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Abstract: In this study, a novel Multivariable Adaptive Neural Network Controller (MANNC) is
developed for coupled model-free n-input n-output systems. The learning algorithm of the proposed
controller does not rely on the model of a system and uses only the history of the system inputs and
outputs. The system is considered as a ‘black box’ with no pre-knowledge of its internal structure. By
online monitoring and possessing the system inputs and outputs, the parameters of the controller
are adjusted. Using the accumulated gradient of the system error along with the Lyapunov stability
analysis, the weights’ adjustment convergence of the controller can be observed, and an optimal
training number of the controller can be selected. The Lyapunov stability of the system is checked
during the entire weight training process to enable the controller to handle any possible nonlinearities
of the system. The effectiveness of the MANNC in controlling nonlinear square multiple-input
multiple-output (MIMO) systems is demonstrated via three simulation studies covering the cases
of a time-invariant nonlinear MIMO system, a time-variant nonlinear MIMO system, and a hybrid
MIMO system, respectively. In each case, the performance of the MANNC is compared with that of a
properly selected existing counterpart. Simulation results demonstrate that the proposed MANNC
is capable of controlling various types of square MIMO systems with much improved performance
over its existing counterpart. The unique properties of the MANNC will make it a suitable candidate
for many industrial applications.

Keywords: adaptive neural networks; model-free control; auto-tuning; error back-propagation;
accumulated gradient; nonlinear systems; closed-loop stability

1. Introduction

Over the past few years, there has been a significant improvement in controlling
Multiple-Input Multiple-Output (MIMO) systems using adaptive control methods [1]. Many
proposed adaptive controllers rely on model-based approaches [2,3] where mathematical
models of the respective dynamic systems must be identified either directly or indirectly in
advance. For most industry applications in practice, however, there are significant challenges
with MIMO systems’ model identifications. For instance, a predicted industrial plant model
can be dynamically different from the true plant itself, due largely to the plant’s structural
uncertainties, unmodeled nonlinearities, and time-varying natures [4–6]. In some cases, if
a constraint of an actual system for any reason changes, in order to achieve the desired
outcomes, the system’s model may need to be re-identified resulting in a redesigning of the
corresponding controller [7]. Even at the circumstances where an exact model of a MIMO
system could be identified, the controller designed for the predicted model of the system
may still be subjected to conditional variations both internal and external to the system [8].
Due to these practical problems associated with model-based approaches, many existing
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adaptive control schemes are seen to be impractical or limited in controlling real industrial
MIMO plants. In contrast to model-based approaches, model-free approaches [9–12] can
entirely omit the modeling phase of a system, thus significantly reducing the time required
for the design and tuning of the system’s real-time controller. This will result in a faster
and more precise control outcome [13–15]. Due to this consideration, model-free controllers
are becoming more preferable than their corresponding model-based counterparts, espe-
cially for industrial MIMO control applications, where the modeling phase of a true plant
can be time consuming and inaccurate. Among the recently introduced model-free control
methods [13,15–19], the neural network technique stands out as a powerful and practical
tool for controlling MIMO systems due mainly to its excellent capabilities in dealing with
large volumes of data, estimating ambiguous relationships between a system’s inputs and
outputs, and predicting future behaviors of a system. The application of neural networks is
not limited to the MIMO systems and has been widely used in a range of engineering solu-
tions, including substance characterizing [20–23], industrial engineering [24,25], microwave
engineering [26,27], radiation accuracy [28,29], and measurement technologies [30–33]. Other
nature-based algorithms, such as particle swarm [34–36], grey wolf [37–39], genetic algo-
rithm [40], and ant colony [41], can be used in conjunction with the neural networks for
further performance improvement.

Recently, by adding adaptive features to neural network schemes, adaptive neural
networks have been seen in controlling MIMO systems successfully [42–48]. Many adaptive
control methods based on neural networks have been introduced to Single-Input Single-
Output (SISO) systems and further developed for Uncoupled Multiple-Input Multiple-
Output (U-MIMO) systems [49–52]. In [45], a neural network controller and its associated
learning rules are proposed, which can be successfully applied to Single-Input Multi-
Output (SIMO) plants. This controller is a combination of several SISO controllers cascaded
together and cannot be further developed for coupled MIMO systems. Since in general
control problems are more challenging if cross-couplings among the various inputs and
outputs of a MIMO system exist, model-free control of coupled MIMO systems has become
an active area of research with a growing number of publications [53–59]. Despite some
improvements, however, neural network-based controllers have not been extensively used
in industrial model-free control systems due to the following apparent deficiencies [60]:

• During the weight training process of the neural networks, the controlled systems can
become unstable;

• It is not always clear when to stop the weight training process;
• A long training time for the weights can be unsatisfactory for the speed of the con-

trol systems;
• The traditional activation functions employed in the neural networks may not be

suitable for control purposes;
• The common error back-propagation learning algorithm uses only the last two con-

secutive samples of the outputs in discrete derivative functions and does not comply
with the requirement of a proper model-free approach in which a full history of inputs
and outputs must be used in order to generate an effective control action.

In order to overcome the above-listed deficiencies, in this study, a novel model-free
Multivariable Adaptive Neural Network Controller (MANNC) is proposed for controlling
coupled MIMO systems in which the following are true.

By using the constraint generated from the Lyapunov stability conditions at each
step of the online weight training process, the overall control system stability can be
guaranteed at all time; this eliminates the risk of the system been falling into its local
minimum [61,62] and prevents the loss of the control speed due to conservative learning
rate selections [15,18,47,62,63]:

• By constantly observing the accumulated errors and comparing them with their
desired values, the controller can decide to stop the learning algorithm and lock
the neural network weights at an optimal point; this ensures the convergence of the
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controller weight adjustments and provides a clear optimal number for the weight
training steps;

• By choosing proper initial learning rates and dynamically changing them during the
learning process according to the system stability criteria, the weight training speed
can be significantly increased; this forms a clear comparison with and improvement
over the traditional static learning rates [15,18,47,62,63];

• By designing specific activation functions that utilize typical proportional, integral,
and derivative operations in the neural network structure of the controller, the pro-
posed controller is simple and straightforward in its configuration; this makes the
controller a potential candidate suitable for replacing classical PID controllers in
industrial applications;

• By applying accumulated gradients in the error back-propagation algorithm and using
new partial derivative estimations, the proposed method fully uses the history of the
system outputs together with the current weights to produce the outputs of the controller
(the inputs of the system) for the next step. This new learning method significantly
reduces the overshoot and settling time of the system by minimizing the summation of
errors of the system outputs in each step rather than using only the last two consecutive
samples of the system outputs as its traditional counterparts do [61,64–67], and allows for
the closed-loop system to achieve its best control performance with a minimum number
of weight training steps.

It is anticipated that, being truly model-free, the proposed MANNC can generate
adequate control actions over a wide range of operating conditions. Additionally, by using
a new cross-coupling network structure, the proposed controller is expected to be able to
control strongly-coupled MIMO systems effectively. It should be mentioned that, according
to the design to be presented in this paper, the proposed MANNC will only be applicable
for square (n × n) MIMO systems. If an industrial MIMO system has different numbers
of inputs and outputs, by squaring up (adding) or squaring down (removing) the inputs
(i.e., the manipulated variables) or the outputs (i.e., the controlled variables), the given
non-square MIMO system can be rewritten as a corresponding square MIMO system [68]
to which the proposed MANNC will be applicable.

To reveal the proposed MANNC, the rest of this paper is organized as follows. In
Section 2, the structure and matrix representation of the new neural network-based adaptive
controller are introduced. In Section 3, the new learning method of the neural network
based on the error back-propagation algorithm is described. The closed-loop system
stability is analyzed in Section 4. In Section 5, the controlled system and the introduced
method are specified for SISO systems. Section 6 demonstrates the validation results via
simulation studies where the proposed method is seen to control three chosen nonlinear
MIMO systems of a drum-boiler, a time-variant nonlinear MIMO system, and a hybrid
system without the use of their respective models. Conclusions in relation to the design are
drawn in Section 7.

2. Multivariable Adaptive Neural Network Controller
2.1. Closed-Loop Structure of MANNC

As previously proposed in [18] by the authors, the outputs of three types of neurons:
P-type, I-type, and D-type, in the discrete form can be respectively expressed as:

oP(k) = netP(k) (1)

oI(k) = oI(k− 1) + netI(k) (2)

oD(k) = netD(k)− netD(k− 1) (3)
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where oX(k) and netX(k) represent the X-type neuron’s output and input at the kth sample
time, respectively. In this study, for stability concerns, further constraints to the neurons’
activation functions of Equations (1)–(3) are applied as follows:

oP(k) =


1 netP(k) > 1

netP(k)− 1 ≤ netP(k) ≤ 1
−1 netP(k) < −1

(4)

oI(k) =


1 netI(k) > 1

oI(k− 1) + netI(k)− 1 ≤ netI(k) ≤ 1
−1 netI(k) < −1

(5)

oD(k) =


1 netD(k) > 1

netD(k)− netD(k− 1)− 1 ≤ netD(k) ≤ 1
−1 netD(k) < −1

(6)

In [18], a new Adaptive Neural Network Controller (ANNC) structure was proposed.
The ANNC contained six neurons and three layers. In the input layer, there are two P-type
neurons, which perform the distribution of the inputs in the constructed neural network.
In the hidden layer, there are three neurons each being a P-type, an I-type, and a D-type,
respectively; the P-neuron compares the desired output with the actual output; the I-neuron
provides the necessary action to eliminate the steady-state error; the D-neuron predicts the
future behavior of the error. In the output layer, there is a P-type neuron, which performs
the summation of the PID functionalities of the neuron. In this paper, a new Multivariable
Adaptive Neural Network Controller (MANNC) is proposed in Figure 1a as a closed-loop
MIMO controller applicable to coupled square (n× n) multivariable systems.
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Figure 1. (a) Structure of the proposed MANN, (b) S-MANNC structure, (c) flowchart of real-time
simultaneous stability criteria check and weight adjustment algorithm for MANNC, and (d) applying
MANNC to a SISO system.

Assuming that there are strong cross-coupling between the n inputs and n outputs of
a MIMO system of concern, the proposed MANNC is designed using a n− 3n− n neural
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network structure. In this structure, the error for each output (i.e., the difference between
each desired output (ri) and its corresponding actual output (yi) (i = 1, 2, . . . , n)) is
generated, and the generated errors propagate to the two layers, the hidden layer and the
output layer of the MANNC network. In the hidden layer, there are 3n neurons including
clusters of P-type, I-type, and D-type neurons that are repeated consecutively. In the output
layer, there are n P-type neurons that form the outputs of the MANNC, i.e., the inputs of
the n× n MIMO system. There are 3n2 weights in the output layer that are associated with
the hidden-layer neurons and decide the impact of each neuron of the hidden layer on the
generation of the inputs applied to the MIMO system.

2.2. Structure of Sub-MANNC (S-MANNC)

To be able to deal with the cross-couplings of an n× n MIMO system of concern, the
proposed MANNC structure in Figure 1a is further decomposed into n-parallel sub-controllers
each named as a Sub-MANNC (S-MANNC) and illustrated in Figure 1b. The neural network
associated with the lth S-MANNC with input rl and output yl (l = 1, 2, . . . , n) is designed
to have two layers (hidden layer and output layer) and four neurons; each neuron is able to be
connected with the neurons of the other S-MANNCs in order to account for the cross-coupling
effects of the underlying MIMO system. In the hidden layer of the lth S-MANNC, there
are three neurons each being a P-type, an I-type, and a D-type, respectively. The P-neuron
amplifies the difference between the desired output and the actual output, the I-neuron
provides the necessary action to eliminate the steady-state error, and the D-neuron predicts
the future behavior of the error. In the output layer of the lth S-MANNC, there is a P-type
neuron, which performs the summation of the PID functionalities of the hidden-layer neurons.
This neuron accumulates the outputs of the hidden layer and forms the control command
applied to the lth output of the n× n MIMO system. Due to the fact the MANNC will be
used for controlling coupled multivariable systems, the output neuron of each S-MANNC
has ‘n’ number of inputs to be able to produce each control command by considering all the
desired outputs and actual outputs. The inputs of the P-type, I-type, and D-type neurons
(net1

3l−2, net1
3l−1, and net1

3l) and the outputs of these neurons (O1
3l−2, O1

3l−1, and O1
3l) are

related together by the activation functions of the neurons represented in Equations (4)–(6).
There are three weights (w1,3l−2, w1,3l−1, and w1,3l) in the output layer of each S-MANNC,
relating to the P-type, I-type, and D-type neurons in the hidden layer.

2.3. Matrix Representation

The matrix representation of a closed-loop square MIMO system using the proposed
MANNC Figure 1a and S-MANNC (Figure 1b) is derived as follows. Let O2

l and yl be,
respectively, the lth input and the lth output of the system, where 1 ≤ l ≤ n, and let Gij be
the transfer function relating the jth-component of the ith output (yi) to the jth input (O2

j ),
where 1 ≤ i ≤ n and 1 ≤ j ≤ n. The vectors and matrices associated with Figure 1b are
named in Table 1 and are defined as follows.

Y = Yn×1 =
[

y1 y2 · · · yl · · · yn
]

1×n
T (7)

O2 = O2
n×1 =

[
O2

1 O2
2 · · · O2

l · · · O2
nn

]
1×n

T (8)

G = Gn×n =



G11
G21

...

G12
G22

...

· · · G1l · · · G1n
· · · G2l · · · G2n

...
Gl1

...
Gn1

Gl2
...

Gn2

· · · Gll · · · Gln
...

...
· · · Gnl · · · Gnn


n×n

(9)

net2 = net2
n×1 =

[
net2

1 net2
2 · · · net2

l · · · net2
n
]

1×n
T (10)
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W = Wn×3n =



w1,1
w2,1

...

w1,2
w2,2

...

w1,3 · · · w1,3l−2 w1,3l−1
w2,3 · · · w2,3l−2 w2,3l−1

...
wl,1

...
wn,1

wl,2
...

wn,2

wl,3 · · · wl,3l−2 wl,3l−1
...

wn,3 · · · wn,3l−2 wn,3l−1

w1,3l
w2,3l

...

· · · w1,3n−2 w1,3n−1 w1,3n
· · · w2,3n−2 w2,3n−1 w2,3n

...
wl,3l

...
wn,3l

· · · wl,3n−2 wl,3n−1 wl,3n
...

...
...

· · · wn,3n−2 wn,3n−1 wn,3n


n×3n

(11)

O1 = O1
3n×1 =

[
O1

1 O1
2 O1

3 · · · O1
3n

]
1×3n

T (12)

P = P3n×3n =



1 0 0
0 D−1 0
0 0 D

· · · 0

...
. . .

...

0 · · ·
1 0 0
0 D−1 0
0 0 D


3n×3n

(13)

net1 = net1
3n×1 =

[
net1

1 net1
2 net1

3 · · · net1
3n

]
3n×1

T (14)

R(3) = R(3)
3n×1=

[
r1 r1 r1 r2 r2 r2 · · · yn yn yn

]
1×3n

T (15)

Y(3) = Y(3)
3n×1 =

[
y1 y1 y1 y2 y2 y2 · · · yn yn yn

]
1×3n

T (16)

I(3) = I(3)3n×n =



1
1
1
· · · 0

...
. . .

...

0 · · ·
1
1
1


3n×n

(17)

R = Rn×1 =
[

r1 r2 r3 · · · rn
]

1×n
T (18)

Table 1. Matrices defined for MANNC.

Yn×1 Rn×1 O2
n×1 Gn×n

System’s outputs System’s desired
outputs System’s inputs System’s transfer

matrix
net2

n×1 Wn×3n O1
3n×1 P3n×3n

Output layer’s inputs Neural Network
Weights Neurons’ outputs Activation functions

net1
3n×1 R(3)

3n×1 Y(3)
3n×1 I(3)

3n×n

Hidden layer’s inputs Triple desired outputs Triple system’s
outputs Triple unit

Considering that the system at each calculation step can be identified as being linear
or been linearized around an operation point, the relationship between the inputs and
outputs of the system will be as follows:

Yn×1 = Gn×nO2
n×1 (19)

Since net2
l is the lth input of the P-type neuron in the output layer, one has the following:

O2
n×1 = net2

n×1 (20)
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where the relationship between the inputs and outputs in the output layer of the neural
networks can be expressed as follows:

net2
n×1 = W2

n×3nO1
3n×1 (21)

As the hidden layer has clusters of P-type, I-type, and D-type neurons, the proportional,
integral, and derivative operators (1, D−1, and D) are considered, respectively, in the matrix
form of the activation function. Thus, one has the following:

O1
3n×1 = P3n×3nnet1

3n×1 (22)

where the inputs of the hidden layer are defined as the differences between the desired
outputs and the actual outputs and are expressed as follows:

net1
3n×1 = R3

3n×1 −Y3
3n×1 (23)

By having
R(3)

3n×1 = I(3)3n×n × Rn×1 (24)

and
Y(3)

3n×1 = I(3)3n×n ×Yn×1 (25)

and using Equations (19)–(25), one obtains

Y = GWP(R(3) −Y(3)) = GWP(I(3)R− I(3)Y) (26)

Hence, the system’s outputs can be derived as follows:

Y = GWPI(3)R(I + GWPI(3))
−1

(27)

where
∣∣∣I + GWPI(3)

∣∣∣ 6= 0.
Additionally, by having

Y = GWPI(3)(R−Y) (28)

one has
G−1Y = WPI(3)(R−Y) (29)

where |G| 6= 0.
Since PI(3)(R−Y) is a non-square matrix and P is symmetrical, from

G−1Y{PI(3)(R−Y)}
T
= WPI(3)(R−Y){PI(3)(R−Y)}

T
(30)

one derives

W = G−1Y(R−Y)T I(3)T P
[

PI(3)(R−Y)(R−Y)T I(3)T P
]−1

(31)

where W is expressed as a function of the desired outputs and the actual outputs, and∣∣∣PI(3)(R−Y)(R−Y)T I(3)T P
∣∣∣ 6= 0 and |W| 6= 0.

The system can then be identified as follows:

G = Y(R−Y)T I(3)T P
[

PI(3)(R−Y)(R−Y)T I(3)T P
]−1

W−1 (32)

where |W| 6= 0.
It should be pointed out that, although Equations (19)–(32) are derived under the as-

sumption that the system is linear or can be linearized around an operating point, they can
potentially be used for nonlinear systems where the nonlinearities of the systems can be ap-
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proximated by piece-wise linear systems whose time-varying nature can account for the non-
linearities of the systems satisfactorily. It should also be pointed out that if any of the non-
singularity conditions for matrices

(
I + GWPI(3)

)
, (G),

(
PI(3)(R−Y)(R−Y)T I(3)T P

)
,

and (W) could not be met, the selected weights (matrix W) would not be acceptable and
would be re-updated until all these matrices become non-singular.

3. Learning Algorithm

To achieve a precise control effect for a square MIMO system, the neural network
weights of the MANNC are adjusted using the principle of the multi-step error back-
propagation algorithm described in [69]. Back-propagation is one of the standard methods
of training artificial neural networks. This method efficiently computes the weights of one
layer at a time using the delta rule. It helps calculate the gradient of a loss function with
respect to all the weights in the network. The algorithm is to find the set of weights that
minimizes the error by the steepest descent direction calculated for the loss function versus
the present weights. The weights will be updated along the steepest descent direction,
and the error is reduced in every step [70,71]. The choice of this algorithm is based on
the considerations that the system is treated as a “black-box” and the controller will be
designed based on a model-free approach. In this study, instead of using merely the
current gradient of the system error as the literature does for SISO systems [47,62,63], an
accumulated gradient of the system error for the last m samples is proposed to be used to
achieve a more precise control performance. The proposed method minimizes the sum of
the square accumulated gradient of the error for each system output in each learning step,
where the error is taken as the difference between the desired output rl(k) (i.e., the system
setpoint) and the actual output yl(k). The Euclidean norm E is defined for calculating
the quadratic cost function of the system for the system error. The power of two in this
expression makes the error of each output positive, so that larger errors will be more
significant than the smaller errors. The cost function for the lth S-MANNC in Figure 1b is
then defined as follows:

El(h) =
1
2

(
m

∑
k=1

(rl [k]− yl(h)[k])

)2

(33)

where El(h) is the error of the lth output in the hth step number of the learning algorithm
and m is the required number of discrete samples in the system output and the set-point.
By increasing m, the system output will be compared more accurately with the setpoint.
However, a large value of m may decrease the adjustment speed of the controller and
become undesirable when the speed of the control system (often a critical requirement for a
real-time industrial system) is of concern. Therefore, a reasonable value of m must be used
to make a necessary trade-off between the desired accuracy and the required speed of the
control system. The total cost function of the system (J), which is the sum of n errors by
considering all outputs, is written as follows:

J(h) =
n

∑
l=1

El(h) =
1
2

n

∑
l=1

(
m

∑
k=1

(rl [k]− yl(h)[k])

)2

(34)

Using the accumulated gradient of the system error, a learning algorithm must be
designed to minimize the defined cost function and to bring the system outputs as close as
possible to the desired outputs. According to the principle of the error back-propagation
learning algorithm, the output layer’s weights must be adjusted so that in each step they
move slightly in the opposite direction of the gradient of the cost function. This is to ensure
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that the cost function will be decreasing step by step. The weights of the output layer will
therefore be adjusted based on the following learning rule:

wl,x(h + 1) = wl,x(h)− λl
∂J(h)
∂wl,x

(35)

where 1 ≤ x ≤ 3l and 1 ≤ l ≤ n, h is the step number of the learning algorithm, and wl,x(h)
and wl,x(h + 1) are the weights of the output layer in the current and the following steps,
respectively; λl is the learning rate which decides how fast the cost is changing and, in
particular, determines the weight adjustment speed. The gradient of the error subject to
each weight is required to be calculated. Using partial derivatives, one has

∂J
∂wl,x

=
∂J
∂El

∂El
∂yl

∂yl

∂O2
l

∂O2
l

∂net2
l

∂net2
l

∂wl,x
(36)

where
∂J
∂El

= 1 (37)

∂El
∂yl

=
m

∑
k=1

(yl(h)[k]− rl(h)[k]) (38)

∂y
∂O2

l

∼= ∑m
k=1(y(h)[k])−∑m

k=1(y(h− 1)[k])
∑m

k=1
(
O2

l (h)[k]
)
−∑m

k=1
(
O2

l (h− 1)[k]
) (39)

∂O2
l

∂net2
l
= 1 (40)

Because the output neuron is a ‘P-type’ neuron, one writes

∂net2
l

∂wl,x
=

m

∑
k=1

(
O1

x(h)[k]
)

(41)

Substituting Equations (37)–(41) into (36), one obtains

∂J
∂wl,x

∼= 1×
m

∑
k=1

(yl(h)[k]− rl(h)[k])
∑m

k=1(y(h)[k])−∑m
k=1(y(h− 1)[k])

∑m
k=1
(
O2

l (h)[k]
)
−∑m

k=1
(
O2

l (h− 1)[k]
)O1

x(h)[k] (42)

Defining γl(k) as

γl(h) =
m

∑
k=1

(yl(h)[k]− rl(h)[k])
∑m

k=1(y(h)[k])−∑m
k=1(y(h− 1)[k])

∑m
k=1
(
O2

l (h)[k]
)
−∑m

k=1
(
O2

l (h− 1)[k]
) (43)

the output layer weight adjustment rule can thus be derived as

wl,x(h + 1) = wl,x(h)− λl [γl(h)
m

∑
k=1

(
O1

x(h)[k]
)
] (44)

The resulting weight adjustment algorithm is summarized in Table 2.

Table 2. Weights adjustment learning algorithm.

1 ≤ l ≤ n wl,x(h + 1) = wl,x(h)− λl [γl(h)
m
∑

k=1

(
O1

x(h)[k]
)
]

1 ≤ x ≤ 3n γl(h) =
m
∑

k=1
(yl(h)[k]− rl(h)[k])

∑m
k=1(y(h)[k])−∑m

k=1(y(h−1)[k])

∑m
k=1(O2

l (h)[k])−∑m
k=1(O2

l (h−1)[k])
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Using the described learning method, all weights are simultaneously tuned, and
their values at the current step, together with all the current inputs and all the current
outputs, are used to create the outputs for the weights’ training at the next step. This online
dynamic learning feature of the proposed method (i.e., applying the accumulated gradient
and the accumulated errors) makes it more suitable for MIMO systems than its existing
counterparts that are mainly applicable for SISO systems [61,62,72]. The neural network
structure presented for the MANNC is designed for a general n-input n-output system
with cross-couplings among all its inputs and outputs. This structure can be simplified
for systems with less cross-coupling to reduce the number of the associated weights and,
consequently, to increase the learning speed.

4. Stability Analysis

It is well known that when a new control method is proposed, it is necessary to
investigate the stability condition of the resultant closed-loop system in order to ensure
the achievement of the desired control outcomes. For an unconstrained control system,
the system stability can be defined using Bounded-Input Bounded-Output (BIBO) stability
criteria. While the eigenvalue analysis concept based on the BIBO stability criteria can
be used to investigate the stability condition of a linear system, it can not be applied to
nonlinear systems. Instead, the Lyapunov stability analysis concept becomes a useful tool
for nonlinear systems. As the proposed model-free MANNC method will inherently result
in a nonlinear closed-loop control system, its closed-loop stability investigation will need
to be carried out using the Lyapunov stability analysis concept. Although, unlike a linear
system, the stability of a nonlinear system may not need to be global as the system can
have multiple equilibrium points and limit cycles, and global asymptotic stability is sought
in this study for the proposed MANNC to ensure its satisfactory closed-loop performance
over a wide range of operating points. This will make the controller more suitable for use
in industrial applications. According to the Lyapunov global asymptotic stability theorem,
for a defined function V(x), if:

(i) V(0) = 0
(ii) (For all x 6= 0, V(x) > 0 (i.e., V is positive definite)
(iii) For all x 6= 0, ∆V(x) < 0

Then every trajectory of
.

X = f (X) will converge to zero as t→∞ and the system will
be globally asymptotically stable.

Consider a model-free MANNC control system whose Lyapunov function for each of
its outputs is defined as follows:

Vl(h) = El(h) (45)

where El(h) is the cost function related to the hth step of the learning algorithm. One can
write

∆Vl(h) = (El(h) + ∆El(h))
2 − (El(h))

2 = 2El(h)∆El(h) + (∆El(h))
2 (46)

and:

∆El(h) ∼= ∆wl,x(h)
m

∑
k=1

∂El(h)[k]
∂wl,x

(47)

From Equation (46), one has

∆wl,x(h) = −
λl
m

m

∑
k=1

∂J
∂wl,x

(48)

where
∂J

∂wl,x
=

∂J
∂El(h)

∂El(h)
∂wl,x

=
∂El(h)
∂wl,x

(49)
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Substitute Equation (49) into Equation (47), respectively, and one derives

∆wl,x(h) = −
λl
m

m

∑
k=1

∂El(h)[k]
∂wl,x

(50)

and

∆El(h) ∼= −
λl
m

(
m

∑
k=1

∂El(h)[k]
∂wl,x

)2

(51)

Hence, Equation (46) can be expressed as

∆V(h) ∼= −
2λlEl(h)

m

(
m

∑
k=1

∂El(h)[k]
∂wl,x

)2

+
λl

2

m2

(
m

∑
k=1

∂El(h)[k]
∂wl,x

)4

(52)

Define

Hl(h) =
m

∑
k=1

∂El(h)[k]
∂wl,x

∼=
m

∑
k=1

∆El(h)[k]
∆wl,x(h)

(53)

The condition for ∆V(h) < 0 will yield the following constraint on the selection of the
learning rate λl defined in Equation (44):

0 < λl <
2mEl(h)
Hl(h)

2 (54)

If the above constraint is satisfied at each training step, the system will be globally
asymptotically stable during the entire training process. This indicates that Equation (54)
must be checked in a real-time and simultaneous fashion at each training step during the
operation of the weight adjustment algorithm. The flowchart of the whole real-time weight
training process, including both the learning algorithm (Table 2) and the stability criteria
check in Equation (54), is illustrated in Figure 1c.

5. Specifying MANNC to Control SISO Systems

The proposed MANNC can be used in a SISO environment where the number of
inputs and outputs of the controller is chosen as one, i.e., n = 1. The resultant SISO
closed-loop system is shown in Figure 1d. Considering Figure 1d and assuming a linear
and time-invariant estimation for the system’s SISO transfer function, one has

Y = G(s)O2 = G(s)(w1O1
1(s) + w2D−1O1

2(s) + w3DO1
3(s)) (55)

where
O1

1(s) = O1
2(s) = O1

3(s) = R(s)−Y(s) (56)

Then,
Y(s) = G(s)(w1 + w2s−1 + w3s)(R(s)−Y(s)) (57)

and
Y(s)
R(s)

=
G(s)(w1 + w2s−1 + w3s)

1 + G(s)(w1 + w2s−1 + w3s)
(58)

If w1, w2, and w3 are taken as the coefficients of a classical proportional, integral,
and derivative controller, i.e., KP, KI , and KD, respectively, the resultant control system
will perform similar to an auto-tune SISO PID control system whose closed-loop transfer
function is expressed as follows:

T(s) =
G(s)(KP + KIs−1 + KDs)

1 + G(s)(KP + KIs−1 + KDs)
(59)
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The weight learning algorithm illustrated in Table 2 can be customized for SISO system
applications and described in Table 3 where λ is the learning rate.

Table 3. Specified weight learning algorithm for auto-tune classical PID controller.

KP(h + 1) = KP(h)− λγ(h)
m
∑

k=1

(
O1

1(h)[k]
)
]

KI(h + 1) = KI(h)− λγ(h)
m
∑

k=1

(
O1

2(h)[k]
)
]

KD(h + 1) = KD(h)− λγ(h)
m
∑

k=1

(
O1

3(h)[k]
)
]

γ(h) =
m
∑

k=1
(y(h)[k]− r(h)[k]) ∑m

k=1(y(h)[k])−∑m
k=1(y(h−1)[k])

∑m
k=1(O2(h)[k])−∑m

k=1(O2(h−1)[k])

Following the Lyapunov stability analysis described in Equations (45)–(52) and re-
defining Equation (53) as follows:

H(h) =
m

∑
k=1

∂E(h)[k]
∂wl,x

∼=
m

∑
k=1

∆E(h)[k]
∆wx(h)

(60)

the condition for ∆V(h) < 0 yields

0 < λ <
2mE(h)
H(h)2 (61)

6. Simulation Results

Over the recent years, various computational approaches, such as finite element,
finite difference time domain, finite-difference frequency-domain, and Lyapunov stabil-
ity analysis have been successfully applied to a variety of control systems, including
photonic crystals [73–78], high-frequency passive components [79–87], electromagnetic
devices [88–94], fluid mechanical engineering [95,96], and MIMO control systems [97,98].
Simulation studies using MATLAB are carried out to evaluate the performances of the
proposed MANNC in tracking setpoints, reducing unwanted overshoots or undershoots,
and securing the global stability of a closed-loop system during the system’s entire control
process. The structure of the MANNC proposed in Section 2, the dynamic neural network
algorithm developed in Section 3, and the stability criteria checking condition discussed
in Section 4 are used in three simulation cases, each presenting a type of square MIMO
systems. They are a time-invariant nonlinear system, a time-variant nonlinear system, and
a hybrid system.

6.1. Case 1: Application of MANNC on a Time-Invariant Nonlinear Square MIMO System

In this case, a drum-boiler plant (Figure 2a), which is a generic nonlinear time-invariant
coupled two-input two-output system with heat flow rate and mass flow rate as inputs and
pressure and level as outputs, is chosen. The nonlinearities of the plant cause the system
dynamic characteristics to vary with operating conditions. In addition, cross-couplings
and parameter variations of the plant makes it a challenging case to control. For years,
constructing a nonlinear controller directly from the original nonlinear model of the drum-
boiler has been a general approach to use in order to improve the system performance in
compensating the plant’s nonlinearities. In this study, however, the proposed model-free
MANNC method is used in which the nonlinear model of the drum-boiler is not required
by the controller design process and only the inputs and outputs of the plant are used
for the construction of the controller. The performances of the MANNC in improving the
system setpoint tracking time and reducing undesirable overshoots are compared with
those of the best and foremost existing neural network method reported in the literature.
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Figure 2. (a) Two-input two-output drum-boiler system, (b) two-input two-output nonlinear drum-
boiler model, and (c) two-input two-output system controlled by MANNC. (d) Case 1: output one
and desired output one (MANNC), (e) case 1: output two and desired output two (MANNC), (f) case
1: output one and setpoint one (PIDNN), and (g) case 1: output two and setpoint two (PIDNN).

The nonlinear state equations describing the relationships between the inputs and
outputs of the drum-boiler system of Figure 2a are written as follows:

.
x1(t) = −x1(t) + u1(t) (62)

y1(t) = x1(t) + 2x3
1(t) (63)

x2(t) = y1(t) + u2(t) (64)
..

y2(t) + 2
.

y2(t) + y2(t) =
.

x2(t) + 2x2(t) (65)

where “dot” denotes time derivative, u1(t) and u2(t) are respectively the heat flow rate and
mass flow rate as the system inputs, y1(t) and y2(t) are respectively the pressure and level
as the system outputs, and x1(t) and x2(t) are the state variables. The simulation block
diagram of the given nonlinear system is presented in Figure 2b, where box ‘Fcn1’ produces
the highly nonlinear relationship between the inputs and outputs of the system. Due to
the fact that Input 1 affects both Output 1 and Output 2, the system is also a cross-coupled
MIMO system and, thus, will not be able to be controlled by multiple ANNC controllers
introduced in [99], nor by any other SISO or non-coupled MIMO counterparts.

Figure 2c demonstrates the implementation of the proposed MANNC in the two-input
two-output system. In this neural network, 12 weights in the hidden layer must be trained.
The following desired outputs are selected for the drum-boiler system.

− r1(t) = 5.0u(t− 1) where u(t) is the standard unit step function.
− r2(t) = 0.2r(t− 1) where r(t) is the standard unit ramp function.

These desired outputs represent a scenario in which the pressure will tend to reach
5 bars and the level will increase following a smooth ramp function. The ramp function
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is chosen to be the setpoint for Output 2 in order to make the MANNC control more
challenging. The objective is to find suitable values for the weights of the output layer so as
to force the outputs, y1 and y2, to follow the desired setpoints, r1 and r2, respectively.

To apply the MANNC to the drum-boiler system, all initial weights are set to 1, the
learning rates are set to 0.1 (λ1 = λ2 = 0.1), and the number of samples is set to 40 (m = 40).
After repeating, simultaneously, the online learning algorithm (Table 2) and the Lyapunov
stability criteria check (Figure 1c, 20 times), the final weight values of the output layer of
the MANNC neural network are obtained and reported in Table 4.

Table 4. Final weight values of the output layer.

wl,x x=1 x=2 x=3 x=4 x=5 x=6
l = 1 10.23 0.33 6.93 −2.23 −2.13 −2.10
l = 2 −1.35 3.59 1.36 3.22 3.24 1.94

During the running of the weight training algorithm, the control system remains stable
all the time as λ1 and λ2 are kept unchanged. If the control system becomes unstable
at a training step, the learning rates will be reduced, and the learning algorithm will be
continued with a lower training speed that is dictated by the new learning rates. Applying
the final adjusted weights (Table 4) to the control system, Figure 2d shows that Output 1
tracks the desired step output properly with a zero overshoot. This zero-overshoot effect
is most desirable for many industrial control systems, as unwanted overshoots during
setpoint changes can bring devastated results to the industrial plants. For example, when
filling a hazardous liquid tank in a water plant, overshoots can result in overflows if the
setpoint is close to the tank’s height [99]. Figure 2e demonstrates that Output 2 tracks
the desired ramp output properly, and in less than nine samples the output can reach the
desired level with a less than 5% error.

To demonstrate the anticipated highly improved performance of the MANNC over its
existing adaptive counterparts, a most recent neural network controller (named PIDNN)
introduced in [61] is chosen for the drum-boiler system. The PIDNN uses a learning
algorithm that is based on two consecutive time-samples. The weights of the PIDNN are
set after running the learning algorithm 20 times—the same condition upon which the
weights of the MANNC are obtained. The comparison results are given in Figure 2f,g. It is
seen that using the PIDNN method, Output 1 presents a 22% undesirable overshoot, and
Output 2 exhibits a slower setpoint tracking with larger fluctuations.

The comparison results between the MANNC and the PIDNN control effects with
an equal number of trainings are given in Table 5. It is evident that, compared to the
PIDNN control system, the MANNC control system can significantly reduce the required
training time (by 59%), achieve a zero overshoot (100% reduction), and reach the 5% and
2% error bands in much shorter times (47% and 50% faster for Output 1, and 47% and 36%
faster for Output 2, respectively). These results demonstrate a superior performance of
the MANNC over its existing counterpart. In particular, Output 1 under MANNC control
exhibits a deadbeat-like response with minimum rise time, minimum settling time, no
overshoot, and no steady-state error, comparable with an optimal closed-loop response.
This remarkable result is attributed to the MANNC strategy that uses the accumulated error
and the response of the system in consecutive learning steps rather than in consecutive
sample times.

Table 5. Case 1: MANNC vs. PIDNN.

Controller Number of
Trainings

Time of
Training

Output 1
Overshoot

Output 1
Maximum Error

Less than 5%

Output 1
Maximum Error

Less than 2%

Output 2
Maximum Error

Less than 5%

Output 2
Maximum Error

Less than 2%
MANNC 20 1.48 s 0% 8 s.t. * 10 s.t. 9 s.t. 14 s.t.

PIDNN 20 3.67 s 22% 15 s.t. 20 s.t. 17 s.t. 22 s.t.

* s.t. stands for sample times.
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Figure 3a,b represent, respectively, the accumulated error versus the iteration number
of the MANNC weight learning algorithm for Output 1 and Output 2. The errors shown
in these figures are the differences between the actual outputs and the desired outputs.
It is observed that, with the MANNC, the magnitudes of the errors generally decrease
as the number of iterations in the weight learning algorithm increases. This is evidence
for the convergence of the proposed learning algorithm in Section 3 and is viewed as a
significant result that demonstrates the suitable performance of the proposed MANNC
for the considered coupled two-input two-output nonlinear system. As shown in these
figures, with 35 trainings, the errors are reasonably low, and the values of the weights can
be locked in at this point. By continuing the weight adjustment algorithm up to 50 times,
the steady-state errors for both outputs become nearly zero. In general, choosing the
optimal training number in this method depends on the particular application in which the
controller is employed, and implies a trade-off between the control speed and the control
performance of the closed-loop system. It is possible to pre-define a desired accumulated
error, so that when the actual error reaches to that value, the training process stops and the
weights become locked until the next change in the system happens (e.g., a change in the
model of the system and/or a change in any of the setpoints).
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6.2. Case 2: Application of MANNC on a Time-Variant Nonlinear MIMO System

In this case, a discrete time, highly nonlinear, time-variant two-input two-output
coupled system is chosen to test the suitability and performance of the MANNC for time-
variant MIMO systems. The chosen system is expressed as:

y1(k + 1) =
1

y1
2(k) + 1

(0.8y1(k) + v1(k− 2) + 0.2v2(k− 3)) (66)
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y2(k + 1) =
1

y22(k) + 1
(0.9y2(k) + 0.3v1(k− 3) + v2(k− 2)) (67)

where y1(k) and y2(k) are the system outputs, and v1(k) and v2(k) are the system inputs.
The desire outputs are selected as r1(k) = 0.6 and r2(k) = 0.

By applying, simultaneously, the online learning algorithm (Table 2) and the stability
criteria check (Figure 1c) 50 times, the final weight values of the output layer of the MANNC
neural network are obtained and reported in Table 6.

Table 6. Final weight values of the output layer.

wl,x x=1 x=2 x=3 x=4 x=5 x=6
l = 1 3.34 2.43 4.73 −5.12 −8.13 −2.19
l = 2 −11.30 −4.44 −7.74 6.32 3.55 3.82

The simulation results of the final adjusted weights of the MANNC are shown in
Figure 3c,d. In order to compare the MANNC results with those of a properly selected
existing counterpart, the PIDNN introduced in [61] is applied to the same system. The
system outputs under the PIDNN control are shown in Figure 3e,f. It is demonstrated
that both outputs of the MANNC control system track the desired outputs faster than
those of the PIDNN control system. In addition, a zero overshoot in Output 1 using the
MANNC is achieved, which is a significant result as this is not achievable by using the
PIDNN. Decreasing the accumulated error by increasing the number of iterations, as shown
in Figure 4, demonstrates the convergence of the proposed learning algorithm for the
MANNC evidently. Table 7 presents the performance comparison between the MANNC
controller and the PIDNN controller with an equal number of trainings. As can be seen, the
MANNC control results outperform the PIDNN control results in all aspects.
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Table 7. Case 2: MANNC vs. PIDNN.

Controller Number of
Trainings

Time of
Training

Output 1
Overshoot

Output 1
Maximum Error

Less than 5%

Output 2
Maximum Error

Less than 5%

MANNC 50 2.39 s 0% 0.01 s 0.05 s

PIDNN 50 3.99 s 22% 0.03 s 0.08 s

6.3. Case 3: Application of MANNC on a Hybrid System

Since the MANNC has been designed as a universal controller for black-box square
MIMO systems, in this case, the performance of this controller is tested on a hybrid system.
By definition, a hybrid system is a dynamic system that switches between continuous states
and, thus, involves both continuous and discrete behaviors. Due to sudden changes in
system dynamics at the time of switching between two states, conventional control methods
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are usually unsuccessful for hybrid systems. In this study, the two-tank plant shown in
Figure 5a was selected to test the control performance of the MANNC. The plant consists
of two tanks, where tank T1 is filled by flow F1 through a fully open valve V1. The liquid is
transferred from tank T1 into tank T2 via a connecting pipe. Valve V2 is an on-off valve,
which is either fully open or fully closed to adjust flow F2 discretely. Similarly, flow F3 is
adjusted by another on-off valve V3. When the behavior of the given plant is modeled,
it must be considered that the liquid levels, H1 and H2, respectively, for both tanks will
change separately when H2 crosses level L. At H2 = H1 + L the direction of flow through
the inter-connecting pipe is reversed. Hence, for F2, two dynamics must be modeled as:

F2 =

{
k1·V2·

√
(H1 − H2 + L) i f H2 > L

k1·V2·
√
(H1) i f H2 ≤ L

(68)

and .
H1 = (F1 − F2)/k3 (69)

.
H2 = (F2 − k2·V3·

√
H2)/k4 (70)

where k1, k2, k3, and k4 are constants depending on characteristic coefficients of the pipes
and the cross-section areas of the tanks, and V2 and V3 represent the Boolean values in
which “1” and “0” signify, respectively, a fully open valve and a fully closed valve.
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It is evident that the given plant is a nonlinear hybrid system with two inputs
(V2 and V3) and two outputs (H1 and H2). The control problem is defined as: using the
on-off control valves V2 and V3, the liquid heights (H1 and H2) in tanks should be derived
from an initial state of H0 = (0.01, 0.01) to a target area of RT with the following conditions:

H ∈ [0, 10]× [0, 8] (71)

H f ∈ RT = [6, 10]× [6, 8] (72)

where H f represents the final desired heights located in the target area (RT). In addition,
the forbidden areas, RF1 and RF2, are considered as:

H /∈ RF1 = [0, 5]× [4, 8] (73)

H /∈ RF2 = [4, 10]× [0, 3] (74)

The desired liquid heights that lead the actual liquid heights to the target area are
defined as:

RH1 = 0.08r(t) (75)
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RH2 =


RH1 i f RH1 < 3.5

3.5 i f 3.5 ≤ RH1 < 5.5
1.8RH1 − 6.4 i f 5.5 ≤ RH1 ≤ 8

(76)

where r(t) is a standard ramp function. The final desired heights for both tanks in this
simulation are selected as 8 meters i.e., H f = [8, 8]. After repeating, simultaneously,
the online learning algorithm (Table 2) and the stability criteria check 20 times, the state
trajectories of the MANNC control system for the liquid heights were achieved and are
shown in Figure 5b, where the forbidden areas and the desired track are also illustrated. It
is clear that, by using the MANNC in this complex nonlinear hybrid control problem, the
liquid height trajectory can pass the narrow zone between the forbidden areas successfully
and eventually reach the target area. This is achieved due to the powerful and fast setpoint
tracking property of the proposed method that can cope with changes in the system
dynamics. In addition, the liquid heights of the two tanks versus time during this process
are shown in Figure 6. The above results are achieved using the final weight values of the
output layer of the MANNC neural network, shown in Table 8. Since the final desired
liquid heights can be selected as any points in the target area, simulation studies are carried
out for several points in this area and the accumulated errors are computed in a range of
285 to 310. Regardless of the location of the selected target point in the target area, the
accumulated error is restricted, and the convergence is evidently achieved. This justifies
the suitability and adequacy of the proposed MANNC in controlling the highly complex
hybrid system.
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Table 8. Final weight values of the output layer.

wl,x x=1 x=2 x=3 x=4 x=5 x=6
l = 1 3.1 1.21 2.43 −1.68 −4.34 −5.2
l = 2 −0.13 −1.58 4.28 0.88 2.06 3.41

7. Conclusions

A model-free MANNC capable of satisfactorily controlling nonlinear square MIMO
systems with significant cross-couplings within a short period of time is presented in this
paper. The MANNC uses a new auto-tune dynamic online learning algorithm with accu-
mulated error back-propagation for the proposed neural network structure, and effectively
tunes its weights to achieve the desirable control outcomes. The learning algorithm is
integrated with the Lyapunov stability criteria while running and applied to the control
system. The effectiveness of the proposed MANNC is validated via simulation studies
on typical time-invariant and time-variant square MIMO systems. When compared with
the best representative of existing counterparts (i.e., the PIDNN) for applications to both
time-invariant and time-variant systems, the MANNC in the time domain is seen to provide
less overshoot, less settling time, less accumulated errors, and faster setpoint tracking. The
MANNC can be effectively used for several types of square MIMO control systems in
industrial applications by selecting an appropriate number of samples, especially when
overshoots in outputs are undesirable and fast setpoint tracking is critical. The simulation
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results for controlling a complex and challenging MIMO hybrid system demonstrate the
superior performance of the MANNC when it deals with significant changes in the system
dynamics. As a future study, adding more layers to the neural network structure of the
MANNC can be considered in order to further improve the control performance, especially
for highly nonlinear plants.
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