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Introducing coherent time control
to cavity magnon-polariton modes
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Alexey V. Ustinov1,4, Mathias Kläui 2 & Martin Weides 1,3*

By connecting light to magnetism, cavity magnon-polaritons (CMPs) can link quantum

computation to spintronics. Consequently, CMP-based information processing devices have

emerged over the last years, but have almost exclusively been investigated with single-tone

spectroscopy. However, universal computing applications will require a dynamic and on-

demand control of the CMP within nanoseconds. Here, we perform fast manipulations of the

different CMP modes with independent but coherent pulses to the cavity and magnon sys-

tem. We change the state of the CMP from the energy exchanging beat mode to its normal

modes and further demonstrate two fundamental examples of coherent manipulation. We

first evidence dynamic control over the appearance of magnon-Rabi oscillations, i.e., energy

exchange, and second, energy extraction by applying an anti-phase drive to the magnon. Our

results show a promising approach to control building blocks valuable for a quantum internet

and pave the way for future magnon-based quantum computing research.
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T
he cavity magnon-polariton (CMP)1–4 is a hybrid quasi-
particle arising from strong coupling between photons and
magnon excitations. It interconnects light with magnetism

presenting itself as an excellent candidate to combine quantum
information with spintronics5,6. The first CMP-based devices,
such as a gradient memory7 and radio-frequency-to-optical
transducers8 have already been developed. The latter ones, in
particular, are crucial devices for a quantum internet, for
instance, because they bridge microwave-frequency based
quantum processors to long range optical quantum networks.
Since the recent emergence of this hybrid quasiparticle, three
different models, in particular, have helped to unravel the
physics of CMPs over the last years: first, the picture of two
coupled oscillators, which is the most intuitive one; the
underlying physics, however, is only revealed from an elec-
tromagnetic viewpoint, which is the second model and shows a
phase correlation between cavity and magnon excitation9; and
finally, the quantum description of the CMP, which has, for
instance, given the theoretical framework for a coupling of
magnons to a superconducting qubit10,11. Many spectroscopic
experiments have led to new insights about loss channels3,12,13,
their temperature dependence14–16, and to the observation of
level attraction17–19. These spectroscopic measurements,
however, are performed under continuous driving, and while
they have yielded great physical insight into these hybrid sys-
tems, flexible and universal information processing requires the
manipulation of such physical states on demand and on
nanosecond timescales. Despite this necessity for fast manip-
ulation, the literature about time resolved experiments with
either an yttrium iron garnet (YIG) waveguide20 or
CMPs2,7,21,22 is scarce and confined to cavity-pulsing. A
simultaneous and coherent control over both subsystems has
yet to be demonstrated, which is the subject of this work.

Here, we establish the control over the cavity and magnon
system by using coherent manipulation pulses on the timescale of
nanoseconds. We observe the transition from maximum energy
exchange to no energy exchange between cavity photons and
magnons depending on the applied pulses. We employ these
results for a dynamic control of the different modes and for the
extraction of the total energy from the system by destructive
interference within the sample. Moreover, all results are validated
by numerical simulations.

Results
Theoretical background. In our experiments the electro-
magnetic resonance of a copper cavity interacts with the Kittel
mode - the uniform ferromagnetic resonance (FMR)23 - of a
YIGsphere mounted inside the cavity. The Landau-Lifshitz-
Gilbert (LLG) equation24 describes the Kittel-mode as a mac-
rospin with dynamic magnetization mðtÞ ¼ me�iωt in an
external magnetic field H. The cavity resonance can be mod-
eled as an RLC circuit, with resistor R, inductance L and
capacitance C. Following the model proposed by Bai et al.9, a
linear coupling between both systems arises from their mutual
back actions, leading to a phase correlation. The changing
magnetization of the FMR induces an electric field in the cavity
according to Faraday’s law. Following Ampère’s law, the cavity
field gives rise to a cavity current, which produces a magnetic
rf-field (radio frequency) hðtÞ ¼ he�iωt driving the FMR.
Combining the LLG, the RLC equation and Maxwell’s laws, we
obtain a system of coupled equations for h and m (Supple-
mentary Note 1). If both subsystems are close to resonance,
these equations can be simplified to the eigenvalue equations of
two coupled harmonic oscillators with constant coupling

strength g:

ω� ~ωc g

g ω� ~ωr

� �

h

m

� �

¼ 0: ð1Þ

Here, ~ωc and ~ωr denote the complex eigenfrequencies of the
cavity and magnon system, respectively. They are defined as
~ωc ¼ ωc � iβωc and ~ωr ¼ ωr � iαωc with bare cavity frequency

ωc ¼ 1=
ffiffiffiffiffiffi

LC
p

, bare magnon frequency ωr ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jHjðjHj þM0Þ
p

,
where α, β are damping factors, γ the gyromagnetic ratio of the
Kittel-mode and M0 its saturation magnetization. Since the
right hand side of Eq. (1) is zero, the equation describes
the system during free evolution. The driven case can
be modeled by inserting two harmonic drive tones
Fc;m ¼ Ac;m cosðω0t � φc;mÞ, one to each line and differing in

phase φ and amplitude A. Combining driven case and free
evolution, Eq. (1) can be numerically integrated for various
pulse combinations yielding simulated data of our experiments
(Supplementary Note 2).

If both subsystems are exactly on resonance, i.e, at their crossing
point, ωc ¼ ωr ¼ ω0, the eigenfrequencies of Eq. (1) are given
by ω± ¼ ω0 ± g with the eigenvectors ξ ± ¼ ð1; ± 1Þ, the so-called
normal modes. A single, short pulse to the cavity prepares the
system in the non-eigenstate ξ0;c ¼ ξþ þ ξ� ¼ ð1; 0Þ, known as

beat mode. The excitation, and therefore the energy, periodically
oscillates between cavity and magnon. Hence, the system displays
classical magnon-Rabi oscillations2,22. Figures 1a–c illustrate these
different modes in the intuitive picture of two coupled pendula. To
observe the normal modes ξ ± , where no energy is exchanged, one
has to coherently and simultaneously excite the cavity and magnon
system while recording the cavity response.

Experimental setup. Our sample consists of a copper reentrant
cavity4 resonating at ωr=2π ¼ 6:58GHz. An additional stripline
with a second microwave port is fixed to the bottom of the cavity.
This port allows for the direct manipulation of the magnon mode,
similar to the work of Wang et al.25 and Boventer et al.19, in a
YIG sphere with a diameter of 0.5 mm. The sphere is placed close
to the magnetic antinode of the cavity. The cavity’s magnetic rf-
field, the stripline rf-field and the external bias field stand all
perpendicular to each other (Supplementary Note 3), which
minimizes unwanted crosstalk between the two rf-fields. Mea-
surements are performed with a time-domain setup (Fig. 1d)
comprising three parts: magnon manipulation, cavity manipula-
tion, and recording. It enables us to independently but coherently
pulse the two subsystems and record the reflected signal, i.e., the
outgoing photons, of the cavity. Figure 1e depicts the pulse
scheme that we employ to prepare the system in its normal modes
by varying the following two parameters: An arbitrary
phase offset φ between the pulses, and the applied power
ratio Δ

2 ¼ A2
m=A

2
c , allowing for an amplitude matching and thus

equal excitation of cavity and magnon system. Unless otherwise
stated, the manipulation pulses are 10 ns short. This results in a
bandwidth of the pulses much larger than the linewidths of cavity
and magnon. However, only the ratio of stored energy is of
importance and we chose such short drive tones to only set the
initial state of the system and to not drive the CMP into its steady
state response.

System characterization. As a first step, we characterize the system
spectroscopically. The avoided level crossing data (Fig. 2a) show a
coupling strength of g=2π ¼ 24:6MHz, as theoretically expected
for this cavity magnon-system14, and identical decay rates (Sup-
plementary Note 4) at the crossing point of κcrp=2π ¼ 2:1MHz due

to equal hybridization. We hence conclude that our system is
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strongly coupled. This result is also validated in the time domain
(Fig. 2b). The external field, and therefore ωr, is swept and only the
cavity is excited with a single short pulse in between the sweep
steps. The reflected signal shows clear Rabi-oscillations confirming
the coupling strength of g=2π ¼ 24:6MHz and thus exhibiting an
oscillation period of tR ¼ 2π=g ¼ 40:6 ns for ωc ¼ ωr. The mea-
sured decay time of τ ¼ 77:6 ns is also in good agreement
with 1=κcrp ¼ 75:8 ns. Both, time resolved and spectroscopic data

exhibit another weakly coupled magnon-mode at around 234mT,
which slightly distorts the signal of the pure Kittel mode but is not
of interest for our experiments.

After the characterization of our system, we apply a
simultaneous pulse directly to the magnon system, as displayed
in Fig. 1e. The cavity response of such a two-pulse experiment is
shown in Fig. 2c. The two pulses are phase and amplitude-
matched for the on-resonance case in order to prepare the system
in its normal mode. Since no energy is exchanged in the normal
modes, a pure exponential decay is expected and observed at the
crossing point. However, if ωc ≠ωr, the amplitude and phase-
matching does not hold and Rabi oscillations are visible. But
when the system approaches its crossing point (green dashed line
in Fig. 2c), the dips of the oscillations become more shallow than
in Fig. 2b, until they are almost completely suppressed. The slight
remaining oscillations left are due to experimental imperfections.
Figure 2d shows a line cut at the crossing point of the single and
two-pulse experiment emphasizing the different responses of the
normal mode and beat mode. The two-pulse response reveals the
expected exponential decay of either one of the normal modes ξ ± .
Following the external drive pulses, the cavity and magnon field
have the same amplitude and oscillate in-phase (anti-phase) for

ξþ (ξ�), which is characteristic for the normal modes9. These
results are in excellent agreement with numerical simulation of
Eq. (1), which can be found in Supplementary Note 5.

Transition to normal modes. We also monitor the transition
from ξ0 to ξ ± directly at the crossing point with the same pulse
sequence (Fig. 1e) by sweeping the phase offset and power ratio of
the two pulses. The cavity response during free evolution is
recorded for every combination of these two parameters, and
fitted to the following formula (See Supplementary Note 6 for
details on the derivation):

PcðtÞ ¼ p0 ð1� λÞ þ ð1þ λÞcos2ðg t þ ϕ0Þ
� �

e�t=τ ; ð2Þ

which describes the cavity response during free evolution. The
parameter λ has inherent bounds of �1 to 1 and determines the
behavior of the system. λ ¼ 1 gives a damped sine function and
thus represents the beat mode ξ0, whereas λ ¼ �1 yields the pure
exponential decay of the normal modes ξ ± . A proportionality
constant p0 normalizes the different input powers, ϕ0 describes
the initial phase of the beating and τ the decay time. Figure 3a
displays the extracted values for λ corresponding to the different
modes for the measured data and can be compared to the analytic
solution (Fig. 3b). As expected from the oscillator and the elec-
tromagnetic model9, where the phase between magnon field and
cavity field at the crossing point is locked to either in phase or
complete anti-phase for the two eigenmodes, the system is pre-
pared in the normal modes (red regions) for matching powers
and phase offsets of 180� and 360�. In the experiment, the red
regions are shifted to lower phase offset values by roughly 30� and
occur at different power ratios (attenuations). Investigating these
deviations with numerical simulation, we find that this phase shift
translates to a timing mismatch between the two applied pulses
below 0.1 ns, which is beyond the precision of our setup. The
difference in attenuation between the normal mode regions is
either due to direct crosstalk ζ describing the amount of cavity
pulse amplitude acting on the magnon system and vice versa
(Supplementary Eqs. (S2) and (S3)), as displayed in Fig. 3c, or due
to small drifts of the external magnetic field resulting in a
detuning of the two oscillating systems Δf ¼ ðωr � ωcÞ=2π,
which can be seen in Fig. 3d. Apart from these little discrepancies,
which are purely limitations of the experimental setup, our col-
lected data agrees well with theory (Further information in
Supplementary Note 7). We can continuously change the para-
meter λ and therefore the CMP mode composition. Thus, with a
second pulse, the phase relation between cavity current and
magnon magnetization can be set to an arbitrary value. These
results extend the work of Bai et. al, where the phase relation
between the two systems is fixed by the external field9. This
pulsed mode control of the CMP may hence benefit future spin
rectification26 experiments and applications.

Coherent and dynamic control. The external control of the CMP
mode composition, which we showed and described, is directly
linked to the amplitude control of Rabi oscillation and thus to the
amount of energy transferred between the two subsystems. Seiz-
ing this opportunity, we now demonstrate a coherent and also
dynamic control over the CMP during one single decay by
choosing an arbitrary period in which the magnon-Rabi oscilla-
tions are allowed to occur (Fig. 4a). Having prepared the system
on resonance, we excite both magnon and cavity with phase and
amplitude-matched pulses, to bring the CMP into its normal
mode ξ ± and observe a pure exponential decay. We then increase
the energy of the magnon subsystem by pulsing it again with a
short pulse. The whole system is now in a superposition of ξþ and
ξ�, i.e., in its beat mode. Rabi oscillations are visible and energy is
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Fig. 1 Mode visualization and experimental setup. a–c Pendula

representation of the different cavity magnon-polariton modes: in-phase

mode ξþ , anti-phase mode ξ�, and beat-mode ξ0. d The time domain setup

comprises the following three parts: the magnon manipulation line, the

cavity manipulation line, and the recording line for the cavity response. A

continuous signal of the microwave source is up-converted with pulses

from the digital-to-analog-converter (DAC), which then excite cavity and

magnon system. The reflected and down-converted signal from the cavity

is recorded by an analog-to-digital-converter (ADC). e Typical pulse

sequence used in the experiments to prepare the system in its normal

mode. The recording line describes the time span in which experimental

data is shown, and hence omitting the ring-up behavior for clarity.
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exchanged. After a few oscillations, a third pulse in anti-phase to
the incoming photons from the cavity and with lower amplitude,
due to energy loss in the system, extracts the additional energy,
previously introduced to the magnon subsystem, by destructive
interference and brings the whole system back to its normal
mode. The Rabi oscillations stop and a simple exponential decay
is visible, again. In the picture of two coupled pendula, the three
different segments of the decay correspond to (I) both pendula
oscillating in phase, (II) a strong drive of one pendulum intro-
duces energy leading to the beat mode, and (III) a careful short

deacceleration brings the system back to the normal mode.
Simulating this experiment with the same pulse sequences, we
find a good agreement of experimental results and simulated data
(dashed line in Fig. 4a).

In a second experiment (Fig. 4b), we apply the technique used
for active noise control27,28 in acoustics to the CMP: the cavity is
excited by a short pulse and the energy is transferred to the
magnon system and back to the cavity. Here, we found a good
result applying a longer pulse of 40 ns to the cavity. However, we
note that the experiment is independent of the pulse length.
During the second energy transfer to the magnon, we drive the
magnon in an anti-phase manner to the oscillation of the
incoming photons. A destructive interference extracts the stored
energy from the system and thus the reflected power of the cavity
drops within a few nanoseconds by roughly 20 dB, before the
signal reaches the baseline of the measurement setup. This
behavior can also be understood intuitively in the picture of the
coupled pendula: A first pulse tilts only one pendulum, the energy
is transferred with time and the second pendulum starts
oscillating. Exactly in the moment when all energy is transferred,
i.e., the first pendulum is at rest, the other pendulum is stopped
abruptly by the external second pulse and the whole system is
deexcited. Again, the simulated data agrees well with the
experiment, showing a drop of 20 dB after the magnon pulse.
In the simulation the Rabi oscillations continue whereas in the
experiment the signal is limited by the dynamic range of the
analog-to-digital-converter (ADC) and also affected by unwanted
pulse reflections in the setup. These two experiments presented
here demonstrate the fundamentals of dynamic and coherent
control over the CMP.

Discussion
We presented coherent time-domain control of both cavity and
magnon while recording the cavity response, as well as real-time
manipulation of the CMP. We also showed the transition from
the beat mode to the normal modes of the CMP and explained it
with the theory models provided by Bai et al.9. The CMP can be
set in an arbitrary superposition of its eigenmodes depending on
the phase offset and amplitude of the applied pulses. This pulse
influence agrees well with theory considering the finite time
resolution of our setup. Furthermore, we demonstrated a coher-
ent control over the CMP, with which the amount of transferred
energy as well as the total amount of energy in the system can be
manipulated at any given time.

Spectroscopic two-tone experiments predicted and observed
the regime of level attraction17,19,29. Following the proposal of
Yuan et al.30, this regime has also been linked to an entanglement

Fig. 2 Spectroscopic and time-resolved cavity response for the different cavity magnon-polariton (CMP) modes. a Avoided level crossing of the CMP,

probed spectroscopically. b Time evolution of the reflected cavity signal revealing magnon-Rabi oscillations after a single pulse to the cavity. Between each

recorded time trace the external field is swept. Close to 234mT another spurious mode is visible, particularly between 100 ns and 200 ns. c Cavity time

evolution after phase and amplitude-matched pulses to both cavity and magnon. Rabi oscillations on resonance (green dashed line) are suppressed since

the system is prepared in one normal mode. d Comparison of the cavity’s time evolution in one normal mode ξ ± (green line) and beat mode ξ0 (gray line)

at the crossing point. Time traces are line cuts along the dashed lines in b and c.

Fig. 3 Mode composition of cavity magnon-polaritons (CMP). The mode

composition depends on applied power ratio Δ
2 and phase offset φ between

the two pulses. Experimental data of the cavity response (a) are fitted to

Eq. (2) and can then be compared to analytic data (b) and simulations

considering experimental imperfections (c and d). The chosen attenuation in

the magnon line (y-axis of a) corresponds to the power ratio of the drive

pulses used in b–d with an experimentally inaccessible offset. The parameter

λ translates to the mode composition of the CMP. Within the red ellipses, the

CMP is predominantly excited in its normal modes. Experimentally found

normal mode ellipses are slightly shifted to lower phase values and differ in

power ratio compared to the analytic solution. Simulations reveal small timing

mismatches δt of the applied pulses, direct crosstalk ζ or small frequency

drifts Δf in the system as possible reasons for the discrepancy.
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of photon and magnon with predictions for the time evolution of
the system. Using the presented technique here and also slightly
modifying our sample according to the geometry of Boventer
et al.19 would allow for a preparation of the CMP in the level
attraction regime. Its state can then be recorded in time. Although
our demonstration was purely classical, the presented control can
readily be applied at cold temperatures, i.e., in the single magnon
regime, and the predicted entanglement in the level attraction
regime may be verified.

Moreover, our demonstration of dynamic and coherent control
can be extended by adding a non-linearity to the system, e.g., a
superconducting qubit,10,11. This would allow for an encoding of
qubit states in magnons31 with gate schemes similar to the works
on superconducting resonators32,33 and subsequently the imple-
mentation of universal gates34,35 for magnon systems. The CMP’s
significant potential as an interface from radio frequency to
optics8,36–38 balances the short lifetime of magnons compared to
superconducting resonators. Thus, our results are a promising
step towards a link between the different building blocks for a
quantum network39 and open new ways for magnon-based
quantum computation research.

Finally, our work demonstrates the fundamental principle of
time-control of the individual components in hybrid systems.
Applied to other compound devices featuring polaritons from the
strong coupling of electromagnetic waves with electric or magnet
excitations, such as optomechanics40 or electromechanics41, it
provides a flexible platform that intrigues fundamental coherent
control of the strong light-matter interaction dynamics.

Methods
Experimental setup. The experimental setup is adapted from quantum simulation
experiments with superconducting qubits42. Its core components are a microwave
source, an arbitrary waveform generator (AWG) with two sets of digital-to-analog-
converters (DAC), and a two-channel ADC-card. For our experiments it is vital
that the phase between magnon and cavity control pulses is independently con-
trollable but also stable over the entire experiment. We ensure this by using a single
microwave source and two DAC sets in combination with the internal clock of the
AWG for both DAC sets. The continuous signal generated by the microwave
source is up-converted to ω0 via separate but identical IQ-mixers (in-phase/
quadrature) and 10 ns short IQ-pulses with a carrier frequency of 250 MHz from
the AWG. The up-conversion preserves the phase offset and the envelope of the
IQ-pulses emitted by the AWG. A voltage controllable attenuator in combination
with a 26 dB amplifier inserted in the magnon line enables us to adjust the exci-
tation amplitude and hence vary the power ratio between magnon and cavity
excitation pulses.

Data acquisition. The cavity response is recorded by measuring the IQ compo-
nents of the down converted, filtered and amplified signal with the ADC-card. A
subsequent digital down conversion removes the 250 MHz carrier frequency and
yields amplitude and phase data.

Experimental technique. The initial two pulses for the cavity and magnon system
have to reach the sample simultaneously in order to ensure a good phase and
amplitude matching. We therefore calibrate the cable delay between the two input
lines by emitting two Gaussian shaped pulses simultaneously at the AWG, which
are sent to both subsystems. Due to undeterrable crosstalk, a part of the pulse
applied to magnon system is transferred to the recording line of the cavity.
Recording the reflected cavity pulse and the transmitted magnon pulse, we find a
cable delay of 7 ns by fitting the pulses and extracting their mean values. However
due to simplicity, square pulses are used for most experiments. Because of inac-
cessible and fluctuating parameters, such as uncorrectable cable delays below 1 ns,
drifts in the external fields and unknown reflected parts of the emitted pulses, the
correct phase offsets and power ratio for the specific experiments are found
experimentally by a sweep of these two parameters. Although the eigenfrequencies
are shifted by g compared to the bare resonator frequency, the system is always
pulsed at ω0 . This gives the best experimental compromise for equally exciting the
different modes of the system. All experiments are performed in the linear regime
(Supplementary Note 8).

Sample details. The employed YIG sphere is commercially available from Ferri-
sphere Inc. The stripline is 50Ω matched and open-ended. It is made from a
Rogers TMM10i copper cladded (35 µm) substrate with a thickness of 0.64 mm.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.

Code availability
All data acquisition and analysis are performed with the open source measurement suite

qkit https://github.com/qkitgroup/qkit. The implementation of the numerical

simulations and the fitting procedure are available from the corresponding author upon

reasonable request.
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