💲 sciendo

Discussiones Mathematicae General Algebra and Applications 38 (2018) 297–306 doi:10.7151/dmgaa.1290

INTRODUCING FULLY UP-SEMIGROUPS¹

AIYARED IAMPAN $^{\rm 2}$

Department of Mathematics, School of Science University of Phayao, Phayao 56000, Thailand

e-mail:aiyared.ia@up.ac.th

Abstract

In this paper, we introduce some new classes of algebras related to UPalgebras and semigroups, called a left UP-semigroup, a right UP-semigroup, a fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup, a left-right UP-semigroup, a right-right UP-semigroup, a fully-left UP-semigroup, a fully-right UP-semigroup, a left-fully UP-semigroup, a right-fully UP-semigroup, a fully-fully UP-semigroup, and find their examples.

Keywords: semigroup, UP-algebra, fully UP-semigroup.

2010 Mathematics Subject Classification: 08A99, 03G25.

1. INTRODUCTION AND PRELIMINARIES

In the literature, several researchers introduced a new class of algebras related to logical algebras and semigroups such as: In 1993, Jun, Hong and Roh [4] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup. In 1998, Jun, Xin, and Roh [5,6] renamed the BCI-semigroup as the IS-algebra and studied further properties of these algebras. In 2006, Kim [8] introduced the notion of KS-semigroups. In 2011, Ahn and Kim [1] introduced the notion of BE-semigroups. In 2015, Endam and Vilela [2] introduced the notion of JB-semigroups. In 2016, Sultana and Chaudhary [11] introduced the notion of BCH-semigroups. In 2018, Kareem and Hasan introduced and analyzed the concept of KU-semigroups in the recently published article [7]. It is known that UP-algebra is a generalization of KU-algebra [3]. Several authors also studied the algebraic structures with semigroups (see, for example: [1,8–11]).

¹This work was financially supported by the University of Phayao.

²Corresponding author.

In this paper, we introduce some new classes of algebras related to UPalgebras and semigroups, called a left UP-semigroup, a right UP-semigroup, a fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup, a leftright UP-semigroup, a right-right UP-semigroup, a fully-left UP-semigroup, a fully-right UP-semigroup, a left-fully UP-semigroup, a right-fully UP-semigroup, a fully-fully UP-semigroup, and find their examples.

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 1.1 [3]. An algebra $A = (A, \cdot, 0)$ of type (2, 0) is called a *UP-algebra*, where A is a nonempty set, \cdot is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following axioms: for any $x, y, z \in A$,

(UP-1) $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0,$

(UP-2) $0 \cdot x = x$,

(UP-3) $x \cdot 0 = 0$, and

(UP-4) $x \cdot y = 0$ and $y \cdot x = 0$ imply x = y.

Proposition 1.2. In a UP-algebra $A = (A, \cdot, 0)$, the following assertions are valid ((1.1)–(1.7), see [3], Proposition 1.7).

Proof. (1.8) By (UP-1), we have $(y \cdot z) \cdot ((a \cdot y) \cdot (a \cdot z)) = 0$. By (1.3), we have

$$(x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0.$$

(1.9) By (UP-1), we have $(x \cdot y) \cdot ((a \cdot x) \cdot (a \cdot y)) = 0$. By (1.4), we have

$$(((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0$$

298

INTRODUCING FULLY UP-SEMIGROUPS

(1.10) Now,

$$\begin{array}{ll} ((1.9)) & 0 = (((x \cdot 0) \cdot (x \cdot y)) \cdot z) \cdot ((0 \cdot y) \cdot z) \\ ((UP-2), (UP-3)) & = ((0 \cdot (x \cdot y)) \cdot z) \cdot (y \cdot z) \\ ((UP-2)) & = ((x \cdot y) \cdot z) \cdot (y \cdot z). \end{array}$$

Hence, $((x \cdot y) \cdot z) \cdot (y \cdot z) = 0.$

(1.11) Assume that $x \cdot y = 0$. By (1.3), we have $(z \cdot x) \cdot (z \cdot y) = 0$. By (1.10) and (UP-2), we have

$$x \cdot (z \cdot y) = 0 \cdot (x \cdot (z \cdot y)) = ((z \cdot x) \cdot (z \cdot y)) \cdot (x \cdot (z \cdot y)) = 0.$$

Hence, $x \cdot (z \cdot y) = 0$.

(1.12) By (1.10), we have

$$((x \cdot y) \cdot z) \cdot (y \cdot z) = 0.$$

By (1.5), we have

$$(y \cdot z) \cdot (x \cdot (y \cdot z)) = 0.$$

It follows from (1.2) that $((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0$.

(1.13) By (1.5), we have $y \cdot (x \cdot y) = 0$ and $(x \cdot y) \cdot (a \cdot (x \cdot y)) = 0$. By (1.2), we have $y \cdot (a \cdot (x \cdot y)) = 0$. By (1.4), we have

$$((a \cdot (x \cdot y)) \cdot (a \cdot z)) \cdot (y \cdot (a \cdot z)) = 0.$$

By (UP-1), we have

$$((x \cdot y) \cdot z) \cdot ((a \cdot (x \cdot y)) \cdot (a \cdot z)) = 0.$$

It follows from (1.2) that $((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0$.

Let X be a universal set. Define two binary operations \cdot and * on the power set of X by putting, for all $A, B \in \mathcal{P}(X)$,

where A' means the complement of a subset A. Then $(\mathcal{P}(X), \cdot, \emptyset)$ is a UPalgebra and we shall call it the *power UP-algebra of type* 1 [3], Example 1.4, and $(\mathcal{P}(X), *, X)$ is a UP-algebra and we shall call it the *power UP-algebra of type* 2 [3], Example 1.5.

Now, define four binary operations \odot, \otimes, \boxdot and \boxtimes on the power set of X by putting, for all $A, B \in \mathcal{P}(X)$,

- $(1.16) A \odot B = X,$
- $(1.17) A \otimes B = \emptyset,$
- $(1.18) A \boxdot B = B,$
- $(1.19) A \boxtimes B = A.$

Then $(\mathcal{P}(X), \odot), (\mathcal{P}(X), \otimes), (\mathcal{P}(X), \boxdot)$ and $(\mathcal{P}(X), \boxtimes)$ are semigroups which is determined by direct verification. Furthermore, we know that $(\mathcal{P}(X), \cap, X)$ and $(\mathcal{P}(X), \cup, \emptyset)$ are monoids.

Definition 1.3. Let A be a nonempty set, \cdot and * are binary operations on A, and 0 is a fixed element of A (i.e., a nullary operation). An algebra $A = (A, \cdot, *, 0)$ of type (2, 2, 0) in which $(A, \cdot, 0)$ is a UP-algebra and (A, *) is a semigroup is called

- (1) a *left UP-semigroup* (in short, an *l-UP-semigroup*) if the operation "*" is left distributive over the operation ".",
- (2) a right UP-semigroup (in short, an r-UP-semigroup) if the operation "*" is right distributive over the operation ".",
- (3) a fully UP-semigroup (in short, an f-UP-semigroup) if the operation "*" is distributive (on both sides) over the operation ".",
- (4) a left-left UP-semigroup (in short, an (l, l)-UP-semigroup) if the operation "." is left distributive over the operation "*" and the operation "*" is left distributive over the operation ".",
- (5) a right-left UP-semigroup (in short, an (r, l)-UP-semigroup) if the operation "." is right distributive over the operation "*" and the operation "*" is left distributive over the operation ".",
- (6) a *left-right UP-semigroup* (in short, an (l, r)-UP-semigroup) if the operation "." is left distributive over the operation "*" and the operation "*" is right distributive over the operation ".",
- (7) a right-right UP-semigroup (in short, an (r, r)-UP-semigroup) if the operation "·" is right distributive over the operation "*" and the operation "*" is right distributive over the operation "·",
- (8) a fully-left UP-semigroup (in short, an (f, l)-UP-semigroup) if the operation "·" is distributive (on both sides) over the operation "*" and the operation "*" is left distributive over the operation "·",
- (9) a fully-right UP-semigroup (in short, an (f, r)-UP-semigroup) if the operation "·" is distributive (on both sides) over the operation "*" and the operation "*" is right distributive over the operation "·",

- (10) a *left-fully UP-semigroup* (in short, an (l, f)-*UP-semigroup*) if the operation "·" is left distributive over the operation "*" and the operation "*" is distributive (on both sides) over the operation "·",
- (11) a right-fully UP-semigroup (in short, an (r, f)-UP-semigroup) if the operation "·" is right distributive over the operation "*" and the operation "*" is distributive (on both sides) over the operation "·", and
- (12) a fully-fully UP-semigroup (in short, an (f, f)-UP-semigroup) if the operation " \cdot " is distributive (on both sides) over the operation "*" and the operation "*" is distributive (on both sides) over the operation " \cdot ".

In what follows, let A and B denote UP-algebras unless otherwise specified. The following proposition is very important for the study of UP-algebras.

The proof of Propositions 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9 can be verified by a routine proof.

Proposition 1.4 (The operations of a UP-algebra $\mathcal{P}(X)$ is left distributive over the operations of a semigroup $\mathcal{P}(X)$). Let X be a universal set. Then the following properties hold: for any $A, B, C \in \mathcal{P}(X)$,

- (1) $A \cdot (B \cap C) = (A \cdot B) \cap (A \cdot C),$
- (2) $A \cdot (B \cup C) = (A \cdot B) \cup (A \cdot C),$
- (3) $A * (B \cap C) = (A * B) \cap (A * C),$
- (4) $A * (B \cup C) = (A * B) \cup (A * C),$
- (5) $A \cdot (B \otimes C) = (A \cdot B) \otimes (A \cdot C),$
- (6) $A * (B \odot C) = (A * B) \odot (A * C),$
- (7) $A \cdot (B \boxdot C) = (A \cdot B) \boxdot (A \cdot C),$
- $(8) A * (B \boxdot C) = (A * B) \boxdot (A * C),$
- (9) $A \cdot (B \boxtimes C) = (A \cdot B) \boxtimes (A \cdot C)$, and
- (10) $A * (B \boxtimes C) = (A * B) \boxtimes (A * C).$

Proposition 1.5 (The operations of a UP-algebra $\mathcal{P}(X)$ is right distributive over the operations of a semigroup $\mathcal{P}(X)$). Let X be a universal set. Then the following properties hold: for any $A, B, C \in \mathcal{P}(X)$,

- (1) $(A \boxdot B) \cdot C = (A \cdot C) \boxdot (B \cdot C),$
- (2) $(A \boxdot B) * C = (A * C) \boxdot (B * C),$

- (3) $(A \boxtimes B) \cdot C = (A \cdot C) \boxtimes (B \cdot C)$, and
- (4) $(A \boxtimes B) * C = (A * C) \boxtimes (B * C).$

Proposition 1.6 (The operations of a semigroup $\mathcal{P}(X)$ is left distributive over the operations of a UP-algebra $\mathcal{P}(X)$). Let X be a universal set. Then the following properties hold: for any $A, B, C \in \mathcal{P}(X)$,

- (1) $A \odot (B * C) = (A \odot B) * (A \odot C),$
- (2) $A \otimes (B \cdot C) = (A \otimes B) \cdot (A \otimes C),$
- (3) $A \boxdot (B \cdot C) = (A \boxdot B) \cdot (A \boxdot C)$, and
- (4) $A \boxdot (B * C) = (A \boxdot B) * (A \boxdot C).$

Proposition 1.7 (The operations of a semigroup $\mathcal{P}(X)$ is right distributive over the operations of a UP-algebra $\mathcal{P}(X)$). Let X be a universal set. Then the following properties hold: for any $A, B, C \in \mathcal{P}(X)$,

- (1) $(A * B) \odot C = (A \odot C) * (B \odot C),$
- (2) $(A \cdot B) \otimes C = (A \otimes C) \cdot (B \otimes C),$
- (3) $(A \cdot B) \boxtimes C = (A \boxtimes C) \cdot (B \boxtimes C)$, and
- (4) $(A * B) \boxtimes C = (A \boxtimes C) * (B \boxtimes C).$

Proposition 1.8. Let X be a universal set. Then the following properties hold: for any $A, B, C \in \mathcal{P}(X)$,

- (1) $(A \cap B) \cdot C = (A \cdot C) \cup (B \cdot C),$
- (2) $(A \cup B) \cdot C = (A \cdot C) \cap (B \cdot C),$
- (3) $(A \cap B) * C = (A * C) \cup (B * C),$
- (4) $(A \cup B) * C = (A * C) \cap (B * C),$
- (5) $(A \odot B) \cdot C = (A \cdot C) \otimes (B \cdot C)$, and
- (6) $(A \otimes B) * C = (A * C) \odot (B * C).$

Proposition 1.9. Let X be a universal set. Then the following properties hold: for any $A, B, C \in \mathcal{P}(X)$,

- (1) $(A \cdot B) \odot C = (A \otimes C) * (B \otimes C)$, and
- (2) $(A * B) \otimes C = (A \odot C) \cdot (B \odot C).$

302

Proposition 1.10. Let $A = (A, \cdot, *, 0)$ be an algebra of type (2, 2, 0) in which $(A, \cdot, 0)$ is a UP-algebra and (A, *) is a semigroup. Then the following properties hold:

- (1) if A is an l-UP-semigroup, then x * 0 = 0 for all $x \in A$,
- (2) if A is an r-UP-semigroup, then 0 * x = 0 for all $x \in A$,
- (3) if the operation " \cdot " is right distributive over the operation "*", then x * x = x for all $x \in A$, and
- (4) $A = \{0\}$ is one and only one (r, f)-UP-semigroup and (f, f)-UP-semigroup.

Proof. (1) Assume that A is an l-UP-semigroup. Then, by (1.1), we have

$$x * 0 = x * (0 \cdot 0) = (x * 0) \cdot (x * 0) = 0$$
for all $x \in A$.

(2) Assume that A is an r-UP-semigroup. Then, by (1.1), we have

$$0 * x = (0 \cdot 0) * x = (0 * x) \cdot (0 * x) = 0 \text{ for all } x \in A.$$

(3) Assume that the operation "·" is right distributive over the operation "*". Then, by (UP-3), we have

$$0 = (0 * 0) \cdot 0 = (0 \cdot 0) * (0 \cdot 0) = 0 * 0.$$

Thus, by (UP-2), we have

$$x = 0 \cdot x = (0 * 0) \cdot x = (0 \cdot x) * (0 \cdot x) = x * x \text{ for all } x \in A.$$

(4) By (UP-2), (1.1), (1) and (2), we have

$$x = 0 \cdot x = (x * 0) \cdot x = (x \cdot x) * (0 \cdot x) = 0 * x = 0$$
 for all $x \in A$.

Hence, $A = \{0\}$ is one and only one (r, f)-UP-semigroup and (f, f)-UP-semigroup.

Example 1.11. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3		*	0	1	2	3
0	0	1	2	3		0	0	0	0	0
1	0	0	2	3	and	1	0	0	0	0
2	0	1	0	3		2	0	0	0	1
3	0	1	2	0		3	0	0	1	0

Then $(A, \cdot, *, 0)$ is an *f*-UP-semigroup.

Let X be a universal set. Then, by above propositions and an example, we get:

Types of algebras	Examples
<i>l</i> -UP-semigroup	$(\mathcal{P}(X), *, \odot, X)$ (see Proposition 1.6 (1))
	$(\mathcal{P}(X), \cdot, \otimes, \emptyset)$ (see Proposition 1.6 (2))
	$(\mathcal{P}(X), \cdot, \boxdot, \emptyset)$ (see Proposition 1.6 (3))
	$(\mathcal{P}(X), *, \boxdot, X)$ (see Proposition 1.6 (4))
<i>r</i> -UP-semigroup	$(\mathcal{P}(X), *, \odot, X)$ (see Proposition 1.7 (1))
	$(\mathcal{P}(X), \cdot, \otimes, \emptyset)$ (see Proposition 1.7 (2))
	$(\mathcal{P}(X), \cdot, \boxtimes, \emptyset)$ (see Proposition 1.7 (3))
	$(\mathcal{P}(X), *, \boxtimes, X)$ (see Proposition 1.7 (4))
f-UP-semigroup	$(\mathcal{P}(X), *, \odot, X)$ (see Propositions 1.6 (1) and 1.7 (1))
	$(\mathcal{P}(X), \cdot, \otimes, \emptyset)$ (see Propositions 1.6 (2) and 1.7 (2))
	$(A, \cdot, *, 0)$ (see Example 1.11)
(l, l)-UP-semigroup	$(\mathcal{P}(X), \cdot, \boxdot, \emptyset)$ (see Propositions 1.6 (3) and 1.4 (7))
	$(\mathcal{P}(X), *, \boxdot, X)$ (see Propositions 1.6 (4) and 1.4 (8))
(r, l)-UP-semigroup	$(\mathcal{P}(X), \cdot, \boxdot, \emptyset)$ (see Propositions 1.6 (3) and 1.5 (1))
	$(\mathcal{P}(X), *, \boxdot, X)$ (see Propositions 1.6 (4) and 1.5 (2))
(l, r)-UP-semigroup	$(\mathcal{P}(X), *, \odot, X)$ (see Propositions 1.7 (1) and 1.4 (6))
	$(\mathcal{P}(X), \cdot, \otimes, \emptyset)$ (see Propositions 1.7 (2) and 1.4 (5))
	$(\mathcal{P}(X), \cdot, \boxtimes, \emptyset)$ (see Propositions 1.7 (3) and 1.4 (9))
	$(\mathcal{P}(X), *, \boxtimes, X)$ (see Propositions 1.7 (4) and 1.4 (10))
(r, r)-UP-semigroup	$(\mathcal{P}(X), \cdot, \boxtimes, \emptyset)$ (see Propositions 1.7 (3) and 1.5 (3))
	$(\mathcal{P}(X), *, \boxtimes, X)$ (see Propositions 1.7 (4) and 1.5 (4))
(f, l)-UP-semigroup	$(\mathcal{P}(X), \cdot, \boxdot, \emptyset)$ (see Propositions 1.6 (3), 1.4 (7), and 1.5 (1))
	$(\mathcal{P}(X), *, \boxdot, X)$ (see Propositions 1.6 (4), 1.4 (8), and 1.5 (2))
(f, r)-UP-semigroup	$(\mathcal{P}(X), \cdot, \boxtimes, \emptyset)$ (see Propositions 1.7 (3), 1.4 (9), and 1.5 (3))
	$(\mathcal{P}(X),*,\boxtimes,X)$ (see Propositions 1.7 (4), 1.4 (10), and 1.5 (4))
(l, f)-UP-semigroup	$(\mathcal{P}(X), *, \odot, X)$ (see Propositions 1.6 (1), 1.4 (6), and 1.7 (1))
	$(\mathcal{P}(X), \cdot, \otimes, \emptyset)$ (see Propositions 1.6 (2), 1.4 (5), and 1.7 (2))
(r, f)-UP-semigroup	$\{0\}$ is one and only one $(r,f)\text{-}\mathrm{UP}\text{-}\mathrm{semigroup}$
(f, f)-UP-semigroup	$\{0\}$ is one and only one $(f,f)\text{-}\mathrm{UP}\text{-}\mathrm{semigroup}$

Hence, we have the following diagram:

Figure 1. New algebras of type (2,2,0).

CONCLUSION

We have introduced the notions of left UP-semigroups, right UP-semigroups, fully UP-semigroups, left-left UP-semigroups, right-left UP-semigroups, left-right UP-semigroups, right-right UP-semigroups, fully-left UP-semigroups, fully-right UP-semigroups, left-fully UP-semigroups, right-fully UP-semigroups and fullyfully UP-semigroups, and have found examples. We have that right-fully UPsemigroups and fully-fully UP-semigroups coincide, and it is only {0}. In further study, we will apply the notion of fuzzy sets and fuzzy soft sets to the theory of all above notions.

Acknowledgment

The author wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

- S.S. Ahn and Y.H. Kim, On BE-semigroups, Int. J. Math. Math. Sci. (2011) Article ID 676020, 2011. doi:10.1155/2011/676020
- J.C. Endam and J.P. Vilela, On JB-semigroups, Appl. Math. Sci. 9 (2015) 2901–2911. doi:10.12988/ams.2015.46427

- [3] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5 (2017) 35–54.
 doi:10.22124/JART.2017.2403
- [4] Y.B. Jun, S.M. Hong and E.H. Roh, BCI-semigroups, Honam Math. J. 15 (1993) 59–64.
- [5] Y.B. Jun, E.H. Roh and X.L. Xin, *I-ideals generated by a set in IS-algebras*, Bull. Korean Math. Soc. **35** (1998) 615–624.
- [6] Y.B. Jun, X.L. Xin and E.H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24 (1998) 309–321.
- [7] F.F. Kareem and E.R. Hasan, On KU-semigroups, Int. J. Sci. Nat. 9 (2018) 79-84.
- [8] K.H. Kim, On structure of KS-semigroups, Int. Math. Forum 1 (2006) 67–76.
- [9] S.M. Lee and K.H. Kim, A note on HS-algebras, Int. Math. Forum 6 (2011) 1529– 1534.
- [10] J.K. Park, W.H. Shim and E.H. Roh, On isomorphism theorems in IS-algebras, Soochow J. Math. 27 (2001) 153–160.
- [11] F. Sultana and M.A. Chaudhary, BCH-semigroup ideals in BCH-semigroups, Palestine J. Math. 5 (2016) 1–5.

Received 9 September 2018 Revised 21 September 2018 Accepted 26 September 2018