of Grid
services from them will enable a higher level of
semantic interoperability, which will lead to API
harmonization across domains.

Appendix

Examples of the Various Files and Directories
Managed by Introduce for a Service

Figure 10 shows a basic service layout as created by
the Introduce Service Creator component. It shows
which pieces of this example service are generated by
the code generation tools, which pieces are built by
the underlying Globus/Axis tools, and which pieces
are to be implemented by the service developer.

Figure 11 describes what some particularly critical
source files are generated for in an example service
created by the Introduce engine. When a WSDL file is
parsed by the Axis engine, a PortType interface is
created which is the Java representation of the API of
the Grid service. The Axis generated PortType
interface must then be implemented on the service
to provide the services implementation. In order to
enable the service developer to implement a cleaner,
non-documument literal interface, Introduce will
automatically create the implementation of this
PortType interface (HelloWorldProviderImpl). The
Introduced generated implementation of this interface
will unbox the document literal calls ot the service
and pass them on to the unboxed/clean interface
(HelloWorldI) which the user defined. Introduce will
generate a stubbed implementation of this interface

(HelloWorldImpl) which the user will be responsible
for implementing. This class will maintain the
services implementation of the methods. This enables
the service designer to be shielded from the details of
the Axis document literal Grid service interface and
enable them to implement an interface which is as
then originally described. The figure also illustrates
the example service’s resource and resource home,
which are generated to manage the service resource
and the service resource properties, respectively.

Figure 12 shows the use of the different common
files of an example Introduce created service. It shows
the files used for configuring registration and security
for the Grid service, as well as those used by Introduce
for synchronization, and those used for build and
deployment. This example service created by Introduce
also contains Eclipse project files so that the service
can easily be edited using the Eclipse platform (http://
www.eclipse.org).

References

1. Foster, I., Kesselman, C.: Globus: a metacomputing
infrastructure toolkit. Int. J. High Perform. Comput. Appl.
11, 115–128 (1997)

2. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security
architecture for computational Grids. In: Proceedings of the
5th ACM Conference on Computer and Communications
Security Conference, pp. 83–92. ACM, New York (1998)

3. Welch, V., Siebenlist, F., Foster, I., Bresnahan, J.,
Czajkowski, K., Gawor, J., Kesselman, C., Meder, S.,
Pearlman, L., Tuecke, S.: Security for Grid services. In:
12th International Symposium on High Performance
Distributed Computing (HPDC-12), 2003

4. Langella, S., Oster, S., Hastings, S., Siebenlist, F., Kurc, T.,
Saltz, J.: Dorian: Grid service infrastructure for identity
management and federation. In: The 19th IEEE Sympo-
sium on Computer-Based Medical Systems, Special Track:
Grids for Biomedical Informatics, Salt Lake City, Utah,
2006

5. Wolski, R., Spring, N., Hayes, J.: Network weather service: a
distributed resource performance forecasting service for meta-
computing. Future Gener. Comput. Syst. 15, 757–768 (1999)

6. Czajkowski, K., Foster, I., Kesselman, C., Sander, V.,
Tuecke, S.: SNAP: a protocol for negotiating service level
agreements and coordinating resource management in
distributed systems. In: Job Scheduling Strategies for
Parallel Processing, vol. 2537, pp. 153–183. Springer,
Berlin Heidelberg New York (2002)

7. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.:
Condor-G: a computational management agent for multi-
institutional Grids. In: Proceedings of the Tenth Interna-

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 425

http://www.eclipse.org
http://www.eclipse.org

tional Symposium on High Performance Distributed Com-
puting (HPDC-10). IEEE Press, Piscataway, NJ (2001)

8. Casanova, H., Graziano, O., Berman, F., Wolski, R.: The
appLeS parameter sweep template: user-level middleware
for the Grid. In: Proceedings of the ACM/IEEE Super-
computing Conference (SC2000). IEEE Computer Society
Press, Los Alamitos, CA (2000)

9. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.,
Foster, I., Kesselman, C., Meder, S., Nefedova, V.,
Quesnal, D., Tuecke, S.: Data management and transfer in
high performance computational Grid environments. Paral-
lel Comput. 28, 749–771 (2002)

10. Allcock, W.E., Foster, I., Madduri, R.: Reliable data
transport: a critical service for the Grid. In: Proceedings
of Building Service Based Grids Workshop, Global Grid
Forum 11, Honolulu, HI, 2004

11. Chervenak, A., Deelman, E., Kesselman, C., Allcock, B.,
Foster, I., Nefedova, V., Lee, J., Sim, A., Shoshahi, A.,
Drach, B., Williams, D., Middleton, D.: High-performance
remote access to climate simulation data: a challenge
problem for data Grid technologies. Parallel Comput. 29,
1335–1356 (2003)

12. Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W.,
Iamnitchi, A., Kesselman, C., Kunst, P., Ripeanu, M.,
Schwartzkopf, B., Stockinger, H., Tierney, B.: Giggle: a
framework for constructing scalable replica location services.
In: Proceedings of the ACM/IEEE Supercomputing Confer-
ence (SC2002), pp. 1–17. IEEE Computer Society Press, Los
Alamitos, CA (2002)

13. Ranganathan, K., Foster, I.: Identifying dynamic replication
strategies for high performance data Grids. In: Proceedings
of International Workshop on Grid Computing (GRID
2002) Denver, CO, 2002

14. Deelman, E., Singh, G., Atkinson, M.P., Chervenak, A.,
Chue Hong, N.P., Kesselman, C., Patil, S., Pearlman, L.,
Su, M.: Grid-based metadata services. In: Proceedings of
the 16th International Conference on Scientific and
Statistical Database Management (SSDBM ‘04), 2004

15. Singh, G., Bharathi, S., Chervenak, A., Deelman, E.,
Kesselman, C., Mahohar, M., Pail, S., Pearlman, L.: A
metadata catalog service for data intensive applications. In:
Proceedings of the ACM/IEEE Supercomputing Confer-
ence (SC2003), 2003

16. Hastings, S., Langella, S., Oster, S., Saltz, J.: Distributed data
management and integration: theMobius project. Proceedings
of the Global Grid Forum 11 (GGF11) Semantic Grid
Applications Workshop, Honolulu, HI, pp. 20–38, 2004

17. Allen, G., Dramlitsch, T., Foster, I., Goodale, T., Karonis, N.,
Ripeanu, M., Seidel, E., Toonen, B.: Cactus-G toolkit:
supporting efficient execution in heterogeneous distributed
computing environments. In: Proceedings of the 4th Globus
Retreat Pittsburg, PA, 2000

18. Furmento, N., Lee, W., Mayer, A., Newhouse, S., Darlington,
J.: ICENI: an open Grid service architecture implemented
with JINI. In: Proceedings of the ACM/IEEE Supercomputing
Conference (SC2002) Baltimore, MD. IEEE Computer
Society Press, Los Alamitos, CA (2002)

19. Beynon, M., Kurc, T., Sussman, A., Saltz, J.: Design of a
framework for data-intensive wide-area applications. In:

Proceedings of the 9th Heterogeneous Computing Work-
shop (HCW2000), pp. 116–130. IEEE Computer Society
Press, Los Alamitos, CA (2000)

20. Altintas, I., Bhagwanani, S., Buttler, D., Chandra, S.,
Cheng, Z., Coleman, M., Critchlow, T., Gupta, A., Han, W.,
Liu, L., Ludascher, B., Pu, C., Moore, R., Shoshani, A., Vouk,
M.: A modeling and execution environment for distributed
scientific workflows. In: Proceedings of the 15th International
Conference on Scientific and Statistical Database Manage-
ment (SSDBM ‘03) Boston, MA, 2003

21. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A.,
Cavanaugh, R., Koranda, S.: Mapping abstract complex
workflows onto Grid environments. J. Grid Computing 1,
25–39 (2003)

22. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: a
virtual data system for representing, querying, and auto-
mating data derivation. In: Proceedings of the 14th
Conference on Scientific and Statistical Database Manage-
ment (SSDBM ‘02), 2002

23. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The
Physiology of the Grid: An Open Grid Services Architec-
ture for Distributed Systems Integration. Open Grid Service
Infrastructure Working Group Technical Report, Global
Grid Forum. http://www.globus.org/alliance/publications/
papers/ogsa.pdf (2002)

24. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the
Grid: enabling scalable virtual organizations. Int. J. Super-
comput. Appl. 15, 200–222 (2001)

25. Cerami, E.: Web Services Essentials. O’Reilly (2002)
26. Graham, S., Simeonov, S., Boubez, T., Davis, D., Daniels, G.,

Nakamura, Y., Neyama, R.: Building Web Services with Java:
Making Sense of XML, SOAP, WSDL, and UDDI. SAMS
Publishing (2002)

27. Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J.,
Graham, S., Sedukhin, I., Snelling, D., Tuecke, S.,
Vambenepe, W.: The WS-Resource Framework Version
1.0. http://www.globus.org/wsrf/specs/ws-wsrf.pdf (2004)

28. Hastings, S., Langella, S., Oster, S., Kurc, T., Pan, T.,
Catalyurek, U., Janies, D., Saltz, J.: Grid-based management
of biomedical data using an xML-based distributed data
management system. In: Proceedings of the 20th ACM
Symposium on Applied Computing (SAC 2005), Bioinfor-
matics Track, Santa Fe, NewMexico. ACM, NewYork (2005)

29. Langella, S., Hastings, S., Oster, S., Kurc, T., Catalyurek, U.,
Saltz, J.: A distributed data management middleware for
data-driven application systems. In: Proceedings of the 2004
IEEE International Conference on Cluster Computing
(Cluster 2004), 2004

30. Saltz, J., Oster, S., Hastings, S., Kurc, T., Sanchez, W.,
Kher, M., Manisundaram, A., Shanbhag, K., Covitz, P.:
caGrid: design and implementation of the core architecture
of the cancer biomedical informatics Grid. Bioinformatics
22(15), 1910–1916 (2006)

31. Smith, M., Friese, T., Freisleben, B.: Model driven
development of service oriented Grid applications. In:
Advanced International Conference on Telecommunica-
tions and International Conference on Internet and Web
Applications and Services (AICT-ICIW ‘06), 2006

426 S. Hastings, et al.

http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

32. Friese, T., Smith, M., Freisleben, B.: Grid development
tools for eclipse. In: Eclipse Technology eXchange work-
shop (eTX) at ECOOP 2006, Nantes, France, 2006

33. Morohoshi, H., Huang, R.: A user-friendly platform for
developing grid services over globus toolkit 3. In: The
2005 11th International Conference on Parallel and Dis-
tributed Systems (ICPADS’05), 2005

34. Mizuta, S., Huang, R.: Automation of Grid service code
generation with AndroMDA for GT3. In: The 19th
International Conference on Advanced Information Net-
working and Applications (AINA’05), 2005

35. von Laszewski, G., Foster, I., Gawor, J., Lane, P.: A Java
commodity grid kit. Concurr. Comp.-Pract. E. 13, 643–662
(2001)

36. von Laszewski, G., Foster, I., Gawor, J., Smith, W.,

Tuecke, S.: CoG kits: a bridge between commodity
distributed computing and high performance Grids. In:
ACM Java Grande 2000 Conference, 2000

37. Humphrey, M., Wasson, G.: Architectural foundations of
WSRF .NET. JWSR 2, 83–97 (2005)

38. Kacsuk, P., Doza, G., Kovacs, J., Lovas, R., Podhorszki, N.,
Balaton, Z., Gombas, G.: P-GRADE: a Grid programming
environment. J. Grid Computing 1, 171–197 (2003)

39. Fahringer, T., Jugravu, A., Pllana, S., Prodan, R., Seragiotto,
C. Jr., Truong, H.-L.: ASKALON: a tool set for cluster and
Grid computing. Concurr. Comp.-Pract. E. 17, 143–169
(2005)

40. Delaitre, T., Kiss, T., Goyeneche, A., Terstyanszky, G., Winter,
S., Kacsuk, P.: GEMLCA: running legacy code applications as
Grid services. J. Grid Computing 3, 75–90 (2005)

Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services 427

	Introduce: An Open Source Toolkit for Rapid Development of Strongly Typed Grid Services
	Abstract
	Introduction
	Motivation
	Easy Development and Deployment of Secure Grid Services
	Strongly Typed Service Development

	Related Work
	Introduce Toolkit
	External Middleware Systems and Tools
	Introduce Graphical Development Environment
	Introduce Engine
	Service Creator
	Service Synchronizer
	Service Deployer

	Additional Features of Introduce Engine
	Auto-boxing/Unboxing of Service Operations
	Resource Properties Framework
	Compositional Inheritance
	Multi Service/Multi Resource
	Security

	Introduce Extension Framework
	Service Extensions
	Data Type Discovery Extensions

	Conclusion
	Appendix
	Examples of the Various Files and Directories Managed by Introduce for a Service

	References

