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Abstract

In this paper, we introduce some new classes of algebras related to UP-
algebras and semigroups, called a left UP-semigroup, a right UP-semigroup,
a fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup,
a left-right UP-semigroup, a right-right UP-semigroup, a fully-left UP-semi-
group, a fully-right UP-semigroup, a left-fully UP-semigroup, a right-fully
UP-semigroup, a fully-fully UP-semigroup, and find their examples.
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1. Introduction and preliminaries

In the literature, several researchers introduced a new class of algebras related
to logical algebras and semigroups such as: In 1993, Jun, Hong and Roh [4]
introduced a new class of algebras related to BCI-algebras and semigroups, called
a BCI-semigroup. In 1998, Jun, Xin, and Roh [5,6] renamed the BCI-semigroup
as the IS-algebra and studied further properties of these algebras. In 2006, Kim [8]
introduced the notion of KS-semigroups. In 2011, Ahn and Kim [1] introduced the
notion of BE-semigroups. In 2015, Endam and Vilela [2] introduced the notion
of JB-semigroups. In 2016, Sultana and Chaudhary [11] introduced the notion
of BCH-semigroups. In 2018, Kareem and Hasan introduced and analyzed the
concept of KU-semigroups in the recently published article [7]. It is known that
UP-algebra is a generalization of KU-algebra [3]. Several authors also studied
the algebraic structures with semigroups (see, for example: [1, 8–11]).
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In this paper, we introduce some new classes of algebras related to UP-
algebras and semigroups, called a left UP-semigroup, a right UP-semigroup, a
fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup, a left-
right UP-semigroup, a right-right UP-semigroup, a fully-left UP-semigroup, a
fully-right UP-semigroup, a left-fully UP-semigroup, a right-fully UP-semigroup,
a fully-fully UP-semigroup, and find their examples.

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 1.1 [3]. An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra,
where A is a nonempty set, · is a binary operation on A, and 0 is a fixed element of
A (i.e., a nullary operation) if it satisfies the following axioms: for any x, y, z ∈ A,

(UP-1) (y · z) · ((x · y) · (x · z)) = 0,

(UP-2) 0 · x = x,

(UP-3) x · 0 = 0, and

(UP-4) x · y = 0 and y · x = 0 imply x = y.

Proposition 1.2. In a UP-algebra A = (A, ·, 0), the following assertions are

valid ((1.1)–(1.7), see [3], Proposition 1.7).

(∀x ∈ A)(x · x = 0),(1.1)

(∀x, y, z ∈ A)(x · y = 0, y · z = 0 ⇒ x · z = 0),(1.2)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (z · x) · (z · y) = 0),(1.3)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (y · z) · (x · z) = 0),(1.4)

(∀x, y ∈ A)(x · (y · x) = 0),(1.5)

(∀x, y ∈ A)((y · x) · x = 0 ⇔ x = y · x),(1.6)

(∀x, y ∈ A)(x · (y · y) = 0),(1.7)

(∀a, x, y, z ∈ A)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0),(1.8)

(∀a, x, y, z ∈ A)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0),(1.9)

(∀x, y, z ∈ A)(((x · y) · z) · (y · z) = 0),(1.10)

(∀x, y, z ∈ A)(x · y = 0 ⇒ x · (z · y) = 0),(1.11)

(∀x, y, z ∈ A)(((x · y) · z) · (x · (y · z)) = 0), and(1.12)

(∀a, x, y, z ∈ A)(((x · y) · z) · (y · (a · z)) = 0).(1.13)

Proof. (1.8) By (UP-1), we have (y · z) · ((a · y) · (a · z)) = 0. By (1.3), we have

(x · (y · z)) · (x · ((a · y) · (a · z))) = 0.

(1.9) By (UP-1), we have (x · y) · ((a · x) · (a · y)) = 0. By (1.4), we have

(((a · x) · (a · y)) · z) · ((x · y) · z) = 0.
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(1.10) Now,

0 = (((x · 0) · (x · y)) · z) · ((0 · y) · z)((1.9))

= ((0 · (x · y)) · z) · (y · z)((UP-2), (UP-3))

= ((x · y) · z) · (y · z).((UP-2))

Hence, ((x · y) · z) · (y · z) = 0.

(1.11) Assume that x · y = 0. By (1.3), we have (z · x) · (z · y) = 0. By (1.10)
and (UP-2), we have

x · (z · y) = 0 · (x · (z · y)) = ((z · x) · (z · y)) · (x · (z · y)) = 0.

Hence, x · (z · y) = 0.

(1.12) By (1.10), we have

((x · y) · z) · (y · z) = 0.

By (1.5), we have

(y · z) · (x · (y · z)) = 0.

It follows from (1.2) that ((x · y) · z) · (x · (y · z)) = 0.

(1.13) By (1.5), we have y · (x · y) = 0 and (x · y) · (a · (x · y)) = 0. By (1.2),
we have y · (a · (x · y)) = 0. By (1.4), we have

((a · (x · y)) · (a · z)) · (y · (a · z)) = 0.

By (UP-1), we have

((x · y) · z) · ((a · (x · y)) · (a · z)) = 0.

It follows from (1.2) that ((x · y) · z) · (y · (a · z)) = 0.

Let X be a universal set. Define two binary operations · and ∗ on the power
set of X by putting, for all A,B ∈ P(X),

A ·B = A′ ∩B,(1.14)

A ∗B = A′ ∪B(1.15)

where A′ means the complement of a subset A. Then (P(X), ·, ∅) is a UP-
algebra and we shall call it the power UP-algebra of type 1 [3], Example 1.4,
and (P(X), ∗,X) is a UP-algebra and we shall call it the power UP-algebra of

type 2 [3], Example 1.5.
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Now, define four binary operations ⊙,⊗,⊡ and ⊠ on the power set of X by
putting, for all A,B ∈ P(X),

A⊙B = X,(1.16)

A⊗B = ∅,(1.17)

A⊡B = B,(1.18)

A⊠B = A.(1.19)

Then (P(X),⊙), (P(X),⊗), (P(X),⊡) and (P(X),⊠) are semigroups which is
determined by direct verification. Furthermore, we know that (P(X),∩,X) and
(P(X),∪, ∅) are monoids.

Definition 1.3. Let A be a nonempty set, · and ∗ are binary operations on A,
and 0 is a fixed element of A (i.e., a nullary operation). An algebra A = (A, ·, ∗, 0)
of type (2, 2, 0) in which (A, ·, 0) is a UP-algebra and (A, ∗) is a semigroup is called

(1) a left UP-semigroup (in short, an l-UP-semigroup) if the operation “∗” is
left distributive over the operation “·”,

(2) a right UP-semigroup (in short, an r-UP-semigroup) if the operation “∗” is
right distributive over the operation “·”,

(3) a fully UP-semigroup (in short, an f -UP-semigroup) if the operation “∗” is
distributive (on both sides) over the operation “·”,

(4) a left-left UP-semigroup (in short, an (l, l)-UP-semigroup) if the operation
“·” is left distributive over the operation “∗” and the operation “∗” is left
distributive over the operation “·”,

(5) a right-left UP-semigroup (in short, an (r, l)-UP-semigroup) if the operation
“·” is right distributive over the operation “∗” and the operation “∗” is left
distributive over the operation “·”,

(6) a left-right UP-semigroup (in short, an (l, r)-UP-semigroup) if the operation
“·” is left distributive over the operation “∗” and the operation “∗” is right
distributive over the operation “·”,

(7) a right-right UP-semigroup (in short, an (r, r)-UP-semigroup) if the opera-
tion “·” is right distributive over the operation “∗” and the operation “∗”
is right distributive over the operation “·”,

(8) a fully-left UP-semigroup (in short, an (f, l)-UP-semigroup) if the operation
“·” is distributive (on both sides) over the operation “∗” and the operation
“∗” is left distributive over the operation “·”,

(9) a fully-right UP-semigroup (in short, an (f, r)-UP-semigroup) if the op-
eration “·” is distributive (on both sides) over the operation “∗” and the
operation “∗” is right distributive over the operation “·”,
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(10) a left-fully UP-semigroup (in short, an (l, f)-UP-semigroup) if the opera-
tion “·” is left distributive over the operation “∗” and the operation “∗” is
distributive (on both sides) over the operation “·”,

(11) a right-fully UP-semigroup (in short, an (r, f)-UP-semigroup) if the opera-
tion “·” is right distributive over the operation “∗” and the operation “∗”
is distributive (on both sides) over the operation “·”, and

(12) a fully-fully UP-semigroup (in short, an (f, f)-UP-semigroup) if the op-
eration “·” is distributive (on both sides) over the operation “∗” and the
operation “∗” is distributive (on both sides) over the operation “·”.

In what follows, let A and B denote UP-algebras unless otherwise specified.
The following proposition is very important for the study of UP-algebras.

The proof of Propositions 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9 can be verified by a
routine proof.

Proposition 1.4 (The operations of a UP-algebra P(X) is left distributive over
the operations of a semigroup P(X)). Let X be a universal set. Then the following

properties hold: for any A,B,C ∈ P(X),

(1) A · (B ∩C) = (A · B) ∩ (A · C),

(2) A · (B ∪C) = (A · B) ∪ (A · C),

(3) A ∗ (B ∩ C) = (A ∗B) ∩ (A ∗ C),

(4) A ∗ (B ∪ C) = (A ∗B) ∪ (A ∗ C),

(5) A · (B ⊗ C) = (A · B)⊗ (A · C),

(6) A ∗ (B ⊙ C) = (A ∗B)⊙ (A ∗ C),

(7) A · (B ⊡ C) = (A · B)⊡ (A · C),

(8) A ∗ (B ⊡ C) = (A ∗B)⊡ (A ∗ C),

(9) A · (B ⊠ C) = (A · B)⊠ (A · C), and

(10) A ∗ (B ⊠ C) = (A ∗B)⊠ (A ∗ C).

Proposition 1.5 (The operations of a UP-algebra P(X) is right distributive
over the operations of a semigroup P(X)). Let X be a universal set. Then the

following properties hold: for any A,B,C ∈ P(X),

(1) (A⊡B) · C = (A · C)⊡ (B · C),

(2) (A⊡B) ∗ C = (A ∗ C)⊡ (B ∗ C),
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(3) (A⊠B) · C = (A · C)⊠ (B · C), and

(4) (A⊠B) ∗ C = (A ∗ C)⊠ (B ∗ C).

Proposition 1.6 (The operations of a semigroup P(X) is left distributive over
the operations of a UP-algebra P(X)). Let X be a universal set. Then the fol-

lowing properties hold: for any A,B,C ∈ P(X),

(1) A⊙ (B ∗ C) = (A⊙B) ∗ (A⊙ C),

(2) A⊗ (B · C) = (A⊗B) · (A⊗C),

(3) A⊡ (B · C) = (A⊡B) · (A⊡C), and

(4) A⊡ (B ∗ C) = (A⊡B) ∗ (A⊡ C).

Proposition 1.7 (The operations of a semigroup P(X) is right distributive
over the operations of a UP-algebra P(X)). Let X be a universal set. Then the

following properties hold: for any A,B,C ∈ P(X),

(1) (A ∗B)⊙ C = (A⊙C) ∗ (B ⊙ C),

(2) (A · B)⊗ C = (A⊗ C) · (B ⊗ C),

(3) (A · B)⊠ C = (A⊠ C) · (B ⊠ C), and

(4) (A ∗B)⊠ C = (A⊠C) ∗ (B ⊠ C).

Proposition 1.8. Let X be a universal set. Then the following properties hold:

for any A,B,C ∈ P(X),

(1) (A ∩B) · C = (A · C) ∪ (B · C),

(2) (A ∪B) · C = (A · C) ∩ (B · C),

(3) (A ∩B) ∗ C = (A ∗ C) ∪ (B ∗ C),

(4) (A ∪B) ∗ C = (A ∗ C) ∩ (B ∗ C),

(5) (A⊙B) · C = (A · C)⊗ (B · C), and

(6) (A⊗B) ∗ C = (A ∗ C)⊙ (B ∗ C).

Proposition 1.9. Let X be a universal set. Then the following properties hold:

for any A,B,C ∈ P(X),

(1) (A · B)⊙ C = (A⊗ C) ∗ (B ⊗ C), and

(2) (A ∗B)⊗ C = (A⊙C) · (B ⊙ C).
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Proposition 1.10. Let A = (A, ·, ∗, 0) be an algebra of type (2, 2, 0) in which

(A, ·, 0) is a UP-algebra and (A, ∗) is a semigroup. Then the following properties

hold:

(1) if A is an l-UP-semigroup, then x ∗ 0 = 0 for all x ∈ A,

(2) if A is an r-UP-semigroup, then 0 ∗ x = 0 for all x ∈ A,

(3) if the operation “·” is right distributive over the operation “∗”, then x∗x = x

for all x ∈ A, and

(4) A = {0} is one and only one (r, f)-UP-semigroup and (f, f)-UP-semigroup.

Proof. (1) Assume that A is an l-UP-semigroup. Then, by (1.1), we have

x ∗ 0 = x ∗ (0 · 0) = (x ∗ 0) · (x ∗ 0) = 0 for all x ∈ A.

(2) Assume that A is an r-UP-semigroup. Then, by (1.1), we have

0 ∗ x = (0 · 0) ∗ x = (0 ∗ x) · (0 ∗ x) = 0 for all x ∈ A.

(3) Assume that the operation “·” is right distributive over the operation “∗”.
Then, by (UP-3), we have

0 = (0 ∗ 0) · 0 = (0 · 0) ∗ (0 · 0) = 0 ∗ 0.

Thus, by (UP-2), we have

x = 0 · x = (0 ∗ 0) · x = (0 · x) ∗ (0 · x) = x ∗ x for all x ∈ A.

(4) By (UP-2), (1.1), (1) and (2), we have

x = 0 · x = (x ∗ 0) · x = (x · x) ∗ (0 · x) = 0 ∗ x = 0 for all x ∈ A.

Hence, A = {0} is one and only one (r, f)-UP-semigroup and (f, f)-UP-semigroup.

Example 1.11. Let A = {0, 1, 2, 3} be a set with a binary operation · defined
by the following Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 1 2 0

and

∗ 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0

Then (A, ·, ∗, 0) is an f -UP-semigroup.
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Let X be a universal set. Then, by above propositions and an example, we
get:

Types of algebras Examples

l-UP-semigroup (P(X), ∗,⊙, X) (see Proposition 1.6 (1))

(P(X), ·,⊗, ∅) (see Proposition 1.6 (2))

(P(X), ·,⊡, ∅) (see Proposition 1.6 (3))

(P(X), ∗,⊡, X) (see Proposition 1.6 (4))
r-UP-semigroup (P(X), ∗,⊙, X) (see Proposition 1.7 (1))

(P(X), ·,⊗, ∅) (see Proposition 1.7 (2))

(P(X), ·,⊠, ∅) (see Proposition 1.7 (3))

(P(X), ∗,⊠, X) (see Proposition 1.7 (4))

f -UP-semigroup (P(X), ∗,⊙, X) (see Propositions 1.6 (1) and 1.7 (1))

(P(X), ·,⊗, ∅) (see Propositions 1.6 (2) and 1.7 (2))

(A, ·, ∗, 0) (see Example 1.11)

(l, l)-UP-semigroup (P(X), ·,⊡, ∅) (see Propositions 1.6 (3) and 1.4 (7))

(P(X), ∗,⊡, X) (see Propositions 1.6 (4) and 1.4 (8))

(r, l)-UP-semigroup (P(X), ·,⊡, ∅) (see Propositions 1.6 (3) and 1.5 (1))

(P(X), ∗,⊡, X) (see Propositions 1.6 (4) and 1.5 (2))

(l, r)-UP-semigroup (P(X), ∗,⊙, X) (see Propositions 1.7 (1) and 1.4 (6))

(P(X), ·,⊗, ∅) (see Propositions 1.7 (2) and 1.4 (5))

(P(X), ·,⊠, ∅) (see Propositions 1.7 (3) and 1.4 (9))

(P(X), ∗,⊠, X) (see Propositions 1.7 (4) and 1.4 (10))

(r, r)-UP-semigroup (P(X), ·,⊠, ∅) (see Propositions 1.7 (3) and 1.5 (3))

(P(X), ∗,⊠, X) (see Propositions 1.7 (4) and 1.5 (4))

(f, l)-UP-semigroup (P(X), ·,⊡, ∅) (see Propositions 1.6 (3), 1.4 (7), and 1.5 (1))

(P(X), ∗,⊡, X) (see Propositions 1.6 (4), 1.4 (8), and 1.5 (2))

(f, r)-UP-semigroup (P(X), ·,⊠, ∅) (see Propositions 1.7 (3), 1.4 (9), and 1.5 (3))

(P(X), ∗,⊠, X) (see Propositions 1.7 (4), 1.4 (10), and 1.5 (4))

(l, f)-UP-semigroup (P(X), ∗,⊙, X) (see Propositions 1.6 (1), 1.4 (6), and 1.7 (1))

(P(X), ·,⊗, ∅) (see Propositions 1.6 (2), 1.4 (5), and 1.7 (2))

(r, f)-UP-semigroup {0} is one and only one (r, f)-UP-semigroup

(f, f)-UP-semigroup {0} is one and only one (f, f)-UP-semigroup
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Hence, we have the following diagram:

Figure 1. New algebras of type (2,2,0).

Conclusion

We have introduced the notions of left UP-semigroups, right UP-semigroups,
fully UP-semigroups, left-left UP-semigroups, right-left UP-semigroups, left-right
UP-semigroups, right-right UP-semigroups, fully-left UP-semigroups, fully-right
UP-semigroups, left-fully UP-semigroups, right-fully UP-semigroups and fully-
fully UP-semigroups, and have found examples. We have that right-fully UP-
semigroups and fully-fully UP-semigroups coincide, and it is only {0}. In further
study, we will apply the notion of fuzzy sets and fuzzy soft sets to the theory of
all above notions.
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