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ABSTRACT The intrusion detection systems (IDSs) are essential elements when it comes to the protection

of an ICT infrastructure. A misuse IDS is a stable method that can achieve high attack detection rates (ADR)

while keeping false alarm rates under acceptable levels. However, the misuse IDSs suffer from the lack of

agility, as they are unqualified to adapt to new and ‘‘unknown’’ environments. That is, such an IDS puts the

security administrator into an intensive engineering task for keeping the IDS up-to-date every time it faces

efficiency drops. Considering the extended size ofmodern networks and the complexity of big network traffic

data, the problem exceeds the substantial limits of human managing capabilities. In this regard, we propose a

novel methodology which combines the benefits of self-taught learning and MAPE-K frameworks to deliver

a scalable, self-adaptive, and autonomous misuse IDS. Our methodology enables the misuse IDS to sustain

high ADR, even if it is imposed on consecutive and drastic environmental changes. Through the utilization

of deep-learning based methods, the IDS is able to grasp an attack’s nature based on the generalized feature

reconstructions stemming directly from the unknown environment and its unlabeled data. The experimental

results reveal that our methodology can breathe new life into the IDS without the constant need for manually

refreshing its training set. We evaluate our proposal under several classification metrics and demonstrate that

the ADR of the IDS increases up to 73.37% in critical situations where a statically trained IDS is rendered

totally ineffective.

INDEX TERMS Adaptive intrusion detection systems, artificial neural networks, deep learning, information

systems security, MAPE-K, sparse auto encoders.

I. INTRODUCTION

Intrusion detection systems (IDSs) are one of the most impor-

tant entities when it comes to Information and communi-

cations technology (ICT) infrastructure protection against

cyberattacks. IDSs weaponize defenders with fundamental

means to detect offensive events and consequently trigger

optimal counteraction plans against them [1], [2]. In fact,

the everlasting battle between defenders and attackers has

taken the form of an ‘‘arm race’’, where both sides constantly

upgrade their arsenals in order to prevail against each other.

The emergence of new attacks spurs the academia and indus-

try to investigate for novel methodologies which are able to

closely monitor this race and adapt rapidly to the changes in

the field.

In principle, IDSs fall into two major categories, namely

Anomaly Detection Systems and Misuse Detection Systems.

The former regulate their detection engine to identify as

intrusive incidents those that exhibit deviations from a pre-

defined normal behavioral profile. This kind of IDSs are

able to identify previously unseen attacks, but are known to

produce high false alarm rates, rendering them a questionable

solution especially for complex infrastructures, where the

standardization of the normal profile is challenging. On the

other hand, misuse IDSs rely on known signatures trying

to designate traffic instances to legitimate or attack traffic

classes. This kind of IDS lacks the ability of identifying new

attack patterns or deviations from known ones, and their per-

formance depends on the freshness of the signatures database.

Hence, the IDSs administrator needs to put significant effort

to keep the misuse detection model up to date. If we addi-

tionally consider the fact that the protected environment is a

dynamic ecosystem where new devices and/or services may
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appear or leave the network at any moment (e.g., the Inter-

net of Things), it becomes clear that the adaptability issue

becomes a burden on administrators’ shoulders. This burden

becomes even heavier as the growth of communication net-

works pushes IDSs into the big data era, where the increased

volume of the transmitted data surpasses the limits of human

processing capabilities.

In view of the above, adaptive IDSs are becoming an active

research field as new researches [3], [4] aim to address the

inherent limitations of legacy intrusion detection systems.

So far, interesting artificial intelligence-based methods that

bear the feature of adaptability have been reported as promis-

ing approaches. To name a few, Learning Classifier Sys-

tems (LCS) [5], Artificial Immune Systems [6] and Swarm

Intelligence [7] combine adaptation and evolution aspects.

However, this research topic has still many challenges to face

as systems and attacking tactics become more sophisticated.

Keeping any type of IDS up-to-date is a demanding task

for several reasons where most of them pertain to the envi-

ronmental changes. The latter term refers to any aspect of a

network that can change and consequently affect the profile

of the generated network traffic. In practice, the addition (or

disengagement) of a device in a network can affect different

network aspects, including the topology, the running services,

the open ports, the communication protocols and/or appli-

cations, the network traffic load, and others. In turn, these

environmental changes affect fundamental security features

such as the vulnerabilities appearing in the network, which

can generate multiple penetration paths for the attackers.

Considering a more dynamic network like an IoT environ-

ment, an Ad Hoc network, or even a corporate network with

a Bring your own device (BYOD) policy applied, one can

understand that the attack surface of the network can be

increased unexpectedly. It is plausible that, say, the newly

introduced devicemight be already infected by amalware and

act as a stepping stone for an attacker to conquer more assets

within the network. Yet, new devices are not the only enemies

of an IDS in a network, as also already installed devices

will eventually proceed with software/OS updates or new

software installations that again will bring in alterations in

the environment.

Overall, the above mentioned changes are routine actions

that constantly appear in every common network, rather than

unusual events. Actually, virtually all sort of modifications

can significantly affect the performance of an IDS which is

placed to protect an ever-changing infrastructure. This reality,

combined with the lack of adaptable detection engines, forces

the IDS to become quickly outdated and inadequate as it

inevitably has to operate in new and ‘‘unknown’’ or unfore-

seen environments for which its engine was not trained.

Thus, security administrators undertake the task of constantly

retraining the IDS by considering all the new environmental

changes to regain the reliability and the performance of the

detection system. All in all, the cardinal challenge for any IDS

designer, namely find proper ways to automatize at least to a

certain degree the retrain process, remains largely unsolved.

To this end, this work proposes a novel adaptive method-

ology which can significantly boost the performance of a

misuse IDS when it is dragged into new, previously unseen

environmental states. Our novel solution brings in intelli-

gence in the detection engine update process with the aim of

extending its lifetime and sustain the detection ratio above

considerably higher levels than it would reach without such

intelligence. At least, in network setup transition periods,

this ability gives the necessary time to the administrators to

smoothly retrofit the IDS to fully meet the new environmental

conditions. To do so, we take advantage of the benefits of the

Self-Taught Learning (STL) methodology [8], for enabling

Transfer Learning from unlabeled data for the sake of assist-

ing the IDS when dealing with unknown environments. Our

evaluation proves that the qualities of the STL methodol-

ogy can fit well in the particular problem and address the

challenges raised in the field of adaptive IDSs. Our adaptive

methodology is also supported by the MAPE-Kmodel [9] for

delivering a self-adaptive IDS that follows the sound practices

of autonomic computing.

In short, the contributions of the work at hand are as

follows:

• We propose a novel methodology for designing a scal-

able, self-adaptive and autonomous misuse intrusion

detection systems based on advanced artificial intelli-

gence (AI) techniques.

• We take advantage of deep learning methodologies

to identify new data feature representations that stem

from the unknown environment where the IDS operates.

These new representations are used to retrain the IDS in

an automated way so as to adapt to the new environment.

• We integrate our proposal in the context of MAPE-K

methodology that draws the frame for autonomous and

self-adaptive systems.

• We extensively evaluate our system over several metrics

and diverse environmental states to deliver a proof of

concept, which is supported by experimental results and

demonstrates its potentiality for further extension.

The rest of the paper is organized as follows. The next

section includes all the necessary information to introduce

the reader in our methodology. In Section III we present

our methodology and elaborate on its beneficial charac-

teristics, while in Section IV we provide the evaluation

results. Section V provides a discussion on the key findings.

Section VI reviews the related works in the field. The last

achieved section concludes and provides pointers to future

research.

II. PRELIMINARIES

Our work recruits two different concepts to provide a holistic

framework for self-adaptive and autonomous misuse detec-

tion systems. Before introducing the reader to our idea,

we first provide an overview of the basic concepts related

to our methodology. That is, the following subsections elab-

orate on the MAPE-K [9] and Self-Taught Learning [8]

methodologies.
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FIGURE 1. MAPE-K methodology sets the principles for an adaptive and
autonomous IDS.

A. MAPE-K CONTROL LOOP

MAPE-K control loop is a reference model in autonomic

computing firstly introduced by IBM [9]. Since then,

MAPE-K is used to set the principles for self-adaptive sys-

tems and significant effort has been put to standardize and

formalize the methodology [10], [11]. MAPE-K is a control

loop comprised of five activities, namely, Monitor, Analyze,

Plan, and Execute over a Knowledge base, as can be seen in

FIGURE 1. As further explained in subsection III-B, these

activities provide a general framework for developing self-

adaptive systems which are able to sense changing events

from their environment. This is done via the use of specialized

Sensors, and eventually harmonize their behavior by taking

actions through Actuators.

More specifically, theMonitor senses the environment and

collects data/events of interest where their presence indicates

the need of system adaptation. The collected data/events are

gathered in the Knowledge database for later reference. Next,

the Analyzer undertakes the task of processing the collected

events to identify patterns of failure or critical events and

act upon by initiating a proper adaptation strategy. The Plan

activity orchestrates the decision making and determines the

changeswhich should be taken for keeping the system aligned

with its objectives. Finally, the Executor instructs the appro-

priate alterations to the system through the Actuators. The

control loop described above is initiated whenever the system

identifies the need to adapt its behavior to the underlying

environment and always aims to meet the objectives which

- in principle - are set by the administrator.

Every single activity in the MAPE-K control loop can con-

tain other autonomic elements that can be used to fulfill sub-

objectives of the main activities. These elements can inter-

act among each other by exchanging signals and messages.

Overall, the system and its sub-components are coordinated

with the aim of providing a fault tolerant self-adaptive system,

which is driven by pre-determined objectives.

B. SELF-TAUGHT LEARNING

Self-Taught Learning (STL) is a machine learning frame-

work which is able to exploit unlabeled data with the pur-

pose of improving a supervised classification problem [8].

The motivation of the authors in [8] derives from the fact

that labeled data are an ‘‘expensive’’ source of information,

as it requires a significant investigation budget to acquire and

update them. The question posed was whether unlabeled data

could be used to improve a given classification task.

In the STL concept, one is provided with both labeled

and unlabeled data. The labeled data are used as the initial

training set of m samples for a given classification task T =

{(x
(1)
l , y(1)), (x

(2)
l , y(2)), ...., (x

(m)
l , y(m))}, where x

(i)
l ∈ R

n is

the i-th sample with n features, y(i) ∈ {1, ...,C} is the class

label, and the l symbol stands for ‘‘labeled’’. On the other

hand, the set of k unlabeled samplesU = {x
(1)
u , x

(2)
u , ...x

(k)
u } ∈

R
n, where x

(i)
u ∈ R

n is the i-th unlabeled sample with n

features, and u stands for ‘‘unlabeled’’. U is given as input

to a sparse coding algorithm to learn a higher level structure

of those data. This structure is then used as a basis to trans-

form the initial labeled dataset T and obtain a new training

set T̂ = {(a
(1)
l , y(1)), (a

(2)
l , y(2)), ...., (a

(m)
l , y(m))}, where a

(i)
l

represents the i-th new training example. In consequence,

the new training dataset T̂ can be used to train a supervised

learning algorithm.

More specifically, sparse coding is a type of unsupervised

methods that aims to reconstruct input data as accurately as

possible and express them as linear combinations of a basis

vector b. The basis vector b enables to accurately capture the

inherent information of the input and identify strong patterns

in it. Additionally, sparse coding regulates the sparsity of the

data by using coefficients (or activations) ai and encourages

most of the coefficients to be zero. In fact, this is an opti-

mization problem that aims to reconstruct the input data by

minimizing the reconstruction error, and at the same time to

maximize the sparsity of the output. Given the bases b and the

training set T , the STL algorithm transforms the inputs x
(i)
l to

sparse non-linear combinations of the basis b to form a new,

but more informative, training set T̂ .

The interested reader can refer to [8] for more details

regarding the STL method. In the following section, we fur-

ther elaborate on the beneficial features of the STL and

explain how these features in conjunction with MAPE-K

control loop can deliver a holistic methodology for building

a misuse adaptive IDS.

III. PROPOSED METHODOLOGY

This section details on our methodology for adaptive mis-

use IDSs. With reference to Section I, we first define the

term ‘‘environmental state’’ and elaborate on the challenges

that IDSs face whenever a change appears in the underlying

network topology. Next, we combine the two methodologies

described in subsections II-A and II-B for the purpose of pre-

senting our full-fledged approach along with its advantages.

A. ENVIRONMENTAL STATES AND NETWORK FLOWS

Undoubtedly, computer networks are highly volatile environ-

ments, which can be characterized as a mosaic of diverse

interconnected devices usually from different vendors. On top
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of that, one needs to consider that modern networks like IoT

networks, Wireless Sensor Networks (WSN), VANETs, and

others come with such an extended size, dynamics and com-

plexity that far exceed the limits of human managing capa-

bilities. Similarly, IDSs which aim to protect such dynamic

networks are unable to automatically adapt to the changes

occurring to their environment and their adjustment requires

significant human effort. In fact, there are several reasons that

can lead a network to a new state, and therefore lower the

efficiency of the deployed IDS.

At any given time, a new device can join a network. This is

the most common situation, especially in wireless networks,

but this event alone can lead to a set of subsequent events

that can bring instability. That is, the newcomer may be

a host of new services, ports, applications, communication

protocols, communication patterns, network workload, and

even new vulnerabilities. In the worst case scenario, the new

device may be also infected by some ilk of malware that

can attempt to exploit other network assets to penetrate the

network. A join operation is not the only reason for facing

network state changes. The already existing network assets

can modify their operational profile as they can be subjected

to OS/application upgrades and new application installations.

These modifications, apart from introducing changes in the

network state, can sometimes increase the attack surface of

the network as they can bring in new and zero-day vulner-

abilities. The aforementioned changes, even when occurring

individually, can significantly affect the decision engine of an

IDS and produce a high level of false alarms. Even worse,

if the IDS is not retrained to deal with these changes it

can become the single point of failure of the infrastructure’s

security planning.

In the context of our work, we perceive any of the above

mentioned events to lead the network into a new state, and

thus affect the IDS’s operational environment. Such changes

also affect the network’s behavioral profile, which in turn is

reflected in the network flows. According to RFC 2722 [12],

a network flow can be seen as an artificial logical equiva-

lent to a call or connection, which has as attribute values

aggregated quantities which reflect the events that take place

during this connection. These attribute values can bear valu-

able information regarding numerous aspects of the network’s

behavior ranging from the topology to the workload and the

active services. Thus, network flows are a rich source of

information that can improve the network security visibility

as they can be leveraged by security analysts to identify and

assess hostile actions, new attacks, and the network’s security

state in general. As a result, when a network is overwhelmed

by unknown and previously unseen network flows, an IDS

which has been trained to defend a network based on a static

training set needs to be retrained in order to sustain a credible

security level. This however implies the need of a demanding

process on behalf of the security analyst to identify and label

manually new network instances for creating a new dataset

that can be used to retrain the IDS. Considering that most

of the network changes are common actions that can happen

regularly, it becomes clear that there is a need for methods

capable of automating the retraining process.

To this end, our methodology aims to offer an automated

way to keep the detection ratio of a misuse IDS to accept-

able levels regardless of the environmental changes that may

indicate the presence of previously unknown attacks. In a

nutshell, our methodology can empower autonomous and

self-adaptive misuse IDSs by enabling them to adapt to

their environment and significantly contribute in keeping a

high or at least acceptable security level. This quality also

significantly alleviates security experts from the demanding

task of retraining the IDS.

B. BLENDING MAPE-K AND SELF-TAUGHT LEARNING

As described in Section II, MAKE-K is a reference model to

build autonomous and self-adaptive systems. This subsection

details on the ways the benefits of MAPE-K and STL can

co-work toward coping with the challenges of this particular

field and building a solid basis for misuse adaptive IDSs.

As observed from FIGURE 1, MAPE-K comprises 5 activ-

ities that operate over a Domain Specific System (DSS) and a

Context. In our case, the DSS is the IDS per se, while the

Context can be adjusted to any given type of network where

there is a need of an adaptive IDS. FIGURE 2 depicts the

proposed system and details on its components, which are

described next.

1) MONITOR

This activity undertakes the task of coordinating the sensors

for acquiring the basic knowledge that will reveal the need of

triggering the adaptive control loop. Network mappers can be

used as the basic sensors for network inventory. Such entities

are able to determine a gamut of network characteristics,

including its topology, the available hosts, the running ser-

vices, open ports, the operating systems, and even potential

vulnerabilities. By collecting such information, the Monitor

is able to determine any alteration event that requires an

IDS adaptation. The monitoring activity is able to grasp the

environmental changes in collaboration with the Knowledge

activity, which serves as a repository for reference purposes.

The Monitor can schedule the network mapping process

to occur periodically according to the characteristics of the

network.

In parallel, another sensor type which is controlled by the

Monitor is theNetwork Sniffers. The latter are used to capture

the network traffic. This traffic is used as the basis to extract in

a later stage the network flows which have to pass through the

detection engine of the IDS. Additionally, the network traffic

is stored in the Knowledge component to serve the purpose of

adaptivity as it is described further down in the Plan/Execute

activities.

2) ANALYZE

After collecting the necessary data, the Analyzer performs

the transformation of the raw network traffic into net-

work flows. By using the stored traffic of the knowledge
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FIGURE 2. Architectural overview of the proposed system.

component, the Analyzer utilizes network audit tools such as

Argus [13] and CICFlowMeter [14] in order to generate the

network flows. These tools are able to analyze large amounts

of network traffic even in an in-line manner and process them

accordingly to generate highly informative network flows

with various features. These features comprise the machine

learning features of the network traffic instances, which are

fed into the IDS engine for detection purposes. Note that

these flows constitute the unlabeled dataset, which on the one

hand are given into the supervised model of the IDS to detect

potential attacks, while on the other are used as the unlabeled

data fed to the STL to fuel the adaptive process. This implies

that during the IDS operation, the adaptive process is simul-

taneously executed with the aim of coming up with a new

detection model that will replace the existing one.

3) PLAN

The planning activity undertakes the key process of lever-

aging the unlabeled data for initiating the machine learning

adaptive process. Until that point, the Monitor and the Ana-

lyzer identified environmental changes in the network, while

the Knowledge component consolidated the network flows,

whichwere generated by the time that the change(s) occurred.

This moment is the beginning of a crucial time interval when

the IDS may face unknown network traffic instances that

can undermine its performance. In this direction, the Plan

activity aims to copewith this ambiguity by utilizing unsuper-

vised feature learning techniques. In the context of our work,

we utilize a Sparse autoencoder as the unsupervised learning

algorithm to learn informative and sparse new representations

of the unlabeled data, and thus benefit the supervised task of

the misuse IDS.

a: Sparse autoencoder

An autoencoder is a neural network that applies backpropa-

gation [15] and aims to reconstruct a given input to an output

that approximately resembles to the initial input. That is,

the neural network attempts to learn a function hW ,b(x) ≈ x,

where theW , b vectors denote theWeights and Biases among

the layers and their units of the neural network. This process

can be driven also by other objectives apart from minimizing

solely the reconstruction error. As already pointed out, in our

work we utilize a Sparse autoencoder in order to learn sparse

representations of the input data. In practice, the backpropa-

gation process is driven by the following cost function.

J (W , b) =
1

k

k
∑

i=1

(

1

2
‖x(i)u − x̂(i)u ‖22

)

+
λ

2

2
∑

L=1

sL
∑

i=1

sL+1
∑

j=1

(

W
(L)
ji

)2

+ β

s2
∑

j=1

KL(ρ‖ρ̂j) (1)

where:

• x
(i)
u ∈ R

n is the i-th input unlabeled example.

• x̂
(i)
u ∈ R

n is the i-th output given the i-th input example.

• k is the number of the examples in the unlabeled training

set.

• λ is the weight decay parameter.

• L index denotes the number of a layer.

• sL is the number of nodes in the L-th layer.

• β is the weight of the sparsity penalty.

• ‖x
(i)
u − x̂

(i)
u ‖22 is the squared L

2 norm.

Through backpropagation the Sparse autoencoder aims

to minimize equation (1). As can be seen, the equation

consists of three terms (one per line). The first term rep-

resents the average accumulated squared error among the

input and the reconstructed output. That is, the network tries

to reconstruct the output and achieve high similarity with
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the input. Note that, x̂
(i)
u ∈ R

n is a vector of n features,

i.e., x̂
(i)
u = {x̂

(i)
u1 , x̂

(i)
u2 , . . . , x̂

(i)
un }. Thus, each x̂

(i)
up = hW ,b(x

(i)
up ) =

f
(
∑s2

j=1W
(2)
pj a

(2)
j + b

(2)
p

)

, p = 1, . . . , n and a
(2)
j are the

activations of the hidden units (2nd layer). The sigmoid func-

tion f (z) =
1

1 + exp(−z)
has been chosen as the activation

function for the neurons. This activation function gives values

between 0 and 1, while it regulates the weights of the network

to change gradually and output better results. Additionally,

the sigmoid function introduces non-linearity into the model,

thus aiding in capturing non-linear combinations of the input

data. The second line refers to the weight decay term that

tries to decrease the magnitude of the weights (W
(L)
ji ) among

the nodes of the layers, while λ controls the importance

of the weight decay term. The last term is a function that

applies the sparsity penalty, where KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+

(1 − ρ) log
1 − ρ

1 − ρ̂j
is the Kullback-Leibler (KL) divergence

that can determine the difference between two distributions

having ρ and ρ̂j mean values respectively. That is, ρ defines

a desired level of sparsity, while ρ̂j is the average activation

of the j-th hidden unit. The magnitude of the sparsity penalty

is regulated by the β weight.

b: Feedforward autoencoder

The training process of the Sparse autoencoder will define the

Weights and Biases vectors (W , b) = (W (1), b(1),W (2), b(2)).

Next, these vectors can be used in a Feedforward manner over

a new input for finding a new and more informative structure

of this input. In other words, the knowledge acquired from

the unlabeled data U that fed into the Sparse autoencoder

can now be exploited for restructuring another dataset. This

reconstruction is driven by a new representation which is

learned out from unlabeled data, i.e., data that stem from an

unknown environment.

Following this principle, our methodology can gener-

ate a new representation of the labeled dataset T =

{(x
(1)
l , y(1)), (x

(2)
l , y(2)), ...., (x

(m)
l , y(m))}, that was initially

used to train the IDS. Note that, x
(i)
l ∈ R

n is a vector of n

features, i.e., x
(i)
l = {x

(i)
l1

, x
(i)
l2

, . . . , x
(i)
ln

}. The new represen-

tation is a new labeled training set T̂ that has as features

the activations of the hidden units. That is, given T as the

new input in a Feedforward autoencoder, we can calculate

the new activation vectors using the Weights and Biases of

the first layer W (1), b(1) by applying the activation func-

tion. As a result, the system produces a new dataset T̂ =

{(a
(1)
l , y(1)), (a

(2)
l , y(2)), ...., (a

(m)
l , y(m))}, where a

(i)
l represents

the i-th new training example. Thus, each a
(i)
l example is a

vector of s2 activations, a
(i)
l = {a

(i)
l1

, a
(i)
l2

, ...., a
(i)
lS2

}, and each

activation is given as follows:

a
(i)
lp

= f
(

s1
∑

j=1

W
(1)
pj x

(i)
lj

+ b(1)p
)

, p = 1, . . . , s2 (2)

Finally, the new training dataset T̂ can be used to train a

supervised learning algorithm. Note that, the acquisition of

T̂ can occur virtually indefinitely as long as the planning

activity is fed with new unlabeled network traffic.

The reader may notice that the Feedforward autoencoder

adds an extra layer of data transformation. That is, any

instance which will be subjected into the supervised learning

algorithm for detection purposes needs to pass first through

the Feedforward autoencoder to acquire the same transforma-

tion properties.

4) EXECUTE

The outcome of the planning activity is a Feedforward

autoencoder which is used for reconstructing the initial

labeled dataset T and acquire T̂ . Hence, the execution activ-

ity undertakes the training of a supervised model based on

the new dataset T̂ . This step does not impose any con-

strains regarding the supervised algorithm that can be used

to empower the detection model. In our case, we make use of

SoftmaxRegression to deliver amulti-classification detection

module. After training the newmodel, the old one, which due

to the environmental changes had started facing efficiency

problems, can be replaced through the actuators.

5) KNOWLEDGE

During the adaptive control loop, the Knowledge component

is accountable for storing purposes. In fact, Knowledge is

a repository that supports the adaptive functions and helps

exchanging the inputs and outputs of each activity among

them. More specifically, the repository stores the sniffed

network traffic during themonitoring phase. Upon the adapta-

tion signal of the network mapper, these captures will become

the input of the network audit tool for generating the network

flows. Additionally, the repository holds the initial labeled

dataset T , which is used as a basis every time the adaptive

control loop is triggered.

C. DISCUSSION

FIGURE 2 provides a high-level view of the proposed system

by highlighting the building blocks of the MAPE-K adaptive

control loop. Additionally, in the figure, we can observe the

interconnections among the diverse components and follow

the flow of the system’s actions. As already pointed out at the

beginning of this subsection, the combination of MAPE-K

and STL serves as the basis for building adaptive and auto-

nomic misuse IDSs. That is, while MAPE-K provides the

essential principles to realise such an IDS, STL contributes

several features that cover the missing parts of the misuse IDS

adaptation puzzle.

• STL is destined to utilize unlabeled data with the aim of

improving a supervised learning task. This feature fits

directly in the nature of the problem. Once a misuse

IDS is powered, it faces unlabeled network instances

and tries to classify them. Inevitably, due to environ-

mental changes, the statically trained IDS will face

efficiency issues. Nevertheless, since STL is able to

capture informative structures from unlabeled data, the
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ambiguity of the new environment is exploited to gener-

ate new knowledge. This, in turn, will reinforce the mis-

use IDS by generating a new representation of the initial

dataset.

• STL cannot be seen as an unsupervised feature learn-

ing or a semi-supervised technique, but as a more power-

ful setup. This is because the unlabeled data xu can: 1) be

of any class and not necessarily coincide with the classes

of the labeled data xl , and 2) be drawn from a different

distribution from the labeled data xl . Crucially, these are

two essential qualities that advocate the suitability of

STL as in practice, in an unknown environment, an IDS

will face both known and unknown attacks, which both

stem from different distributions. Thus, our methodol-

ogy guarantees the adaptability and autonomy of the

misuse IDS.

• When put in the frame ofMAPE-K, the characteristics of

STL can significantly alleviate the burden of retraining

the IDS every time a change appears in its environment.

For the retraining process, one needs also to consider the

significant effort required to assign labels by hand to Big

Data such as network data. That is, if the IDS is trained

with a basic labeled dataset, the proposed methodology

can significantly extend its autonomy. Though, a rea-

sonable requirement is that the basic labeled dataset

needs to be representative enough and this requirement

is delegated to the administrator. It is to be stated that

we do not claim that our approach eliminates completely

the need for human intervention, but it can significantly

diminish it.

• STL is able to handle big data in a scalable manner.

In fact, the more unlabeled data are given as input to

the autoencoder, the more informative will be the new

representation.

• STL can significantly uncover strong structures in the

data, especially when the data features are statistically

correlated.

Overall, the aforementioned characteristics of the combi-

nation of STL and MAPE-K address to a great extent the

major limitation of misuse IDSs, namely their inability to

deal with unknown situations. Considering the fact that mis-

use IDS are widely used over anomaly detection IDSs, our

approach becomes even more impactful.

IV. EVALUATION

In this section we evaluate our novel methodology. More

specifically, we define the metrics used to evaluate the per-

formance of the adaptive misuse IDS, we detail on the used

dataset and the setup of our evaluation experiments.

A. EVALUATION METRICS

To highlight the advantages of our proposal and to make it

comparable to other approaches, we present our results under

a variety of legacy classification metrics. More specifically,

we use the following metrics.

a: Accuracy

This metric measures the frequency of correct decisions. It is

a fraction of the correct decisions made among all the classes

(C) (true positives, or TPs) divided by the total number of

instances in the dataset (N ).

Accuracy =

∑C
i=1 TPi

N
(3)

b: Mean F-Measure (MFM)

It is used to measure the balance between the precision and

the recall. In the case of a multi-classed problem, this metric

is calculated by the following formulas:

MeanFMeasure =

∑C
i=1 FMeasurei

C
(4)

FMeasurei =
2 · Recalli · Precisioni

Recalli + Precisioni
(5)

Precisioni =
TPi

TPi + FPi
(6)

Recalli =
TPi

TPi + FNi
(7)

where:

• FPi, or false positives, represent the number of instances

with actual class other than the i-th, but wrongly pre-

dicted to belong in the i-th class.

• FNi, or false negatives, represent the number of

instances with i-th being the actual class, but falsely

predicted to belong to another class.

c: Average Accuracy

It is calculated as the average recall among all the classes of

the dataset.

AvgAccuracy =
1

C

C
∑

i=1

Recalli (8)

d: Attack Accuracy

This metric is used to measure the ability of a model to detect

solely the attack classes by neglecting the normal traffic.

Index i = 1 stands for the normal traffic class.

AttackAccuracy =
1

C − 1

C
∑

i=2

Recalli (9)

e: Attack Detection Rate (ADR)

It stands for the accuracy rate for the attack classes.

ADR =

∑C
i=2 TPi

∑C
i=2 TPi + FPi

(10)

f: False Alarm Rate (FAR)

This metric focuses on the normal traffic and quantifies the

FNs, i.e., normal instances misclassified as attacks. Index i =

1 stands for the normal traffic class.

FAR =
FN1

TP1 + FN1
(11)
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TABLE 1. Normal and attack classes in KDDCup’99 and NSL-KDD.

B. KDDCUP’99 AND NSL-KDD DATASETS

KDDCup’99 [16] and NSL-KDD [17] constitute well-known

benchmarks for evaluating whether an IDS is able to detect

network abuses. In fact, NSL-KDD is a newer version of the

KDDCup’99 that deals with some of its shortcomings [17].

Despite KDDCup’99 limitations, it is still considered a stan-

dard and it is used by recent studies in the field [18], [19].

This work does not aim to evaluate a detection algorithm

per se. Instead, we aim to prove that our methodology is

able to exploit unknown network flows to boost the detec-

tion efficiency in ambiguous environments. This means that

the inherent limitations of KDDCup are orthogonal to our

testbed.

Precisely, in the context of this work, we merged all the

datasets provided by KDDCup’99 and NSL-KDD for cre-

ating a single voluminous dataset that bears as many net-

work traffic instances and as many attack classes as possible.

TABLE 1 presents the instances of the used dataset. In total,

the compiled dataset has of proximately 1.3 million network

instances and comprises 40 classes (1 normal + 39 attacks),

which come under different probability distributions and fall

into the following 5 major categories:

• Normal: Normal traffic instances.

• DoS: Denial of Service.

• PRB: Probing - Surveillance and other means of prob-

ing.

• R2L: Remote to Local - Unauthorized access from a

remote machine.

• U2R: User to Root - Unauthorized access to local supe-

ruser (root) privileges.

We removed all duplicates from the merged dataset to

avoid any bias to the classification end-model. KDDcup

dataset has some beneficial characteristics. To begin with,

its variety in attack classes seems ideal for evaluating our

methodology. Its 39 attack classes can be used to emulate

a realistic and challenging testbed, where an IDS has to

face unknown traffic instances every time an environmental

change occurs. Additionally, the fact that the attack instances

are drawn from different probability distributions directly

challenges the STL method. Recall that according to its prop-

erties, STL is destined to handle efficiently large amounts of

unlabeled data with that exact property. Moreover, KDDCup

dataset has an imbalanced number of instances among its

classes and this feature reflects a realistic network condition.

Finally, the KDDCup dataset created over a network experi-

ment that lasted for 9 weeks and the final result was a dataset

of approximately 7million network instances with duplicates.

Our compiled dataset consists of 1.3 million instances with-

out duplicates. This implies that our dataset corresponds to a

data collection period of at least 12 days. Hence, apart from

the beneficial characteristics mentioned above, the compiled

dataset comprises a realistic collection of network traffic

that spans adequately over time and it is thus suitable for

evaluating an adaptive mechanism.

C. TESTBED AND PARAMETERS

To emulate an ever-changing environment for the adaptive

IDS, we came up with the following strategy. To emulate

the initial state of the IDS, we train the IDS using Softmax

Regression with an initial dataset T , which consists of a

fraction of 10% of normal traffic and a randomly chosen

subset of attack traffic. This attack-focused subset consists

of 3, 3, 3 and 4 attacks subclasses of the major classes DoS,

PRB, U2R, and R2L respectively. As it is the case with any

legacy machine learning-based IDS, we cross-evaluate the

IDS for achieving a robust end-model of more than 99%

prediction accuracy. In a legacy situation, this end-model

would be the one to defend any future environmental state

of the network. Consequently, for emulating a new envi-

ronmental state, we randomly select another piece of the

dataset U which consists of 10% of normal traffic and 5,

5, 5, 8 attacks subclasses of the major classes DoS, PRB,

U2R and R2L, respectively. U might or might not contain

the classes or the instances gathered in T . Hence, depending

on the divergence between T andU the new environment can

be slightly or to very different from the initial one. That is,

it is expected to witness a low or even high drop of the IDS

efficiency respectively. However, according to the proposed

methodology, the adaptive IDS is able to exploit the U in

order to obtain a better representation of the new environment

by transforming the initial dataset T , and thus resisting to this

efficiency drop. Note that U is in practice an unlabeled set of

instances which is fed to the detection engine for prediction.

Naturally this applies also in our case, but we are beforehand
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FIGURE 3. In the initial network state, a statically trained IDS can achieve an acceptable performance Pinit (left).
In new network states, the adaptive IDS has the ability to sustain an acceptable performance in contrast to the
statically trained IDS. The goal of our methodology is to improve the efficiency of the IDS so that Padapt > Pstatic
(right).

TABLE 2. Parameters’ setup.

aware of the hidden classes of the instances for being able

to measure the efficiency of the adaptive IDS contrary to

the static one. If we denote the performance of the IDS in

the initial phase, in the new but static phase, and after the

adaptation as Pinit ,Pstatic,Padapt respectively, the goal of our

methodology is to improve the efficiency of the IDS so that

Padapt > Pstatic. The evaluation strategy described in this

section is presented intuitively in FIGURE 3.

As described in Section III, the Planning activity is based

on the Sparse autoencoder for identifying the new struc-

ture out of the unlabeled data. The autoencoder has to be

tuned beforehand by the security administrator. This process

requires an initial tuning period on behalf of the administrator

that relies basically on the nature of the network and the

utilized data features. In our case, we selected the testbed’s

parameters (TABLE 2) based on an empirical study and our

knowledge on the domain of the problems.

D. RESULTS

This subsection elaborates on the results and compares

the performance of the adaptive IDS against the static

approach, based on the metrics presented in subsection IV-A.

In total, we subjected the IDS to 100 environmental changes,

i.e., 100 diversely compiled datasets, blended with diverse

attacks of each major class of the compiled KDDCup dataset.

Figures 4 to 8 provide a graphical representation of the

recorded metrics over the 100 environmental states.

As can be seen in FIGURE 4, our adaptive approach

surpasses the static one in most of the environmental states.

More specifically, in 84% of the states the adaptive approach

achieved a higher accuracy score compared to the static one.

The average accuracy of the static approach is 59.71%, while

the adaptive’s one is 77.99%. This means that in average our

approach performs better by 18.28% over the 100 unknown

states. Additionally, the standard deviation is 30.79% and

18.78% for the static and the adaptive approaches respec-

tively. This fact quantifies what intuitively can be observed

from FIGURE 4, where the adaptive curve witnesses less

and smaller efficiency drops over the vast majority of the

states. It is important to note that the maximum positive

accuracy difference between the two approaches is 56.92%

(state #8), while the maximum negative difference is -1.6%

(state #36). In fact, as can be seen in FIGURE 4, in critical

cases where the IDS accuracy drops significantly due to a

state’s high deviation with respect to the initial training set

(T ), the adaptive methodology demonstrates a significantly

higher contribution that can sustain the IDS to acceptable

detection levels. In total, 38% of the states present higher

accuracy difference than the standard deviation (18.77%),

and for these states, the average accuracy is increased by

almost 48%. Hence, we can safely argue that the adaptive

approach can significantly contribute to the overall security

level in sudden network environmental changes (including

attack incidents), while in cases where the IDS accuracy

drops to some extent, the adaptive approach achieves almost

the same performance as the static one. More precisely, for

those 46 states where the accuracy difference per state is

positive and less than the standard deviation, the average

accuracy of the adaptive approach is greater than the static

one by 0.51%. However, only for the 16 out of 100 states

where the static approach performs better than the adaptive

one, the average performance is 0.57% in favour of the static

approach. All in all, the adaptive approach greatly outper-

forms the static one especially when it comes to critical

states.
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FIGURE 4. Deviation of IDS accuracy over 100 consecutive environmental states.

FIGURE 5. Deviation of IDS Attack Detection Ratio (ADR) over 100 consecutive environmental states.

FIGURE 5 presents the ADR performance over the

100 environmental states. Recall from subsection IV-A that

ADR measures the accuracy in detecting exclusively attacks

instances, and thus reveals the performance in offensive

incident detection. Overall, the adaptive approach scores an

average ADR of 60.34% and outweighs the static one by

23.8%, as the latter scores an average ADR of 36.54%. The

standard deviations are 28.34% and 19.69% for the static

and the adaptive approach respectively. In total, the adaptive

approach is proved better for the 86% of the states and,

notably, the maximum ADR increment is 73.37% (state #8),

while the maximum deficient percentage is -5.67% (state

#36). As in the case of the accuracy metric, ADR achieves

high scores for those states where the static approach wit-

nesses significant performance drops. For those 38 critical

states, where the ADR difference between the two approaches

is greater than the standard deviation (19.69%), the average

increment in the adaptive approach is 60.83%. Additionally,

48 states present an ADR difference smaller than the standard

deviation, but again the adaptive approach performs better

by 1.84% on average. Finally, only in 14 states the static

approach performed better by 2.14% on average. Since ADR

is considered a cardinal metric to measure the performance of

an IDS, our results suggest that our adaptive method can sig-

nificantly contribute in sustaining the detection ability of an

IDS to high levels. The value of our novel proposal lies in the

fact that it can breathe new life into the IDS in critical/sudden

situations and increase ADR by up to 73.37%. In principle,

in critical situations where the IDS performance drops sig-

nificantly there is an urgent need for human intervention.

Namely, in these cases, ADR can drop to such deficient levels

that most of the attacks occurring in the network can go

completely unnoticed. Hence, instead of triggering a process

of manually retraining the IDS, our solution provides a self-

adaptive and autonomous way to keep the IDS’s operational

ability to high levels.

Furthermore, FIGURE 7 gives an overview of the aver-

age accuracy (recall) per class included in the dataset. For

each class, we offer a side-by-side comparison of the perfor-

mance of the static versus the adaptive method. In the figure,

the accuracy for the Normal class is almost identical for the

twomethods. In fact, there is a tiny difference of 0.2% in favor

of the static approach. Given that this accuracy is the average

of the recall over 100 states, this difference is characterized

as minor. On the bright side, the difference concerning the

accuracy of the DoS attack class is significant. More specif-

ically, the adaptive method achieves an average accuracy

of 39.67% in contrast to the static one that achieves 13.94%.

This difference of 25.73%on an averagemetric is noteworthy.

The maximum difference of DoS accuracy recorded among

all the 100 states is 80.34% and is perceived in state #8.

Actually, in that state, the static IDS witnessed a critical
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FIGURE 6. Performance comparison over all average metrics.

FIGURE 7. Accuracy (Recall) of all classes over the 100 states.

situation as the accuracy in DoS detection was only 0.52%

due to the high deviation induced by the new environment.

On the other hand, the adaptive approach was able to acquire

the necessary knowledge for the unknown network traffic and

boost the accuracy metric to 80.87%. Additionally, regard-

ing PRB attack detection accuracy, once again the adaptive

approach achieves an average score of 89.57% against the

static one, which scored 87.76%. Regarding the attack classes

of U2R and R2L, both methods were incapable of detecting

any attack vector of those classes. The reason behind this fact

is that the aforementioned classes have a small number of

instances. Recall from subsection IV-C that any new environ-

mental state stems from a sampling technique. Apparently,

the small numbers of instances of those normal/attack classes

and the sampling technique to simulate the new environment

do not provide adequate instances to build a solid ground truth

for the classifier. Overall, the adaptive approach is capable of

keeping a stable accuracy on identifying the normal traffic,

while its attack detection performance is originated primarily

from the DoS attack accuracy and secondarily from the PRB

attacks detection accuracy.

The overall performance of the adaptive and the static

methods is illustrated in FIGURE 6. The dominance of the

adaptive method is verified by all the metrics. Apart from the

accuracy and the ADR metrics analyzed above in detail, also

the rest of metrics prove the superiority of our methodology.

The difference of 4.78% in the MFM metric reveals that the

adaptive approach is able to keep the balance between Recall

and Precision among all the dataset classes to a greater extent.

Note that the MFM metric, as defined in subsection IV-A,

is the unweighted average of recall and precision. That is,

the unweighted MFM constitutes a more strict metric to eval-

uate our method, as it treats all classes equally independently

of the classes’ size. This means that the adaptive method

is not only able to provide better attack detection rates, but

it is also capable of identifying with higher precision the

correct class where the attack instances belong to. Finally,

the small deficiency (0.2%) reported in the accuracy metric

of the Normal class for the adaptive approach is reflected in

the slightly increased FAR of 0.4% in contrast to the 0.2%

achieved by the static approach.

Additionally, in order to better understand the distribu-

tional characteristics of our results over the chosenmetrics for

the two methods, FIGURE 8 provides a side-by-side compar-

ison of the boxplots of the metrics. Note that the FAR metric

is absent since its deviation is minor. In fact, FIGURE 8 puts

in a nutshell the behavior of the twomethods as it was already

portrayed in FIGURE 4 and FIGURE 5. The dominance

of the adaptive approach becomes clear as in all boxes the

medians are comparatively higher than those in the static

approach. Especially for the boxes representing the Accuracy

and ADR metrics, we can notice a significant difference.

Regarding the static method, the long size of the second

quartile, both for the Accuracy and the ADR, reveals the

inefficiency of this method to sustain an acceptable detection

level for the IDS in critical situations. This is not the case for

the adaptive method, as the concise inter-quartile reveals an

overall high stability in both metrics. Additionally, it can be

observed that the box of the Accuracy metric of the adaptive

approach is slightly higher for the observations above the

median (third quartile). Regarding the box of the ADRmetric,

the adaptive approach achieves significantly higher scores

as it is noteworthy that its third quartile starts at that point

where the third quartile of the static approach ends. This

proves the higher robustness of the adaptive method in detect-

ing offensive incidents in previously unseen environments.

Regarding the Attack Accuracy, Average accuracy, and the

MFM metrics, once again the boxplots reveal the benefits of

the adaptive approach. Note that the aforementioned metrics
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FIGURE 8. Side-by-side Boxplots of metrics for both methods.

are average metrics, and thus it is normal to present a lower

deviation in contrast to the Accuracy and the ADR metrics.

It is noteworthy that the concise size of the MFM boxplot

demonstrates the ability of the adaptive approach to keep the

balance between the recall and precision over all the classes

and across all the environmental states.

E. TIME PERFORMANCE ANALYSIS

Since our proposal aims to provide an autonomous method

for IDS self-adaptation it is critical to analyse the time

performance and scalability of its core components. More

specifically, the Sparse autoencoder (SAE) and the FeedFor-

ward autoencoder (FFAE) of the planning activity are those

components that enable the IDS to adapt to a new envi-

ronmental state. Hence, we measured the time performance

of the autoencoders using an incrementing size of dataset

instances to evaluate also their scalability. As can can be

seen in FIGURE 9, we fed the autoencoders with dataset

pieces ranging from 10k to 500k instances having a pivot step

of 10k instances. FIGURE 9 reveals that the SAE behaves

linearly, while the FFAE (both in the training and testing

phase) needs less that 1 sec to obtain the transformation of

the whole dataset. The SAE training phase needed 2.977 secs,

i.e., ∼49.5 min. given a dataset of 500k instances. The linear

performance behavior of the SAE advocates the ability of our

approach to scale in big data network environments. From our

analysis, one could say that the adaptation cycle can occur

virtually indefinitely, while the extra transformation layer

added by the FFAE is negligible. Our python implementation

was executed on a server empowered with an Intel Xeon E5-

2630 v4 @ 2.20GHz CPU. For measuring the time perfor-

mance, we exclusively utilized only one thread of the CPU.

Naturally, the training time could be significantly reduced

with the use of GPU accelerators.

V. DISCUSSION

The novel methodology described and evaluated in the

previous sections combines the benefits of STL [8] and

MAPE-K [9] to deliver a holistic deep learning-based

methodology toward self-adaptive and autonomous misuse

IDSs. Our solution addresses the challenges of this particular

FIGURE 9. Time performance analysis for autoencoders.

field to a great extent and, to the best of our knowledge, it is

the first one to evaluate an IDS under consecutive environ-

mental changes. That is, we prove its ability not only to adapt

to new and unknown environments, but to achieve signifi-

cantly higher scores contrary to a static approach. In fact,

as detailed in section IV-C, the compiled dataset which con-

sists of 39 attack classes along with the strategy of simu-

lating new environmental states out of it, reflects with high

consistency a realistic situation. The robustness and agility

of the proposed methodology is advocated by its superiority

over a wide range of legacy classification metrics and over

100 different environmental states. It is worthmentioning that

across the vast majority of states our novel approach was able

to deliver a significantly higher detection ratio surpassing the

static IDS by up to 73.37%. In few states we achieved better

but comparable results with the static approach, while only in

a handful of states the static approach proved better for a small

percentage (2.14% on average). In a nutshell, the acquired

results demonstrate that the proposed methodology can revi-

talize a misuse IDS and boost its ADR by up to 73.37% in

critical situations.

Additionally, our simulation posit practical challenges to

our methodology. In realistic occasions, an IDS will have

to deal with unknown attacks of any class, where their fea-

tures might be drawn of different probability distributions.

Our sampling approach tries to imitate such a challenge and

stresses our method over consecutive environment changes.

However, this challenge is compensated inherently by the

STL properties. Moreover, our evaluation is given in the

context of a multi-classification instead of a binary one

(Attack/Normal). This provides deeper insights about the per-

formance of the presented approach. Namely, it is important

for an IDS solution, not only to be able to detect an attack,

but also to designate the class where the attack belongs to in

order to aid well-defined counteraction plans [1].

Our proposal comes to deal with a well-known disadvan-

tage of misuse IDSs, namely their stiffness to adapt upon

changes. Note that we do not claim that our proposal is able

to identify new attack classes, but it is indeed able to grasp an

attack’s nature based on generalized features reconstructions

stemming directly from the unknown environment and its

unlabeled data. Crucially, this reconstruction is a product of

a scalable method which is able to handle big network data.
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We prove that given an initial labeled training set that serves

as a basis, the proposed solution is able to revitalize the effi-

ciency of the IDS without the constant need to refresh it, and

then retrain the IDS. The transformation of the initial training

set – based on the knowledge acquired directly from the cur-

rent state of the network – provides a high lever of automation

in the retraining process. That is, the presented methodology

addresses the inherent limitation of misuse IDSs to adapt to

new environments, while it significantly alleviates the burden

of administrators of constantly refreshing its training set.

VI. RELATED WORK

Machine learning IDSs is a research topic that attracted the

attention of the research community for decades. In the recent

years, several neural networks-based solutions arose and

offered promising solutions. This section offers an overview

of deep and shallow learningmethods, while it also elaborates

on whether they bear any adaptable features. This section also

refers to methodologies that aim to provide a level of automa-

tion in the IDS adaptation and discusses our contributions

over them.

A. NEURAL NETWORKS-BASED APPROACHES

The work in [20] introduces a deep learning solution for

NIDSs. The authors utilize the self-taught learning methodol-

ogy exclusively as an unsupervised feature learning method

for supporting a statically trained IDS. Instead, our solution

provides a more powerful setup of the STL in conjunc-

tion with MAPE-K methodology to deliver a deep learning

methodology for adaptive IDSs. In fact, contrary to [20],

we pass the IDS through environmental changes to prove that

our approach is able to generate knowledge out of unknown

environments.

Ma et al. [21] propose an IDS algorithm based on Spectral

Clustering (SC) [22] and Deep Neural Networks (DNN) [23].

Through SC the proposed method is able to identify cluster

centers that divide a raw dataset into data clusters with similar

features. Those data clusters are fed as training data into

DNN’s of multiple layers. The algorithm trains as many

DNN’s as the clusters identified by the SC and aggregates the

final result in an ensembled way. However, the proposed deep

learning approach does not provide any kind of adaptiveness

to the system.

In the context of MAPE-K control loop, Lee and Park [4]

proposed an adaptive IDS in terms of network environmen-

tal changes. By exploiting the MAPE-K model, the authors

were able to perceive the environment changes and plan

appropriate update actions in the Snort IDS detection rules.

Lee and Park [4] utilize MAPE-K model for regulating the

adaptive process. However, our approach goes beyond that

point and exploits MAPE-K model to build a deep learning

misuse IDSs in the adaptive frame.

Fernández Maimó et al. [24] use deep learning techniques

to detect network anomalies in 5G networks. The authors uti-

lize DNN and Long Short-Term Memory (LSTM) Recurrent

Networks to empower the anomaly detection. Their proposal

takes self-adaptation actions with respect to the network load

requirements by applying management policies. Neverthe-

less, the adaptation policies are applied to the network load

management rather the detection framework per se.

The work in [25] proposes a deep learning method

for detecting DoS attacks based on Restricted Boltz-

mann Machine (RBM). Specifically, the authors used

a Gaussian-Bernoulli RBM with 7 hidden layers with

100 neurons each. Through the aforementioned setup the

proposed method learns a reduced set of new features

of the NSL-KDDTrain+_20Percent dataset [17] (train:

25,194 instances, test: 4,508 instances). According to the

authors, the Gaussian–Bernoulli RBM is able to outperform

the deep learning approach of Bernoulli-Bernoulli RBM

and Deep Belief Network, and the legacy machine learn-

ing methods of SVM (radial basis), SVM (epsilon-SVR),

and decision tree. Even though the proposed method learns

new features representation out of unlabeled data, it is

not exposed to unknown data for supporting an adaptable

approach.

Yu et al. [26] designed an IDS model by stacking dilated

convolutional autoencoders (DCAEs) for learning features

representations from unlabeled data. In their experiments,

the authors tested the generalization ability of their detec-

tion model by testing it with previously unknown attacks.

Even though the authors pose their trained model against

new attacks, they do not proceed to any automated retraining

method. Rather they aim to exclusively test the generalization

ability of the learned features employed to statically train

the IDS. Additionally, the authors approach the problem as

a binary one (normal/attack), while in our classification case

we deliver a multi-classification method.

Shone et al. [27] propose a new type of autoencoder

namely non-symmetric deep autoencoder (NDAE) and they

utilized it in a classification model using stacked NDAEs.

According to the authors, the NDAE engaged only an encod-

ing phase for reducing the complexity of the network with

minor effect on the accuracy of the model. At the end of the

stacked NDAE, the authors attach Random Forest algorithm

that undertakes the classification task based on the features

learned from the NDAEs. The proposed setup achieves high

accuracy rates, but the author’s methodology does not bear

adaptability characteristics.

B. ADAPTIVE METHODOLOGIES IN IDS REALM

Although the IDS research on IDS has offered an large

amount of works [18], [19], [28], [29] the vast majority

of them focus on providing highly accurate end-models

with minor false alarm rates. Thus, the adaptability property

remains an open issue and it is a well-known drawback,

especially for the misuse IDS domain. Still, there are method-

ologies that, according to the literature [3], could provide

the necessary foundations to adaptive IDSs. Among them,

Learning Classifier Systems (LCS) [5], Artificial Immune

Systems (AIS) [6], Swarm intelligence [7], Evolutionary

computing [30] and Reinforcement learning [31]. There
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is no doubt that all of these approaches can offer their

principles to build adaptive systems for practical prob-

lems. However, the intrusion detection problem has some

inherent characteristics that one has to take into considera-

tion when aiming to build a self-adaptive and autonomous

IDS. That is, a self-adaptive and autonomous approach

implies the complete disengagement of the human fac-

tor or at least a minimal interaction in the form of a

supervision.

The self-adaptation property implies that an IDS should be

able to adapt itself to the needs of a new environment even

without the need of feedback from the administrators. This

means that the adaptation process of an IDS cannot be based

on labeled data because labeling network data of a new envi-

ronment is a demanding engineering task. That is, approaches

that base their adaptation on labeled data can be considered

adaptive, but not self-adaptive. As a result, to support self-

adaptation in the context of intrusion detection, we need to

invest on methods that can exploit unlabeled data to improve

the detection performance.

Additionally, in an on-line machine learning problem,

where new instances need to be classified instantly and

accurately, there is a need of approaches that can adapt to

new environments also in a realtime fashion. This entails

that solutions that rely their adaptation on a trial-and-error

approach as those based on reinforcement learning, seem to

be impractical for this nature of problems. In fact, an IDS

cannot learn in the same way that, say, a robot does. For

example, if a robot encounters an obstacle then it learns

out of this incident and proceeds to an adaptation of its

objectives. Unfortunately, in the intrusion detection context,

the only entity that can identify a mis-classification (i.e.,

an obstacle) is the administrator who notices an ongoing

attack. An IDS is not in position to know if a new instance

is misclassified or not. In other words, the IDS cannot see

the ‘‘obstacles’’, but the ‘‘obstacles’’ are in practice attacks

that go unreported or normal instances which are detected

as attacks and increase the false alarm rate. In this sense,

we need to invest onmethods that can learn from the unknown

environment in an autonomous way.

To this end, our proposal tries to address the aforemen-

tioned challenges. The combination of Self-taught learn-

ing [8] and MAPE-K [9] brings together the benefits of

transfer learning from unlabeled data and places this ability

in the frame of autonomic computing. That is, our self-

adaptive and autonomous method enables an IDS to extract

new features out of the unlabeled and unknown traffic of

a new environment and exploit them for retraining in an

autonomous way its detection engine. Furthermore, our solu-

tion enables the IDS to adapt according to the dynamics of the

new environment even if this is overwhelmed by previously

unseen traffic. Given an initial training set, a new features

construction is learned using a neural networks-based sparse

autoencoder, and via a feed-forward autoencoder the initial

training set is updated to meet the challenges of the new

environment.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel methodology that advances the

state-of-the-art in the literature of misuse IDS. The highlight

of our scheme is that it can practically render any misuse IDS

autonomous, i.e., self-adaptive to the ever-lasting changes

made in its network environment. This means that in such

frequently occurring (and sometimes sudden) transition peri-

ods, the IDS is able to maintain an at least acceptable attack

detection rate, which otherwise is fated to drop abruptly,

rendering the IDS useless. This quality is also a great relief

to the security administrators who after a network environ-

ment change are granted enough time to possibly update the

IDS’s detection model. The proposed methodology uniquely

blends the MAPE-K reference model and a deep-learning

technique called self-taught learning to enable an IDS to iden-

tify previously unseen attacks via reconstructions made on

unlabeled data. The linear performance behavior for acquir-

ing the aforementioned reconstructions, renders our proposal

suitable for contemporary big data network environments.

The effectiveness of our proposal is demonstrated through

extensive experimentation considering several metrics and a

plethora of attacks included in widely used datasets. As future

work, we aim to test our methodology with more contempo-

rary datasets, while we aim to investigate ways to improve

detection rates for small dataset classes. We additionally aim

to experiment with other methodologies like sparse RBMs,

K-means clustering and Gaussian mixture models (GMMs)

to investigate further improvement of our method.
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