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Abstract Latent class models (LCM) represent the high dimensional data in a
smaller dimensional space in terms of latent variables. They are able
to automatically discover the patterns from the data. We present a
topographic version of two LCMs for collaborative filtering and apply
the models to a large collection of user ratings for films. Latent classes
are topologically organized on a “star-like” structure. This makes ori-
entation in rating patterns captured by latent classes easier and more
systematic. The variation in film rating patterns is modelled by multino-
mial and binomial distributions with varying independence assumptions.
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Introduction
When deciding which book to read, which film to watch, or which web-

site to visit, people often rely on advise given by other people [3]. This is
possible only inside small communities, where people know each other.
In many situations we would like to automate that process. The method
addressing the problem of making recommendations is collaborative filt-
tering (CF) that leverages the existing preferences (ratings/profiles) of
users in large comunities.
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One approach to CF uses probabilistic modeling (e.g. LCM) to infer
new recommendations. The main advantage of this approach is that it
is able to automatically discover preference patterns in user profile data.

Besides producing new recommendations, the CF system can be used
to understand the principal taste trends in the rating data by careful
analysis of preference patterns extracted by LCM. Unfortunately, de-
tailed examination of all latent classes is a very tiring and time consum-
ing process. In this paper we suggest a way of addressing this problem:
the latent space is endowed with a topological organization that enables
us to visualize the common interest patterns in an easily accessible way.
We study latent class models for user ratings with star topology.

The paper is organized as follows. In section 1 we describe LCMs for
user ratings and in Section 2 we endow them with star topology. Section
3 is devoted to Expectation-Maximization (EM) algorithm for training
the models. The experiments are described in section 4. The paper is
concluded in section 5.

1. Latent Class Models for User Ratings
In this section we briefly describe latent class approach to modeling

user ratings introduced in [3, 4]. We work with three sets: the set U of
users, the set of films (items), Y, and the set V of rating values that are
used by users to evaluate films.

We would like to predict the rating vu,y ∈ V given by a user u ∈ U to
a film y ∈ Y. With each triplet (u, y, vu,y), either observed or just hypo-
thetical, we associate a latent variable (class) zu,y ∈ Z = {1, 2, . . . , K}
that “explains” why the user u rates the film y by vu,y.

The latent variables z ∈ Z index ”abstract” classes of users in two
types of models:

Type I – given a film y, all users from class z tend to adopt the
same rating pattern expressed through P (v|y, z) over evaluations
from V. Given a user u and a film y, the probability of vote v is
modeled as P (v|y, u) =

∑
z∈Z P (v|y, z)P (z|u), where P (z|u) is the

probability that the user u “participates” in class z.

Type II – all users from class z tend to adopt the same preferences
over the [rating, film] pairs (v, y). Given a user u, the probability
of a pair (v, y) is modeled as P (v, y|u) =

∑
z∈Z P (v, y|z)P (z|u).

Classes z express “common interest patterns” among the users found in
the ratings [3] and P (z|u) then represents to what extend the user u
participates in the common interest pattern z.
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Given a set of observation triplets, free parameters of the model,
P (z|u) and P (v|y, z), are determined by an EM procedure [3].

2. Introducing a Topology into Latent Class
Models

We endow the latent classes with a topographic organization. In [5]
we presented topographic organization of latent classes on a grid. In this
paper we introduce a less tight star topology that organizes latent classes
such that similar classes lie close to each other (on the same branch).

Topology is introduced into the latent space via the channel noise
methodology [2]: for latent classes z1 and z2 lying close to each other,
the probability P (z2|z1) = P (z1|z2) of corrupting one into the other in
the transmission process through a communication channel is high.

Latent classes are placed on the nodes of a hierarchical star (Figure
1 (a)). Star can be completely described by a triple (L, b, γ), where
L is the number of levels of the star, b = (b1, . . . , bL−1) is a vector of
branching degrees bl for nodes on non-leaf levels l = 1, . . . , L − 1. γ ∈
(0, 1) is a parameter determining the strength of the connection between
two connected nodes (channel noise). The channel noise probabilities
P (z1|z2) are shown in Figure 1 (b). Probabilities between non-connected
nodes are 0.

It is convenient to work with two copies ZY and ZZ of the latent space
Z. For each user u ∈ U , the film-conditional ratings v (type I) or pairs
(v, y) (type II) are generated as follows:

1 randomly generate a latent class index zY ∈ ZY by sampling the
user-conditional probability distribution P (·|u) on ZY .

2 transmit the class identification zY through a noisy communication
channel, and receive (a possibly different) class index zZ ∈ ZZ with
probability P (zZ |zY ).

3 randomly generate a film-conditional rating v with probability
P (v|y, zZ) (type I) or a pair (v, y) with probability P (v, y|zZ) (type
II).

The models for user ratings have now the following form:

P (zZ |u) =
∑

zY ∈ZY

P (zZ |zY )P (zY |u), (1)

P (v|y, u) =
∑

zZ∈ZZ

P (v|y, zZ)P (zZ |u) [type I] (2)

P (v, y|u) =
∑

zZ∈ZZ

P (v, y|zZ)P (zZ |u) [type II] (3)
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Figure 1. (a) An example of star topology of latent classes with four levels (L = 4).
b = (3, 4, 4). (b) Channel noise probabilities defining the star topology.

3. Parameter Estimation
Following [3], we denote by ρ(v, y, zZ) the probabilities P (v|y, u) and

P (v, y|u) in type I and type II models, respectively.
To fit model parameters P (zY |u) and ρ(v, y, zZ) to the observed data

D = {(u1, y1, v1), ..., (uN , yN , vN )}, we use EM algorithm [1] that maxi-
mizes likelihood of data D and iterates two steps - Expectation (E) and
Maximization (M) - until convergence.

3.1 E-step
In the E-step, the algorithm computes the expected values of latent

variables using the current values of the model parameters:

P (zY | y, u, v) =
P (zY |u)

∑
zZ

ρ(v, y, zZ)P (zZ |zY )∑
z′Y

P (z′Y |u)
∑

zZ
ρ(v, y, zZ)P (zZ |z′Y )

, (4)

P (zZ | y, u, v) =
ρ(v, y, zZ)

∑
zY

P (zZ |zY )P (zY |u)∑
z′Z

ρ(v, y, z′Z)
∑

zY
P (z′Z |zY )P (zY |u)

. (5)

3.2 M-step
In the M-step, the algorithm re-estimates the model parameters by

maximizing the expected complete data log-likelihood evaluated in the
E-step. To derive the update equations, we need to determine the types
of distributions for P (zY |u) and ρ(v, y, zZ). It is natural to assume multi-
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nomial P (zY |u). However, for ρ(v, y, zZ) we use either multinomial, or
binomial distribution. Multinomial distribution simply models probabil-
ities of occurrence of ratings v. In the other hand, binomial distribution
respects the ordering of rating values v1 and imposes the assumption of
unimodal rating distribution. We work with the following models:

type I

– I-Mult: multinomial P (v|y, zZ),
– I-Bin: binomial P (v|y, zZ) (respects ordering of ratings).

type II

– II-Mult: joint multinomial P (v, y|zZ),
– II-IndM: we assume conditional independence of v, y given

zZ : P (v, y|zZ) = P (v|zZ)P (y|zZ); both P (y|zZ) and P (v|zZ)
are multinomials,

– II-IndB: P (v, y|zZ) = P (v|zZ)P (y|zZ); P (y|zZ) is multinomi-
ally and P (v|zZ) is binomially distributed (respects ordering
of ratings).

Update equation for P (zY |u) is the same for all types of models:

P (zY |u) =
∑

y∈Yu
P (zY | y, u, vu,y)
|Yu| . (6)

3.2.1 I-Mult and II-Mult. Update equations are:

P (v| y, zZ) =

∑
u∈Uv,y

P (zZ | y, u, v)
∑

v′
∑

u∈Uv′,y P (zZ | y, u, v′)
[type I] (7)

P (v, y| zZ) =

∑
u∈Uv,y

P (zZ | y, u, v)
∑

v′,y′
∑

u∈Uv′,y′ P (zZ | y′, u, v′)
[type II] (8)

where Uv,y = {u ∈ U| (u, y, v) ∈ D} is the set of users that evaluated
film y with rating v.

3.2.2 II-IndM. Update equations are given by:

P (y|zZ) =

∑
u∈Uy

P (zZ | y, u, vu,y)∑
y′

∑
u∈Uy′ P (zZ | y′, u, vu,y′)

, (9)

1i.e. it takes into account that ratings 4 and 5 are closer to each other than 1 and 5
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P (v|zZ) =

∑
y

∑
u∈Uy,v

P (zZ | y, u, v)
∑

v′
∑

y

∑
u∈Uyv′ P (zZ | y, u, v′)

. (10)

3.2.3 II-IndB. Update equation for P (y|zZ) is the same as in
eq. (9). P (v|zZ) =

(V
v

)
pzZ

v(1− pzZ )V−v is a binomial distribution with
mean pzZ |V| and shape parameter pzZ . Update equation for parameter
pzZ is given by:

pzZ =

∑
y

∑
u∈Uy

P (zZ | y, u, vu,y)vu,y

V
∑

y

∑
u∈Uy

P (zZ | y, u, vu,y)
. (11)

3.2.4 I-Bin. If P (v|y, zZ) is binomially distributed, then param-
eter pzZ ,y of the distribution is updated according to:

pzZ ,y =

∑
u∈Uy

P (zZ | y, u, vu,y)vu,y

V
∑

u∈Uy
P (zZ | y, u, vu,y)

. (12)

4. Experiments
In this section we demonstrate latent class models with K = 64 latent

classes and either star topology (STop) described by (L = 4, b = (3, 4, 4),
γ = 0.15) or no topology (NTop) with 64 independent latent classes.
Models of types I and II are trained with different distribution models
for ρ(v, y, zZ), as described in Section 3.2.

We experimented with EachMovie dataset2 containing ratings for films.
User ratings are expressed on a 6-point scale. We selected a set of 100
most rated films. The number of users that rated at least one film from
the selected set was 60, 895.

We partitioned the set of ratings into two sets – training and test
sets. The training set D is used to train the models and visualize the
data. The test set T is used for evaluation of generalization capabilities
of the models within the set of users contained in D. Similarly to [3], we
applied all but one protocol: 1 randomly selected rating from each user
having at least 10 ratings was assigned to the test set.

The rating models are trained on the training set D. To initial-
ize model parameters we run SOM with the same star topology on
the data D (see [5]). After the initialization, models are trained with
the EM algorithm3 and data are visualized. We use perplexity P =

2http://www.research.compaq.com/SRC/eachmovie/
3typically the data likelihood given by the models leveled up after 50 iterations
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exp
[
− 1
|T |

∑
(u,y,vuy)∈T log ρ(u, y, v)

]
of ratings on the training and test

sets to compare the models.

4.1 Results
Tables 1 and 2 show perplexities of the models on training and test

sets. For models of both types, perplexity of training data is smaller for
multinomial distribution than for the binomial. In contrast, binomial
distribution beats multinomial distribution on test data. This indicates
that binomial distribution better regularizes the models by introducing
less degrees of freedom (free parameters) and by imposing a unimodal
structure on ordered rating values v. Models with unconstrained latent
space (NTop) fit the training data better, but tend to overfit, as ev-
idenced by better test set perplexities of models with imposed latent
space topology (STop).

Table 1. Perplexity for training data.

I-Mult I-Bin II-Mult II-IndM II-IndB

STop 2.86 3.62 159.28 157.79 191.04
NTop 2.64 3.50 134.90 140.18 170.70

Table 2. Perplexity for test data.

I-Mult I-Bin II-Mult II-IndM II-IndB

STop 6.77 4.25 1636.92 1245.50 517.11
NTop 10.73 4.29 77243.87 33807.27 2353.47

4.2 Visualization
In this section we present some visualization plots of “common interest

patterns” found by the models with star topology.

4.2.1 Models of Type II. Models of type II are suitable for
visualizing the most probable films for each abstract class, i.e. films
with largest P (y|z) =

∑
v P (v, y|z). In order to understand to what

degree are the films in particular classes similar, we present genre codes
for latent classes in a hierarchical tree. Genre code for each class is made
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up from genres of 5 most probable films for that class. Genres4 for films
are taken from Internet Movie Database5 and they are represented by
abbreviations shown in Table 3. The size of each genre abbreviation in
genre codes for classes is proportional to the number of films (among the
5 most probable films) of that genre.

Table 3. Genre abbreviations.

A: Action C: Comedy D: Drama E: Western F: Family
H: Horror L: Classic M: Musical N: Animation P: Crime
R: Romance S: Sci-Fi T: Thriller U: Mystery V: Adventure
W: War Y: Fantasy

Figure 2 shows genre codes for classes of a model STop II-IndB. Topo-
logical organization of the classes according to the genres is clearly visi-
ble. The genre organization emerges naturally from the rating patterns
in the data set and the imposed star (tree) topology on the latent classes.

4.2.2 Models of Type I. For models of type I, it is possible to
visualize the rating distribution P (v|y, z) for each fixed film y, given the
latent class z. By inspecting the latent-class-conditional rating distri-
butions P (·|y, z), we can demonstrate that “similar” films tend to have
similar rating distributions. For illustration purposes, we choose four
films: two are romantic comedies – Ghost and Pretty Woman, one film
is a criminal horror – Silence of the Lambs, the last film is a criminal
drama – Pulp Fiction.

Figure 3 visualizes rating patterns for those films as modeled by STop
I-Bin. They are almost identical for the two romantic comedies (Figures
3(a) and 3(b)) and very different from criminal drama in Figure 3(c).
The two crime films lead to both similar and dissimilar patterns on parts
of the tree (Figures 3(c) and 3(d)).

For example, users concentrated in class 3 of the fourth level6 en-
joy romantic comedies. In contrast, users represented by class 2 of the
third level and classes 5-8, 25 and 27 of the fourth level tend to dislike
them. Classes 2, 9, 20 and 33 of the fourth level represent users that like
crimes. Class 22 on the fourth level represents a mixture of users that
are attracted to both comedies and crimes.

4The film genres were not explicitly used in training the models.
5http://www.imdb.com
6All classes of each level are counted from the left to right.
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(a) (b)

(c) (d)

Figure 3. Model of type I – STop I-Bin. Shown are the means of the class-and-film-
conditional rating distributions P (v|y∗, z) for the following films: Ghost (a) Pretty
Woman (b) The Silence of the Lambs (c) and Pulp Fiction (d). The brighter the color
of the node is, the higher is its mean rating.

5. Conclusions
We have endowed two latent class models for collaborative filtering

with star topology. Since our system is a probabilistic model of the
data, we can use tools from data mining and probability and informa-
tion theories to interpret the trends captured by the abstract latent
classes. Topological organization of latent space makes orientation in
rating patterns captured by latent classes easier and more systematic.

We demonstrated our system on a large collection of user ratings
for films. We used different distribution to model (class conditional)
variations in user ratings. For star topology, binomial distribution is
more appropriate than multinomial, since it adds an extra degree of
regularization by having free parameters and by imposing a unimodal
structure on ordered set of rating values.

We plan to study construction of a hierarchy of topographic latent
class models, where we would be able to interactively “zoom in” into
interesting user groups and rating patterns.
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