
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, MONTH 2009 1

Introducing Hierarchy in Energy Games
S. Lasaulce, Y. Hayel, R. El Azouzi, and M. Debbah

Abstract—In this work we introduce hierarchy in wireless
networks that can be modeled by a decentralized multiple access
channel and for which energy-efficiency is the main performance
index. In these networks users are free to choose their power
control strategy to selfishly maximize their energy-efficiency.
Specifically, we introduce hierarchy in two different ways: 1.
Assuming single-user decoding at the receiver, we investigate
a Stackelberg formulation of the game where one user is the
leader whereas the other users are assumed to be able to
react to the leader’s decisions; 2. Assuming neither leader nor
followers among the users, we introduce hierarchy by assuming
successive interference cancellation at the receiver. It is shown
that introducing a certain degree of hierarchy in non-cooperative
power control games not only improves the individual energy
efficiency of all the users but can also be a way of insuring
the existence of a non-saturated equilibrium and reaching a
desired trade-off between the global network performance at
the equilibrium and the requested amount of signaling. In this
respect, the way of measuring the global performance of an
energy-efficient network is shown to be a critical issue.

Index Terms—Cognitive radio, energy-efficiency, Nash equilib-
rium, power control games, Stackelberg equilibrium.

I. INTRODUCTION

IN this paper, we consider a decentralized multiple access
channel (MAC). By definition [2], the MAC consists of a

network of several transmitters and one receiver. The network
is said to be decentralized in the sense that the receiver does
not dictate to the users their transmit power level. Indeed,
from the sole knowledge of his own uplink channel, each
user can choose freely his power control policy in order to
selfishly maximize a certain individual performance criterion,
called utility (or payoff) in the context of game theoretic
studies. The use of game theoretic tools is at the heart of the
design of the recently advocated mobile flexible networks [3],
which intend to break the spectral efficiency barrier through
the use of intelligence. The selfish behavior enables to reduce
the signaling overhead, especially for highly mobile terminals
where topological information (channel state information -
CSI- is one aspect) on the network can not be centralized.
In this paper, unlike many works concerning this problem, the
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chosen users’ utility is not the transmission rate (e.g., [4]–
[6]) but the energy-efficiency of their communication. The
latter approach, which consists in maximizing the ratio of the
net number of information bits that are transmitted without
error per time unit to the transmit power level, has been
introduced in [7] for flat fading channels and recently re-
used by [8] for multi-carrier CDMA (code division multiple
access) systems and linear receivers, motivated by the facts
that mobile terminals have a limited battery lifetime and
in some applications (e.g., a sensor network measuring a
temperature field) the main concern is not the transmission
rate.

As mentioned in [7] the Nash equilibrium (NE) in such
games can be energy inefficient. The NE of this power control
game is shown to be Pareto inefficient. This is why [9]
proposed, for MACs with flat fading links and single-user
decoding (SUD), a pricing mechanism to obtain improvements
in the users’ utilities with respect to the case with no pricing.
To our knowledge, since the release of [9], no alternative
way of tackling this problem in the context of energy-efficient
power control games has been proposed. In this paper we pro-
pose an alternative approach to [9] for improving the network
efficiency by introducing a certain degree of hierarchy between
the users. We propose two schemes. For the first scheme, we
propose a Stackelberg formulation of the problem when SUD
is assumed at the receiver. For the second scheme, we consider
an a priori more efficient (and non-linear) receiver namely
successive interference cancellation (SIC). Technically, our
approach not only aims at improving the network equilibrium
efficiency but has also two nice features: 1. It allows one to
analyze the equilibrium uniqueness issue rigorously. Note that
even in the simple case of linear pricing analyzed in [9], only
simulations are provided to justify uniqueness; 2. Implement-
ing pricing in real wireless networks is still an open issue for
many well-used types of utilities (the problem being to know
how to measure the modified utility) whereas energy-efficiency
can be physically measured (for this purpose each terminal
can evaluate its frame error rate over a certain period of
time from a feedback mechanism and store the corresponding
sequence of power levels); 3. Only individual CSI is needed
at each transmitter in the regime of non-saturated equilibria,
which is not case with pricing. More generally, our approach
contributes to designing networks where intelligence is split
between the base station (BS) and mobile stations (MSs) in
order to find a desired trade-off between the global network
performance reached at the equilibrium and the amount of
signaling needed to make it work. As we will see, in both
hierarchical approaches proposed the receiver only broadcasts
common messages and the corresponding amount of additional
signaling is reasonable. Note that the Stackelberg formulation
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arises naturally in some contexts of practical interest. For
example, hierarchy is naturally present in contexts where there
are primary (licensed) users and secondary (unlicensed) users
who can sense their environment because there are equipped
with a cognitive radio [12]–[14]. It is also natural if the users
have access to the medium in an asynchronous manner. Note
that there have been many works on Stackelberg games in
the context of wireless communications [15], but they do not
consider energy-efficiency for the individual utility as defined
in [7], [8], [16]. Rather, they consider transmission rate-type
utilities (see e.g., [5], [17], [18]).

This paper is structured as follows. The general signal
model is provided in Sec. II-A. Sec. II-B reviews the main
results of [8] for the non-cooperative game. Then, in Sec.
III, we introduce our Stackelberg formulation by assuming an
arbitrary choice for the game leader, when SUD is assumed. In
Sec. IV we consider a different receiver namely a successive
interference canceler, for which an arbitrary decoding order is
chosen on each block of data (or packet). The choice of the
best leader and decoding order in terms of overall network
energy-efficiency is discussed in Sec. V. In Sec. VI we provide
numerical results to illustrate the theoretical results derived in
the previous sections. A short summary and some extensions
of this work are provided in Sec. VII.

II. SIGNAL MODEL AND REVIEW OF THE

NON-COOPERATIVE GAME

A. Signal model

Here we provide the signal model used in the whole paper
except at the end of Sec. II-B where we explain how the
provided results apply to the random CDMA case (RCDMA1).
We consider a decentralized MAC with a finite number of
users, which is denoted by K . We assume that the users
transmit their data over block Rayleigh flat fading channels
and the receiver knows on each block all the uplink channel
gains (coherent communication assumption) whereas each
transmitter has only access to the knowledge of its own
channel. The latter assumption is realistic at least in two com-
mon scenarios: (a) the uplink-downlink channel reciprocity
is valid and the BS sends training signals to the MSs; (b)
the uplink channel varies slowly and the BS implements a
reliable feedback mechanism to inform the MSs with their
channel state. The equivalent baseband signal received by the
base station can be written as

Y =
K∑

i=1

hiXi + Z (1)

with ∀i ∈ {1, ..., K}, E|Xi|2 = pi, |hi| is a Rayleigh dis-
tributed random variable and Z ∼ CN (0, σ2). Each channel
gain hi varies over time but is assumed to be constant over
each block.

B. Review of the non-cooperative game

In the system under investigation, users are selfish in the
sense of their energy-efficiency. Here we review a few key

1RCDMA: the entries of the spreading sequences correspond to the
realizations of i.i.d random variables.

results from [8], [9] concerning the non-cooperative game,
which we will use to analytically evaluate the benefits brought
by introducing hierarchy in this game. For any user i ∈
{1, ..., K}, the single-user signal-to-noise plus interference
ratio (SINR) at the receiver writes as

SINRi =
pi|hi|2∑

j �=i pj |hj |2 + σ2
(2)

where j �= i. The strategy of user i ∈ {1, ..., K} consists in
choosing his transmit power level pi in order to maximize his
utility function which is chosen to be:

ui(p1, ..., pK) =
Ti

pi
=

Rif(SINRi)
pi

(3)

where f is an efficiency function representing the packet
success rate, which is assumed to be identical for all the users
and Ri is the transmission rate [7], [8] of user i. By definition
of the utility (Eq. (3)) we see that the frequency at which the
power control is updated is chosen to be the reciprocal of the
data block duration. When it exists, the non-saturated NE2 of
this game is given by

∀i ∈ {1, ..., K}, pSUD
i =

σ2

|hi|2 β∗μSUD (4)

where β∗ is the positive solution of the equation xf ′(x) =
f(x) and μSUD = 1

1−(K−1)β∗ is a penalty term due to multiple
access interference; by using the term “non-saturated NE”
we mean that the maximum transmit power for each user,
denoted by Pmax

i , is assumed to be sufficiently high for not
being reached at the equilibrium i.e., each user maximizes
his energy-efficiency for a value less than Pmax

i . Several
technical comments are in order. First, note that the equation
xf ′(x) = f(x) has a positive solution if the function f is
sigmoidal [19] and verifies ui(0, p−i

) = 0, which is what is
assumed in this paper. Second, it has been shown [7] that there
is always a unique NE in the game considered. If μSUD ≥ 0
and none of the users’ power constraints is saturated, the
equilibrium is that given by Eq. (4). If one of the mentioned
conditions is not met, that is if μSUD < 0 or at least one
power constraint is saturated, the NE has to be rewritten by
taking into account that some users transmit at their maximum
power. What is important here is not to explicit the equilibrium
in this case but to mention that the corresponding regime is
less interesting for several reasons. We will only mention the
most critical of them, which is not mentioned in the related
works available in the literature ([7], [9], [8], etc.): for having
such a saturated equilibrium the users need to know more
than their own channel. For example in the 2−user case,
if user 2 transmits at his maximum power pSUD

2 = Pmax
2

user 1 transmits at pSUD
1 = β∗ σ2

|h1|2 + β∗
∣∣∣h2
h1

∣∣∣2 Pmax
2 . Thus

the interest in designing a system such that a non-saturated
equilibrium is obtained is obvious. This is one of the reasons
why we will assume such an operating regime in the whole
paper. In this regime, even if a user has an infinite transmit
power he will not necessarily use all of it. This is what Eq.

2NE: the vector of strategies pSUD = (pSUD
1 , ..., pSUD

K ) is an NE if
∀i ∈ {1, ...,K},∀pi ∈ [0, Pmax

i ], ui(pSUD) ≥ ui(pi, pSUD
−i

), with the
standard notation p−i

= (p1, ..., pi−1, pi+1, ..., pK).
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(4) shows: each player tunes his transmit power in order for
his SINR to be equal to β∗. In the sequel, we will denote by
uSUD

i the energy efficiency obtained by player i at the NE.
Note that the problem formulation presented in this paper

can be applied to other types of systems, so our analysis is not
exclusively applicable to the signal model defined by Eq. (1).
For example, in flat fading RCDMA systems [20], the SINR
after despreading (denoted by S̃INRi) of the received signal
can be written in the same form as Eq. (2):

S̃INRi =
p̃i|hi|2∑

j �=i p̃j |hj |2
N + σ2

(5)

where N is the spreading factor (also the processing gain)
of the RCDMA system. The strategy of user i consists in
choosing his transmit power level p̃i in order to maximize his
utility function which is chosen to be:

ũi(p̃1, . . . , p̃K) =
Ti

p̃i
=

R̃if̃(S̃INRi)
p̃i

. (6)

The study of the case of RCDMA systems can be directly
obtained from the signal model used in this paper by observing
that the two models are merely linked by the following change
of variables: t̃ = Nt where t ∈ {pi, Ri, SINRi} and f(x) =
f̃(Nx). This leads to ũi(p1, . . . , pK) = R̃if̃(N.SINRi)

p̃i
=

Rif(SINRi)
pi

. This clearly establishes the link between our
signal model and that used by [8] for RCDMA systems and
flat fading channels. Similarly it could also be linked to the
case of RCDMA systems with frequency selective channels as
recently shown in [21]. To conclude on RCDMA systems, it
could be verified [8], [21] that the denominator of the transmit
power at the NE becomes proportional to 1− (K−1)β∗

N , which
is in favor of the existence of a non-saturated equilibrium in
games under investigation.

C. Information assumptions

To have a clear view of what is assumed to be known at
which terminal, we mention here all our assumptions in terms
of information for all the terminals. As the communications
are assumed to be coherent, the BS knows in all the cases
treated in this paper all the channel gains h1, ..., hK on each
data block. As it will be seen, for the two hierarchical games
introduced in this work, each user (say user i) only needs
to know his own channel (i.e., hi) to implement his optimal
selfish power control policy. We are therefore in the same
situation as the non-cooperative game. On the other hand if
full CSI h1, ..., hK would be available at each transmitter, it
would be possible to formulate the power control problem
as a cooperative game (team game) with a common utility,
which is not considered in this paper. To illustrate this point,
in the 2−user case it can be checked that the best set of
SINRs for the team, denoted here by (xi)i, is the solution
of the system of equations ∀i ∈ {1, 2}, xif

′(xi) − f(xi) −
f ′(x−i)

[∣∣∣h−i

hi

∣∣∣ 1+x−i

1+xi

]2
x2

i = 0. We will also assume a con-
text of games with complete information that is, each user
perfectly knows the game (the number of users, the sets of
strategies and the different utilities) and every user is assumed
to be rational [22]. The additional assumption we make w.r.t.

[7], [8] is that: in the Stackelberg formulation with SUD,
there exists a mechanism that allows the followers to know
the (receive) power level of the leader, which can be acquired
with an appropriate sensing system or by assuming that the
BS sends an appropriate broadcast signal; in the game with
SIC all the users know the decoding order used by the BS.

III. A HIERARCHICAL GAME WITH SINGLE USER

DECODING

As mentioned previously, one of our motivations for intro-
ducing hierarchy is to improve the network energy-efficiency.
The proposed approaches can be seen as intermediate schemes
between the totally centralized power control policy and the
non-cooperative policy of [7], [8]. It is also quite relevant for
flexible networks where the trend is to split the intelligence
between the network infrastructure and the (generally mobile)
users’ equipments. These approaches are therefore reasonable
ways of finding a desired trade-off between the desired global
network performance and the amount of control signaling sent
by the receiver. In this section, we propose a Stackelberg
formulation of the power control game where one of the K
users is chosen to be the leader whereas the others are the
followers. The receiver is not a player of the game here. In
this respect we will always assume in this section that SUD is
implemented at the receiver. The motivations for using SUD
can be precisely that the receiver has to remain neutral in
the game, or/and for limiting the receiver complexity, or/and
to minimize the possible signaling cost induced by a more
advanced receiver. In Sec. V however, we will use a more
advanced receiver than SUD namely SIC, which naturally
introduces hierarchy between users via the decoding order
used by the BS. In the case where this order is optimized,
the problem can be formulated as a Stackelberg game where
the receiver has his own utility (similarly to [5] where Shannon
transmission rates are considered for the users’ utilities) and
is the game leader.

Here, we consider without loss of generality (but possibly
with loss of optimality) that user i is the leader of the game.
Even though there is no loss of generality mathematically
speaking, this arbitrary choice might seem to be artificial
physically. In fact, there are useful scenarios where some
terminals are naturally leaders of the game, by definition of
the context. For instance, in wireless networks with primary
and secondary users, most often only secondary terminals are
equipped with a cognitive radio and can be followers; the
primary terminals which have been generally deployed in the
first place are therefore leaders of the game by conception of
the network. Back to our system model, each follower j �= i
plays a non-cooperative game with the other followers, given
what the leader plays. Interestingly, it is possible to show that,
under realistic conditions, there is a unique equilibrium in this
hierarchical game, which is called a Stackelberg Equilibrium
(SE). Before indicating how the users determine their optimal
transmit power, let us define a Stackelberg equilibrium. Let
U∗(pi) be the set of NE for the group of followers when the
leader plays strategy pi. In other words, the leader maximizes
his utility function which depends on the NE u∗ ∈ U∗(pi) of
the followers.
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Definition 1 (Stackelberg equilibrium): A vector pSE =
(pSE

i , pSE
−i ) is called a Stackelberg equilibrium (SE) if pSE

−i
∈

U∗(pi) and the power pSE
i maximizes the utility func-

tion of user i, the leader of the game. In other words
pSE

i = argmax
p̃i

ui(p̃i, p
SE
−i

(p̃i)).

By denoting (pSE
i , pSE

−i
) the power profile at the SE, this

definition translates mathematically by
pSE

i =
arg maxpi ui

(
pSE
1 (pi), . . . , p

SE
i−1(pi), pi, p

SE
i+1(pi), . . . , p

SE
K (pi)

)
(7)

where pSE
j (pi), j �= i, is the power of the follower j at the NE.

Now we look at the problem of the existence and uniqueness
of such a vector of transmit power levels. A solution to these
issues is stated through the following proposition.

Proposition 2: (EXISTENCE AND UNIQUENESS OF AN

SE). There is a unique Stackelberg equilibrium pSE in the
proposed hierarchical game where user i is the leader:

pSE
i =

σ2

|hi|2
γ∗(1 + β∗)

1 − (K − 1)γ∗β∗ − (K − 2)β∗ (8)

and for each follower j �= i

pSE
j =

σ2

|hj|2
β∗(1 + γ∗)

1 − (K − 1)γ∗β∗ − (K − 2)β∗ , (9)

if the following (sufficient) conditions hold: f ′′(0)
f ′(0) ≥

2 (K−1)β∗

1−(K−2)β∗ and φ(x) = x
[
1 − (K−1)β∗

1−(K−2)β∗ x
]
f ′(x) − f(x)

has a single stationary point in ]0, γ∗[, where where β∗ is the
positive solution of the equation xf ′(x) − f(x) = 0 and γ∗

is the positive solution of the equation φ(x) = 0.
This proposition is proven in Appendix A. In order to

have an idea to what extent the sufficient conditions stated
in Prop. 2 are realistic, we consider the practical choice of
efficiency function proposed by [7] and also used by [8][16]:
f(x) = (1−e−x)M where M is the block length (this function
is a reasonable model for evaluating the packet success rate
of a transmission). Assuming this function, we have φ′(x) =
e−x

{
(K−1)β∗

1−(K−2)β∗ x2 −
[
2 (K−1)β∗

1−(K−2)β∗ M + 1
]
x + M − 1

}
and

the existence and uniqueness of an SE readily follows (see
Appendix A). Commenting the result of Prop. 2 itself, an
interesting feature of the SE can be noticed. The SE has
the same attractive property as the equilibrium of the non-
cooperative game of [7] namely each user only needs to know
his own channel to do what is best for him. This result comes
from the facts thats that all users are rational, every user knows
that the others are rational and more specifically every user
knows how the others are going to tune their SINR, which is
identical for all the followers. At this point, some important
questions arise. From a user point of view, is it better to be
chosen to be a leader or a follower? With respect to the non-
cooperative game what is the gain brought by introducing
hierarchy? Do all the players benefit from this? The first
question is answered in Prop. 3 whereas the latter questions
are the purpose of Prop. 4.

Proposition 3: (FOLLOWING IS BETTER THAN LEADING)
Every user has always a better utility by being chosen as a
follower instead of a leader.

Proof: We denote by uSE
L (resp. uSE

F ) the utility of user
i ∈ {1 . . . , K} (resp. j �= i) when he is chosen to be the

leader (resp. a follower) of the game. First, we observe that,
at the Stackelberg equilibrium, the SINR for the leader and a
follower are: SINRSE

L = γ∗ and SINRSE
F = β∗. From [19],

we have that for all x > 0: x > β∗ ⇔ xf ′(x) < f(x). As

for all x > 0, x
[
1 − (K−1)β∗

1−(K−2)β∗ x
]
f ′(x) < xf ′(x), from a

simple geometrical argument we see that γ∗ < β∗ (the fact
that the leader gets a lower SINR than in the non-cooperative
game, and therefore lower than the follower, can also be
understood by noticing that SINR1 is a function of p1 only
and grows more slowly with p1). This means that the SINR
of the follower (i.e., β∗) is higher than the SINR of the leader
(i.e., γ∗). Therefore, we can write that

uSE
L

uSE
F

= f(γ∗)
|hi|2
σ2

1 − (K − 1)β∗γ∗ − (K − 2)β∗

γ∗(1 + β∗)
×

1
f(β∗)

σ2

|hi|2
β∗(1 + γ∗)

1 − β∗(K − 1)γ∗ − (K − 2)β∗ (10)

=
f(γ∗)

γ∗

f(β∗)
β∗

1 + γ∗

1 + β∗ =
g(γ∗)
g(β∗)

1 + γ∗

1 + β∗ ≤ 1, (11)

where the inequality follows from γ∗ ≤ β∗ and the fact that
function g : x 	→ f(x)

x reaches its maximum in β∗.
The main issue we need to address now is the comparison

between the non-cooperative and hierarchical games in terms
of energy efficiency. Specifically, we want to compare the val-
ues of ui(pSE) and ui(pSUD), for each player i ∈ {1, . . . , K}.
This is stated through the following proposition.

Proposition 4: (UNIFORM IMPROVEMENT OF UTILITIES).
We always assume that SUD is used at the BS. Then, both the
leader and followers improve their utility with respect to the
non-cooperative setting.

Proof:
(a) All the followers improve their utility. By denoting j

the index of a given follower we have:

uSE
j

uSUD
j

= f(β∗)
|hj |2
σ2

1 − (K − 1)β∗γ∗ − (K − 2)β∗

β∗(1 + γ∗)
×

1
f(β∗)

σ2

|hj |2
β∗

1 − (K − 1)β∗ (12)

=
1 − (K − 1)β∗ + β∗ [1 − (K − 1)γ∗]

(1 + γ∗) [1 − (K − 1)β∗]
(13)

=
1 + β∗ − (K − 1)β∗(1 + γ∗)
1 + γ∗ − (K − 1)β∗(1 + γ∗)

. (14)

We see that this ratio is higher than 1 since γ∗ ≤ β∗.
(b) The leader improves his utility. Denoting by i �= j the

index of the leader we have:

uSE
i

uSUD
i

= f(γ∗)
|hi|2
σ2

1 − (K − 1)β∗γ∗ − (K − 2)β∗

γ∗(1 + β∗)
×

1
f(β∗)

σ2

|hi|2
β∗

1 − (K − 1)β∗ (15)

=
f(γ∗)

γ∗

f(β∗)
β∗

1 − β∗ [K − 2 + (K − 1)γ∗]
1 − β∗ [K − 2 + (K − 1)β∗]

(16)

=
h(γ∗)
h(β∗)

, (17)
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where h(x) = f(x)
x [1 − β∗(K − 2 + (K − 1)x)]. It can be

checked that

h′(x) =
x
[
1 − (K−1)β∗

1−(K−2)β∗ x
]
f ′(x) − f(x)

x2
=

φ(x)
x2

, (18)

where φ is defined in Prop. 2. We have φ(γ∗) = 0, φ(β∗) < 0
and as the solution of φ(x) = 0 is unique, for all x ∈ [γ∗, β∗]
we have φ(x) < 0. The function h is therefore non-increasing
over [γ∗, β∗] and we have uSE

i ≥ uSUD
i when user i is the

leader, which concludes the proof.
To conclude this section we will make two comments. First,

it is very interesting to observe that all the players benefit
from hierarchy when energy-efficiency is chosen to be the
users’ utility. This result is not usual in game-theoretic studies.
In economics, for instance, in the case of a duopoly [23],
only the leader can benefit from the introduction of hierarchy.
Even more surprisingly, in our context, a user prefers to be
a follower than a leader. In cognitive networks with primary
and secondary users, only terminals that are equipped with
a cognitive radio will have this privilege. In a conventional
cellular network, the designation of a leader can be made by
the By broadcasting p1 the base station discloses the user who
allows a certain global performance metric to be maximized
(this will be the purpose of Sec. V) and the power level he
should play. As the users, who are designated as followers,
are selfish, rational, and can not coordinate each other they
are going to play their best response pi(p1). Knowing this,
the user who is designated as a leader has to transmit at p1

to maximize his utility. As a second comment, we note that
all the users not only obtain a better energy-efficiency in the
proposed Stackelberg game but it can also be checked that
they transmit with a lower power than in the non-cooperative
game (Sec. II-B), which is in favor of creating a network where
interference is self-regulated by the users.

IV. A HIERARCHICAL GAME WITH SUCCESSIVE

INTERFERENCE CANCELLATION

The approach presented in this section is clearly related
to that of Sec. III in the sense that it also consists in using
hierarchy to improve the network equilibrium efficiency. This
approach, based on the use of SIC at the BS is even more
strongly related to Sec. III in the case where the BS has
his own utility, since we have a Stackelberg in this case.
On the other hand, this section and Sec. III corresponds to
two different points of view: Sec. III corresponds more to a
game theoretic standpoint for which the receiver is unchanged
but hierarchy is introduced between players (and therefore
influencing their transmission strategy) to make the society
more efficient while the second approach (using SIC) typically
corresponds to what a wireless engineer could do in order to
improve the network performance that is to say implement
a more advanced receiver (SUD → SIC). From now on, let
us assume that the BS implements successive interference
cancellation. The principle of SIC is to rank the users and
decode them successively (see e.g., [2]). For the 2-user case
the decoding is a two-stage process. In the first stage, the
receiver decodes a user (say user 1) by considering the other
(user 2) as part of the noise. In the second stage, i.e., after

the first user has been decoded successfully, the first user
can be subtracted from the received signal and user 2 is
decoded without multiuser interference. Compared to the case
of the SUD-based receiver, the SIC-based receiver does not
require any additional knowledge and therefore always only
uses the channel state information (h1, ..., hK) on each block
of data, just as SUD. From a practical point of view the two
main differences between SIC and SUD is that SIC is more
complex to be implemented and the decoding order has to be
known to the users. For the latter point, as mentioned in [6],
it does not necessarily mean that the receiver has to send a
signal for indicating the decoding order to the user. In fact,
this information can also be acquired from an external (and
therefore free in terms of signaling cost) source of signal.
However, in this case there is generally a loss of optimality
for the overall network performance. Clearly, one of the main
advantages for using a SIC at the receiver is to partially
remove some multiuser interference. Note that, in the context
of systems with mutual interaction among users, improving
the decoding scheme does not necessarily imply that each user
improves his utility (Braess-like paradoxes [24] can sometimes
occur) . All the issues we have just mentioned are precisely
the purpose of this section.

Proposition 5: (EXISTENCE AND UNIQUENESS OF AN

NE). Let denote by i the index of the user who is decoded
with rank K − i + 1 in the successive decoding procedure at
the receiver. In the non-cooperative game with a SIC-based
receiver where the utility is chosen to be given by Eq. (3)
where the SINRs are those considered at the output of the
SIC, there exists a unique (pure) NE (pSIC

1 , ..., pSIC
K ) which is

given by:

∀i ∈ {1, ..., K}, pSIC
i =

σ2

|hi|2 β∗μSIC
i (19)

where μSIC
i = (1 + β∗)i−1 is a penalty term due to multiple

access interference.
Proof: The existence of an NE is insured by the ge-

ometrical and topological properties of the utility functions
and strategy sets of the users, over which the maximization
is performed. Indeed, since for every user i, the utility ui

is continuous in p = (p1, ..., pK) and is quasi-concave w.r.t.
to pi over the convex and compact strategy sets [0, Pmax

1 ],
..., [0, Pmax

K ], we can apply Debreu-Fan-Glicksberg theorem
(see e.g., [25]). This guarantees the existence of at least one
pure NE. To prove the uniqueness of the NE we apply a
result derived by [26] and more recently re-used by [27]. We
know from [26] that if the best response (BR) correspondence
BR(p) =

(
BR1(p), ..., BRK(p)

)
is monotonic and scalable,

then the NE is unique. Although we deal here with a non-
linear receiver we see that the SINR of user i is given by

SINRi = β∗ =
pi|hi|2

σ2 +
∑i−1

j=0 |hj|2pj

(20)

(with the notational convention p0 = 0) and has the same key
property as the SINR obtained with linear receivers [8][16]
i.e., pi

∂SINRi

∂pi
= SINRi. Thus, in order to maximize his utility

(Eq. (3)) each user has to tune his transmit power such that
his SINR equals to βSIC = β∗ where β∗f ′(β∗) = f(β∗).
Knowing this, it is easy to express the best responses of
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the users. Here we have that ∀ ∈ {1, ..., K}, BRi(p) =
β∗

|hi|2
(
σ2 +

∑i−1
j=0 pj |hj |2

)
. According to our assumptions,

these expressions of the BRs are valid in the non-saturated
regime, otherwise they can be equal to Pmax

i for user i. Clearly

we have that: 1. p ≥ p′ ⇒ BR(p) ≥ BR(p′) since
∂BRi(p)

∂pj
=

β∗
∣∣∣hj

hi

∣∣∣2 ≥ 0 (monotonicity); 2. ∀α > 1, αBR(p) > BR(αp)
(scalability). At last, in our context of games with complete
information, the expressions of the transmit powers at the
equilibrium directly follow from the aforementioned property
and expressions of the SINRs.
At least two key points are worth being noticed here. First,
we see that, in contrast with the NE and SE with SUD, the
existence of a non-saturated NE is still insured when β∗ >

1
K−1 . Second, it is important to note that Prop. 5 indicates
that, at the equilibrium, the transmit power of a user grows
exponentially with i, which is related to his decoding rank
(say di) by di = K − i+1. As the penalty term for SUD (see
Eq. (4)) is an hyperbolic function of (K − 1)β∗, this seems
to indicate that SIC might be less energy-efficient than SUD.
It turns out that this is not the case in the regime where non-
saturated equilibria exist for the non-cooperative game. This
is the purpose of the following proposition.

Proposition 6: (SIC VERSUS SUD) Let always denote by
i the index of the user who is decoded with rank K − i+1 in
the successive decoding procedure at the receiver. Then, every
user prefers to be in the game with a receiver implementing
SIC instead of the game with a SUD-based receiver.

Proof: First, let us prove that the sequence defined by
ρi = uSIC

i

uSUD
i

is non-increasing. The ratio of the utility of user
i at the NE when SUD is assumed (non-cooperative game of
Sec. II-B) to that obtained when SIC is assumed is:

ρi =
Rif(β∗)

pSIC
i

pSUD
i

Rif(β∗)
(21)

=
pSUD

i

pSIC
i

(22)

=
1

[1 − (K − 1)β∗](1 + β∗)i−1
. (23)

Clearly we have that ∀i ∈ {1, ..., K − 1}, ρi+1
ρi

= 1 + β∗ ≥ 1,
which, in particular, mathematically translates the fact that the
user who is the less likely to prefer SIC is user K since he is
decoded first.

Now let us prove that user K has a better utility with SIC
than with SUD. For this purpose we need to prove that ρK ≥
1. By defining the function ρK : x 	→ 1

[1−(K−1)x](1+x)K−1 we
have that

∂ρK

∂x
=

K(K − 1)x(1 + x)K−2

{[1 − (K − 1)x](1 + x)K−1}2 . (24)

As this derivative is non-negative in the interval of non-
saturated equilibria for the non-cooperative game i.e., for
x ∈

[
0; 1

K−1

[
and ρK(0) = 1, we therefore have that ρK ≥ 1

in the interval of interest.
The proven result translates the fact that in the game with
SIC, users are more energy-efficient and more specifically,
transmit with a lower power. Therefore, every user sees less
interference than in the game with SUD. In particular, user

K sees K − 1 interferers in both games but the amount of
interference he undergoes is less when SIC is implemented.

V. NETWORK ENERGY-EFFICIENCY ANALYSIS

So far, in the two hierarchical games analyzed, we have
assumed an arbitrary choice for the follower (Stackelberg
game with SUD) and decoding order (non-cooperative game
with SIC). In this section we want to assess the influence
of these degrees of freedom on the overall network energy-
efficiency. For this purpose, we consider two measures: the
social welfare [28] which is well known in game theoretic
studies and the energy-efficiency of the equivalent virtual
multiple input multiple output (MIMO) system, the latter
being used as individual utility to optimize power allocation
in multicarrier CDMA systems [8]. This will allow us to have
two complementary points of view on the way of measuring
energy-efficiency for a network. As a comment regarding the
terminology used, note that if the non-cooperative game with
SIC is optimized in terms of a certain measure of energy-
efficiency of the global network, the game can also be seen as
a Stackelberg game where: (a) the receiver is the game leader;
(b) the users (mobile terminals) are the followers; (c) his set
of strategies is the set of all decoding orders; (d) his utility is
w (Eq. (25)) or v (Eq. (32)). In the case of the Stackelberg
game with SUD, if the BS has his own utility, we will referred
to it as the super-leader to avoid confusion with the MS that
is already called leader.

A. Social welfare

The social welfare of the network is measured by the total
utility of the system, which is expressed as follows:

w =
K∑

i=1

ui =
K∑

i=1

Ti

pi
. (25)

For this measure we have the following two results.
Proposition 7: (BEST CHOICE OF THE LEADER). Assume a

Stackelberg game with SUD. In order to maximize the social
welfare, the user who has the lowest Ri|hi|2 has to be chosen
as the game leader.

Proof: Let w(i) be the social welfare when user i is
chosen to be the leader (resp. follower) and pL

i (resp. pF
i )

be his transmit power at the SE. We have that

w(i) − w(j) = Ri
f(γ∗)
pL

i

+ Rj
f(β∗)
pF

j

− Ri
f(β∗)
pF

i

−Rj
f(γ∗)
pL

j

(26)

=
Rj |hj |2 − Ri|hi|2

|hi|2
[
f(β∗)
pF

i

− f(γ∗)
pL

i

]
(27)

=
Rj |hj |2 − Ri|hi|2

|hi|2
(
uSE

i,F − uSE
i,L

)
(28)

> 0

where equality (27) follows from |hi|2pL
i = |hj |2pL

j and
|hi|2pF

i = |hj |2pF
j . From Prop. 3, any user has always a

better utility by being chosen as a follower instead of a leader,
then we see that the difference is non-negative if and only if
Ri|hi|2 ≤ Rj |hj|2, which concludes the proof.
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Proposition 8: (BEST DECODING ORDER). Assume a non-
cooperative game with SIC. The best decoding order in the
sense of the social welfare is to decode the users in the
increasing order of their energy weighted by the coding rate
Ri|hi|2.

Proof: Let π ∈ P be the permutation operator corre-
sponding to the choice of the decoding order. Since the users
have the same SINR at the equilibrium we have that:

πw = argmax
π∈P

w(π) (29)

= argmax
π∈P

f(β∗)
K∑

i=1

Ri

pi
(30)

= argmax
π∈P

K∑
i=1

Ri|hi|2 × 1
(1 + β∗)i−1

. (31)

As by definition β∗ > 0, the desired result follows.
To have more insights on the two derived results let us

consider the 2-user case. From these two propositions we see
that using the social welfare as a global measure of efficiency
always gives an advantage to the dominant user in asymmetric
channels i.e., for which |hi|2 >> |hj |2 for i �= j. Indeed, in
the Stackelberg game with SUD the strongest user is chosen to
be the follower and in the non-cooperative game with SIC he is
chosen to be decoded last. In the limit case where |h1|

|h2| → +∞,
we have that lim |h1|

|h2|→+∞ w = +∞. Therefore if one user

becomes more and more satisfied the whole society becomes
more and more satisfied. Clearly, the social welfare as defined
by Eq. (25) is not that social one could expect in the sense
that it ignores fairness. This is one of the reasons why other
measures of efficiency have to be used in certain scenarios. In
the next subsection we propose to consider the efficiency of
the equivalent virtual MIMO system.

B. Equivalent virtual MIMO network (EVMN) energy-
efficiency

We consider now another performance metric which corre-
sponds to the energy-efficiency of an equivalent system where
the transmitters would be co-located. It is described in [8] as
the individual utility in the context of multi-carrier systems:

v =
∑K

i=1 Ti∑K
i=1 pi

. (32)

It turns out that one can obtain very different conclusions by
optimizing this quantity with respect to the degrees of freedom
instead of the social welfare.

Proposition 9: (BEST CHOICE OF THE LEADER). Assume a
Stackelberg game with SUD. Without loss of generality assume
that |h1|2 ≤ |h2|2 ≤ ... ≤ |hK |2. In order to maximize the
EVMN energy-efficiency, user i has to be chosen as the game
leader if

v(j) ≥ (Ri−Rj)[f(β∗)−f(γ∗)][1−(K−1)β∗γ∗−(K−2)β∗]

σ2(β∗−γ∗)

(
1

|hj |2 − 1
|hi|2

)
for j ≤ i and

v(j) ≤ (Ri−Rj)[f(β∗)−f(γ∗)][1−(K−1)β∗γ∗−(K−2)β∗]

σ2(β∗−γ∗)

(
1

|hj |2 − 1
|hi|2

)
for j ≥ i.

(33)

The proof of this result is provided in Appendix B. To illustrate
this proposition, let us consider the 2-user case. Without loss
of generality assume that |hi|2 < |hj |2, i �= j. In this case one
can check that in order to maximize the EVMN user i (resp. j)
has to be chosen as the game leader if aRi ≤ Rj (resp. aRi ≥
Rj) where a < 1 is defined by a � f(β∗)αj−f(γ∗)αi

f(β∗)αi−f(γ∗)αj
with

αi = |hi|2γ∗(1+β∗)+ |hj |2β∗(1+γ∗) and αj = |hj |2γ∗(1+
β∗) + |hi|2β∗(1 + γ∗).

Now let us turn our attention to the hierarchical game with
SIC where the BS has to rank the different users to maximize
the EVMN.

Proposition 10: (BEST DECODING ORDER). Assume a non-
cooperative game with SIC. The best decoding order in the
sense of the EVMN energy-efficiency is to decode the users in
the decreasing order of their signal-to-noise ratio (SNR) |hi|2

σ2 .
Proof: Let π ∈ P be the permutation operator cor-

responding to the choice of the decoding order. Since the
users have the same SINR at the equilibrium we have that

v = f(β∗)×∑K
i=1 Ri∑

K
i=1 pSIC

i

. Therefore,

πv = arg max
π∈P

v(π) = arg min
π∈P

K∑
i=1

pSIC
i . (34)

As pSIC
i = σ2

|hi|2 β∗(1 + β∗)i−1 it is clear that the influence
of a user on the sum of powers decreases with his decoding
rank. To minimize the total system power one has to decode
the users with a decreasing order of their SNR.

Here again, in order to have insights on the addressed issue,
let us consider the 2-user case. From this proposition we see
that maximizing v over the choice of decoding order amounts
to giving more to the poorest user in terms of |hi|2 whereas
maximizing w w.r.t the follower/leader choice amounts to
giving more to the richest user in terms of Ri|hi|2. Also, in
the case of asymmetric MACs the conclusions are markedly
different from those obtained with w. We already know that

lim
|h1|
|h2|→+∞

w = +∞. An equivalent of v when |h1|
|h2| → +∞ is

v ∼ |h2|2
σ2 β∗(R1 + R2)f(β∗). Now, with the latter measure

of energy-efficiency, even if a user gets very rich, the wealth
of the whole society does not increase and is limited by the
poorest user.

VI. NUMERICAL EXAMPLES

First, we want to analyze the performance of a network
for which the receiver implements SIC. For this purpose we
assume the following scenario: K = 10, M = 100, N = 1
(no spreading), Ri = 100 kbps for all i ∈ {1, ..., K} and
E|hi|2 = 1 for all i ∈ {1, ..., K}; the efficiency-function
chosen is f(x) = (1 − e−x)M . Fig. 1 and 2 respectively
represent the network energy-efficiency for the social welfare
and EVMN, averaged over 105 Rayleigh fading realizations,
as a function of SNR[dB] = 10 log10

1
σ2 . The figures show

the influence of the decoding order on the considered metrics
for three choices: increasing order of |hi| (updated for each
packet); decreasing order of |hi|; random decoding order. We
see that in contexts where the performance metric is clearly
identified (v or w), the optimal decoding order can be found
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and used by the BS, at a price of a certain amount of additional
signaling. On the other hand, if there is no dominant arguments
in favor of one of them, choosing a random decoding order
is relevant. Random decoding order has also two other advan-
tages: 1. The order does not necessarily need to be generated
by the BS. For example, in current cellular networks, almost
all the mobile phones have an FM receiver. The FM signal
can be sampled and thus used a common source of random
decoding order. In this case, the additional signaling from the
BS is zero; 2. It is in favor of creating fairness. As a second
step, we want to compare SIC and SUD. For this, we assume
an RCDMA system with Ri = 100 kbps for all i ∈ {1, ..., K}.
The efficiency-function chosen is f(x) = (1 − e−x)M with
M ∈ {2, 5, 10, 20, 50, 100}. The corresponding values for
β∗(M) are respectively 1.25, 2.66, 3.61, 4.51, 5.65, 6.47. Note
that M = 100 is a typical value of the number of symbols
per packet in a cellular system whereas the choice of small
values for M is more typical in sensor networks measuring
a temperature field (low data rates). Fig. 4 represents the
quantity wSIC

wSUD − 1 in percentage as a function of the spectral
efficiency α = K

N for SNR[dB] = 6 and random decoding
order. The asymptotes αmax = 1

β∗(M) + 1
N are indicated by

(red) dotted lines. The gains are particularly significant when
the system load is relatively high i.e., when there is a signifi-
cant amount of interference to be removed after despreading.
In fact, when K−1

N β∗ → 1− the non-cooperative game
becomes dramatically inefficient since the transmit powers at
the equilibrium diverge; here, once again we recall that we
assume a non-saturated NE at which the users do not exploit
all their power. Otherwise, a user who would saturate his
power constraint would maximize his utility by transmitting at
Pmax

i . Fig. 3 represents the same type of comparison for the
Stackelberg and non-cooperative games. The corresponding
results have been obtained by assuming the same scenario just
described for Fig. 4 and a random choice of the leader. We
observe the same behavior for the relative performance gain,
which is in part due to the fact that the non-cooperative game
is not designed to operate at a load close to the maximal
admissible system load i.e., αmax = K−1

N β∗. If the load is
small or/and the packets are long, the gains brought by the
Stackelberg approach are smaller but reasonably high taking
into account the additional signaling required. If better gains
have to be obtained, the proposed approach can be extended by
choosing a group of leaders and a group of followers. In this
respect we have shown in Sec. III that, in this case, whatever
the channel gain, any follower will always perform better than
a follower in terms of energy-efficiency (since any leader of
the leading group gets an SINR equal to γ∗ and any follower
of the other group gets an SINR equal to β∗) and have verified
by simulations that there exists an optimal fraction of followers
(or leaders) that maximizes social welfare. Note that the gain
in terms of individual utilities is easy to deduce from our
simulations as we assume a simple scenario where the users
have different fading gains but same path losses, the relative
gain for each user coincides with the relative gain for the
network since the utilities are averaged over the fading gains
∀i ∈ {1, ..., K}, E

[
wSIC

wSUD − 1
]

= E
[

uSIC
i

uSUD
i

− 1
]
.
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Fig. 1. Influence of the decoding order on the social welfare.
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Fig. 2. Influence of the decoding order on the equivalent virtual MIMO
network energy efficiency.

VII. CONCLUSION

We have analyzed the effect of hierarchy in energy-efficient
power control games both on the individual user and overall
network performance. The existence and uniqueness of equi-
libria in the considered games is insured under reasonable
assumptions. In fact, when assuming SIC at the receiver
the existence and uniqueness of an NE is always guaran-
teed. We have shown that it is also possible to characterize
completely and analytically the efficiency of these equilibria.
Compared to most existing analyses conducted in other fields
for which game theory is applied, some unusual results
have been obtained. In particular it is shown that: both the
leader and followers benefit from hierarchy; following is more
energy-efficient than leading. Another interesting result is that,
when introducing a super-leader (the receiver) in both games
considered, the best strategy of the super-leader is strongly
related to the choice of the global network efficiency measure.
For example, the best decoding order for the social welfare
corresponds to the worse decoding order for the EVMN. This
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shows that implementing a SIC with a random decoding order
has two desirable features: if the decoding order is generated
from an external source (e.g., an FM signal) there is no
additional signaling; choosing the decoding order randomly
allows the network to obtain performance gains less dependent
on the performance index. Also, after optimization of the
social welfare, the super-leader obtains that the users who
were “rich” in terms of link quality are now even “richer”:
this shows that social welfare can be an unfair measure
of energy-efficiency of the network. To conclude we would
like to mention possible extensions of the presented work:
Introduce the concept of classes of leaders and followers to
optimize the fraction of followers in the network (e.g., the
number of cognitive terminals); Analyze the impact of channel
uncertainty on the users’ behavior and individual performance;
in particular, it would be useful to refine our analysis by
considering a non-perfect SIC.

APPENDIX A
PROOF OF PROPOSITION 2

Using the utility function defined by Eq. (3), we obtain from
Eq. (4) that for all pi, the optimal decision of a follower j �= i,
given the power of the leader, is to choose the power

pSE
j (pi) =

β∗

1 − (K − 2)β∗
σ2 + pi|hi|2

|h2
j |

. (35)

This equation is given by a non-cooperative game among
followers where the power of the leader is included in the
noise. Note that the (K−2)β∗ corresponds to the interference
generated by the followers k ∈ {1, ..., K} for which k �= i
and k �= j. Plugging pSE

j (pi) into the utility expression for
user i, we obtain:

ui(pi) =
Rif

[
pi|hi|2(1−(K−2)β∗)

β∗pi|hi|2(K−1)+σ2(1+β∗)

]
pi

� Rif [s(pi)]
pi

(36)
where we use the function s(pi) to refer to the
SINR of the leader. We have that pSE

i has to verify
pSE

i s′(pSE
i )f ′ [s(pSE

i )
]

= f
[
s(pSE

i )
]
. This equation is equiv-

alent to finding pi such that

s(pi)
[
1 − (K − 1)β∗

1 − (K − 2)β∗ s(pi)
]

f ′ [g(pi)] = f [g(pi)] ,

(37)
since pig

′(pi) = g(pi)
[
1 − (K−1)β∗

1−(K−2)β∗

]
.

Denote for simplicity by x the quantity
x � pi|hi|2(1−(K−2)β∗)

β∗pi|hi|2(K−1)+σ2(1+β∗) = s(pi). Studying the
existence and uniqueness issues for pi is equivalent
to analyzing those of x0 such that φ(x0) = 0 with

φ(x) = x
[
1 − (K−1)β∗

1−(K−2)β∗ x
]
f ′(x) − f(x) where f have all

the properties mentioned in [19] i.e.,
• f is continuous over [0, +∞) with f(0) = 0 and

lim
x→+∞ f(x) = const. Recall that const = 1 in [8];

• ∀x ≥ 0, f ′(x) ≥ 0;
• as f is S-shaped we can define an xc such that ∀x ≤

xc, f ′′(x) ≥ 0 and ∀x ≥ xc, f ′′(x) ≤ 0;
• lim

pi→0
ui(pi) = 0.

Therefore our problem boils down to knowing the sign of
φ′(x) for x ≥ 0.
Existence of x0. We know that φ(0) = 0 and ∀x ≥

(K−1)β∗

1−(K−2)β∗ , φ(x) < 0. Therefore if we can prove that φ is

locally strictly positive on the open interval ]0, (K−1)β∗

1−(K−2)β∗ [
the existence of x0 will be guaranteed. A sufficient con-
dition for the existence of x0 is f ′′(0)

f ′(0) ≥ 2 (K−1)β∗

1−(K−2)β∗ .

To check this use φ′′(x) = −2 (K−1)β∗

1−(K−2)β∗ f ′(x) + f ′′(x) +

x
[
−4 (K−1)β∗

1−(K−2)β∗ f ′′(x) + (1 − (K−1)β∗

1−(K−2)β∗ x)f ′′′(x)
]

and call

for the Taylor-Lagrange theorem: there exists c ∈]0, x[ such
that φ(x) = φ′′(0)x2

2 + φ′′′(c) c3

6 . The quantity c3

x2 ≤ x can
be made arbitrary small in the neighborhood of zero. The
proposed sufficient condition insures the convexity of φ and
φ is therefore locally strictly positive.

Uniqueness of x0. It follows from the existence and the
fact that φ is assumed to have a single stationary point in the
interval ]0; γ∗[.
Determination of the powers at the SE. Knowing x0 = γ∗ we
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obtain pSE
i by using the reciprocal function of s, i.e., pSE

i =
s−1(x0) which gives

pSE
i =

σ2

|hi|2
γ∗(1 + β∗)

1 − (K − 1)γ∗β∗ − (K − 2)β∗ . (38)

From Eq.(35), we obtain the power for follower j �= i:

pSE
j = pSE

j (pSE
i ) =

β∗

|hj |2
σ2 + σ2 γ∗(1+β∗)

1−(K−1)γ∗β∗−(K−2)β∗

1 − (K − 1)γ∗β∗ − (K − 2)β∗

=
σ2

|hj |2
β∗(1 + γ∗)

1 − (K − 1)γ∗β∗ − (K − 2)β∗ .

APPENDIX B
PROOF OF PROPOSITION 9

Let pi
tot be the total power at the equilibrium when user i

is leader. Then for all j �= i,

v(i) − v(j) =

(Rj−Ri)[f(β∗)−f(γ∗)]+v(j)
σ2(β∗−γ∗)

(
1

|hi|2
− 1

|hj |2
)

1−(K−1)β∗γ∗−(K−2)β∗
pi

tot
.

(39)

From the definition of v we have v(i) =
Rif(γ∗)+

∑
j �=i Rjf(β∗)

pi
tot

.
Thus

v(i)pi
tot − v(j)pj

tot = (Rj − Ri) [f(β∗) − f(γ∗)] . (40)

On the other hand we have that

pj
tot − pi

tot =
∑

k

pSE
k (j ≡ leader) −

∑
k

pSE
k (i ≡ follower)

=
σ2 (γ∗ − β∗)

(
1

|hj|2 − 1
|hi|2

)
1 − (K − 1)β∗γ∗ − (K − 2)β∗ , (41)

which can be rewritten as

pj
tot = pi

tot +
σ2(γ∗ − β∗)

(
1

|hj |2 − 1
|hi|2

)
1 − (K − 1)β∗γ∗ − (K − 2)β∗ . (42)

Plugging the latter expression of pj
tot in (40), we obtain

pi
tot(v(i) − v(j)) =

(Rj − Ri) [f(β∗) − f(γ∗)] + v(j)
σ2(β∗−γ∗)( 1

|hj |2 − 1
|hi|2

)

1−(K−1)β∗γ∗−(K−2)β∗ .
(43)

Therefore, we finally have that v(i) ≥ v(j) if and only if

v(j)
σ2(β∗−γ∗)

(
1

|hj |2 − 1
|hi|2

)
1−(K−1)β∗γ∗−(K−2)β∗

≥ (Ri − Rj) [f(β∗) − f(γ∗)] .
(44)
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