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ABSTRACT 

In the current paper, we propose the use of a multivariate skew-normal (MSN) distribution 

function for the latent psychological constructs within the context of an integrated choice and 

latent variable (ICLV) model system. The multivariate skew-normal (MSN) distribution that we 

use is tractable, parsimonious in parameters that regulate the distribution and its skewness, and 

includes the normal distribution as a special interior point case (this allows for testing with the 

traditional ICLV model). Our procedure to accommodate non-normality in the psychological 

constructs exploits the latent factor structure of the ICLV model, and is a flexible, yet very 

efficient approach (through dimension-reduction) to accommodate a multivariate non-normal 

structure across all indicator and outcome variables in a multivari8ate system through the 

specification of a much lower-dimensional multivariate skew-normal distribution for the 

structural errors. Taste variations (i.e., heterogeneity in sensitivity to response variables) can also 

be introduced efficiently and in a non-normal fashion through interactions of explanatory 

variables with the latent variables. The resulting skew normal ICLV (SN-ICLV) model we 

develop is suitable for estimation using Bhat’s (2011) maximum approximate composite 

marginal likelihood (MACML) inference approach. The proposed SN-ICLV model is applied to 

model bicyclists’ route choice behavior using a web-based survey of Texas bicyclists. The results 

reveal evidence for non-normality in the latent constructs. From a substantive point of view, the 

results suggest that the most unattractive features of a bicycle route are long travel times (for 

commuters), heavy motorized traffic volume,  absence of a continuous bicycle facility, and high 

parking occupancy rates and long lengths of parking zones along the route.  

 

Keywords: Multivariate skew-normal distribution, multinomial probit, ICLV models, MACML 

estimation approach, bicyclist route choice.  
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1. INTRODUCTION 

Economic choice modeling has continually seen improvements and refinements in specification, 

partly because of the availability of new techniques to estimate models. One such development is 

the incorporation of random taste heterogeneity (i.e., taste variations in response to explanatory 

variables) across decision makers using discrete (non-parametric) or continuous (parametric) or 

mixture (combination of discrete and continuous) random distributions for model coefficients. 

Such a specification also leads to correlations across alternative utilities when one or more 

random coefficients appear in the utility specifications of multiple alternatives. Early examples 

included studies by Revelt and Train (1996) and Bhat (1997), and there have now been many 

applications of this approach, using (primarily) latent-class multinomial logit and mixed 

multinomial logit formulations. A second development is the explicit consideration of latent 

psychological constructs (such as attitudes, perceptions, values and beliefs) within the context of 

economic choice models, which has the advantage (over the random taste heterogeneity 

approach) that it imparts more structure to the underlying choice process based on theoretical 

concepts and notions drawn from the psychology field. Additionally, it provides the opportunity 

to efficiently introduce random taste variations and the concomitant correlations across 

alternative utilities (we will come back to this latter point, which we believe has been less 

discussed and less exploited in the literature to date). This second development, commonly 

referred to as integrated choice and latent variable (ICLV) models (Ben-Akiva et al., 2002, and 

Bolduc et al., 2005), may be viewed as a variation of the traditional structural equation methods 

(SEMs) (see, for example, Muthen, 1978 and Muthen, 1984) to accommodate  an unordered-

response outcome. Specifically, the traditional SEM includes a structural equation model for the 

latent variables (as a function of exogenous variables) as well as a measurement equation model 

that relates latent variables to observed continuous, binary, or ordered-response indicator 

variables. The ICLV model, conceptually speaking, adds an unordered-response outcome 

variable that may be considered as another indicator variable in the measurement component of 

the traditional SEM (except that the measurement component typically does not include 

exogenous variables, while the unordered-response choice variable is modeled as a function of 

exogenous variables).  

Another area of intense research in the recent past, but originating more from the 

statistical field, is the consideration of non-normal distributions in modeling data.  This has been 
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spurred by the increasing presence of multi-dimensional data that potentially exhibit non-normal 

features such as asymmetry, heavy tails, and even multimodality. Parametric approaches to 

accommodate non-normality span the gamut from finite mixtures of normal distributions to 

skew-normal distributions (and more general skew-elliptical distributions) to mixtures of skew-

normal distributions (and mixtures of more general skew-elliptical distributions). Some recent 

applications include Pyne et al. (2009), Lachos et al. (2010), Contreras-Reyes and Arellano-

Valle (2013), Riggi and Ingrassia (2013), Lin et al. (2013), and Vrbik and McNicholas (2014). 

Many of these recent studies use either a multivariate skew-normal or a skew-t distribution as the 

basis for accommodating non-normality, with different proposals on how to characterize these 

skew distributions (see Lee and McLachlan (2013) for a recent review and synthesis of the many 

different proposals). In the context of the multivariate skew-normal distribution, broadly 

speaking, there are two forms – restricted and unrestricted, with what Lee and McLachlan 

characterize as “extended” and “generalized” being relatively minor generalizations of the 

restricted and unrestricted forms. However, it is well recognized now that the underlying basis 

for all of the different proposals for the multivariate skew-normal distribution originate in the 

pioneering work of Azzalini and Dalla Valle (1996). Arellano-Valle and Azzalini (2006) 

provided a unified framework to characterize the many other proposals since Azzalini and Dalla 

Valle (1996), and showed how their unified skew-normal (SUN) distribution includes all other 

proposals as special cases. Thus, in this research, we will maintain notations that correspond to 

the SUN distribution. 

In the current paper, we bring together the two developments discussed above – the ICLV 

model structure and the treatment of non-normality through a multivariate skew-normal or MSN 

distribution specification. In particular, we allow the latent constructs in the ICLV model to be 

skew-normal. After all, there is no theoretical basis for specifying these constructs as normal (as 

is typically assumed in the literature); thus, there is substantial appeal in specifying a more 

general non-normal specification that is then characterized empirically.  To our knowledge, this 

is the first such ICLV model proposed in the econometric literature, which has several important 

features. First, it recognizes the very real possibility that latent variables are non-normally 

distributed after conditioning on exogenous variables. Imposing normality when the structural 

errors in the latent variable relationship with exogenous variables are non-normal can render the 

parameter estimates inconsistent in the measurement equations corresponding to binary or 
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ordinal indicators, as well as in the unordered outcome model (this is because of the non-linear 

nature of the relationship with the latent variable; see Geweke and Keane, 1999, Caffo et al., 

2007, and Wall et al., 2012). Of course, this inconsistency will permeate into the coefficients of 

the structural component (relating the latent variables to exogenous variables) because these 

structural coefficients are being implicitly estimated through the relationship embedded in the 

measurement equations. Incorrectly imposing normality will also lead, in general, to inefficient 

estimation in all of the ICLV model components and can lead to incorrect inferences. Second, 

our proposal to include non-normality exploits the latent factor structure of the ICLV model. 

That is, our approach constitutes a flexible, yet very efficient approach (through dimension-

reduction) to accommodate a multivariate non-normal structure across all indicator and outcome 

variables through the specification of a much lower-dimensional multivariate skew-normal 

distribution for the structural errors. This leads to parsimony in the additional parameters 

introduced because of non-normality. Third, taste variations (i.e., heterogeneity in sensitivity to 

response variables) can also be introduced efficiently and in a non-normal fashion through 

interactions of explanatory variables with the latent variables. Thus, for example, in a bicyclist 

route choice model, bicyclists who are more safety conscious (say a latent variable) than their 

peers may be more sensitive to motorized traffic volumes and on-street parking. By interacting 

safety consciousness with exogenous variables corresponding to motorized traffic  volumes and 

on-street parking, we then allow non-normal taste variation in response to both these exogenous 

attributes, but originating from a single skew-normal distribution associated with the safety 

conscious latent variable. Fourth, the multivariate skew-normal (MSN) distribution that we use 

has properties that make it an ideal one for incorporation into the ICLV model. In particular, the 

MSN distribution is tractable, parsimonious in parameters that regulate the distribution and its 

skewness, and includes the normal distribution as a special interior point case (this allows for 

testing with the traditional ICLV model). It also is flexible, allowing a continuity of shapes from 

normality to non-normality, including skews to the left or right and sharp versus flat peaking 

toward the mode (see Bhat and Sidharthan, 2012). Besides, the MSN generates skew by shifting 

mass to the left or right of the mean of the normal  distribution, thus generating asymmetry and 

flexibility, but keeping  the tails thin as in the normal density function (which makes estimation 

of the parameters of the MSN distribution easier than other asymmetric distributions such as the 

log-normal that have long tails). Additionally, the MSN distribution immediately accommodates 
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correlation across the latent variables because of its multivariate structure. Finally, the MSN 

distribution has specific properties that enable the use of Bhat’s (2011) maximum approximate 

composite marginal likelihood (MACML) inference approach for estimation of the resulting 

skew-normal ICLV (or SN-ICLV) model. This substantially simplifies the estimation approach 

because the dimensionality of integration in the composite marginal likelihood (CML) function 

that needs to be maximized to obtain a consistent estimator (under standard regularity 

conditions) for the SN-ICLV model parameters is independent of the number of latent variables 

and the number of ordinal indicator variables in the model system. 

The rest of this paper is structured as follows. Section 2 presents a general discussion of 

the multivariate skew normal distribution and some of its properties that are particularly relevant 

to this paper. Section 3 presents the SN-ICLV model formulation and estimation approach. 

Section 4 presents an application of the proposed SN-ICLV model to bicyclist route choice, and 

Section 5 summarizes the findings of the paper. 

 

2. THE MULTIVARIATE SKEW-NORMAL DISTRIBUTION FUNCTION  

2.1. Overview 

As indicated earlier, in this paper, we use the multivariate skew distribution (MVSN) version 

originally proposed by Azzalini and Dalla Valle (1996) for a number of reasons (this is also 

referred to by Lee and McLachlan, 2013 as the restricted multivariate skew normal distribution, 

though we will drop the label “restricted” in the rest of this paper for ease in presentation). 

Specifically, the MVSN version used here is (1) efficient in the number of additional parameters 

to be estimated, (2) allows independence between skew-normally distributed and normally-

distributed elements in a multivariate vector (useful in the ICLV context where the structural 

equation errors of the latent psychological constructs are considered independent of the 

measurement equation errors), (3) is closed under any affine transformation of the skew-

normally distributed vector (is the key to the MACML estimation of the skew-ICLV model), and 

(4) is closed under the sum of independent skew-normally distributed and normally distributed 

vectors of the same dimensions (is the key to mixing non-normally distributed latent variables 

with normally distributed measurement equation errors). At the same time, the cumulative 

distribution function of an L-variate skew normally distributed variable of the Azzalini and Dalla 
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Valle type requires only the evaluation of an )1( L -dimensional multivariate cumulative 

normal distribution function. 

 Consider an MVSN distributed random variable vector )',,,,( 321 L η  with an 

)1( L -location parameter vector L0  (that is, an )1( L  vector with all elements being zero) and 

an )( LL  -symmetric positive-definite correlation matrix *Γ . Then, the MVSN distribution for 

η  implies that η is obtained through a latent conditioning mechanism on an )1( L -variate 

normally distributed vector ,),( 1
*
0 *CC where *

0C  is a latent )11(  -vector and *C 
1  is an )1( L -

vector: 
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ρ  is an )1( L -vector, each of whose elements may lie between –1 and +1. The matrix *
Ω  is 

also a positive-definite correlation matrix. Then, )0(| *
01   C*Cη  has the standard multivariate 

skew-normal (SMVSN) density function shown below: 
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where (.)L  and (.)  represent the standard multivariate normal density function of L 

dimensions and the standard univariate cumulative distribution function, respectively. We write 

).(SMVSN~ *
Ωη  To obtain the density function of the non-standardized multivariate skew-

normal distribution, consider the distribution of  .ωηY  ζ  This MVSN distribution for Y  

implies that Y  is obtained through a latent conditioning mechanism on an )1( L -variate 

normally distributed vector ,),( 10 CC where 0C  is a latent )11(  -vector and 1C  is an )1( L -

vector: 
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Specifically, we write ),,,(MVSN~ *ΩωY ζ  and the conditioning-type stochastic representation 

of Y  is obtained as )0(| 01  CCY . The probability density function of the random variable Y 
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may be written in terms of the SMVSN density function above as (see Bhat and Sidharthan, 

2012): 

),(where),;(
~

),,;(

1

1

ζζ 
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and j  is the jth diagonal element of the matrix ω .   

The cumulative distribution function for η may be obtained as: 
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The corresponding cumulative distribution function for Y is: 
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2.2. Properties of the MVSN Distribution 

The close correspondence of the MVSN distribution with the normal distribution leads to several 

desirable properties. The three properties that are key to the formulation of the SN-ICLV model 

proposed in this paper are listed below. The proofs for the first two properties are available in 

Arellano-Valle and Azzalini (2006) and Bhat and Sidharthan (2012). The proof for the third 

property, which is critical for the current paper, is based on the marginal and conditional 

distribution properties of the multivariate normal distribution. 

  

Property 1: The sum of a MVSN distributed vector Y (dimension 1L ) )],,(MVSN~[ *ΩωY ζ  

and an independently distributed multivariate normally (MVN) distributed vector W  

(dimension 1L ) )] ,[ ΣMVN(μ~W  is still MVSN distributed: 

),
~

 ,~ ,(MVSN~ *ΩωμWY  ζ  where , 
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Ωρ

ρ
Ω 11*

*

* 






 
 

  

ωρ)ω(ρ 1 ~~ , and ω~  is the diagonal matrix of standard deviations of Ω
~
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Property 2: The affine transformation of the MVSN distributed vector Y (dimension 1L ) 

)] , ,(MVSN~[ *ΩωY ζ  as BYa  , where B  is a )( Lh   matrix, is also an MVSN distributed 

vector of dimension 1h : 

)],
~

 ,~ , (MVSN~ *ΩωBaBYa  ζ  where ,
~

,~~~~
,~~

~
~

BBΩΩ)ω(Ω)ω(Ω
Ωρ

ρ1
Ω 11*

*
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, ~~ ρBω)ω(ρ 1  and ω~  is the diagonal matrix of standard deviations of Ω
~

. 

 

Property 3: Partition the MVSN vector Y  into sub-vectors 1Y  of dimension 11L  and 2Y  of 

dimension 12L , so that the conditioning type representation for Y  (of dimension 

)1)( 21  LLL in Equation (3) may be written as follows: 
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. A similar result holds for the marginal distribution of 2Y . 

The proofs for the marginal distributions are straightforward given the conditioning 

representation above. For future reference, we also note that, with a re-arrangement of the 

vectors 210 and,, CCC  in Equation (7) and using the properties of the multivariate normally 

distributed vector, the conditional density function of 2C and0C  given 11 yC   is also 

multivariate normally distributed. Specifically, define the following: 
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The above property will be used to derive the conditional (cumulative) distribution function of 

.2Y  given 1Y , which will be important in the estimation of the proposed SN-ICLV model (as 

discussed later in Section 3.4, we are not aware of any earlier and explicit derivation  of the 

conditional distribution function of a sub-vector of an MVSN distributed vector given another 

subvector). 

 

3. THE SN-ICLV MODEL FORMULATION 

There are three components of the SN-ICLV model: (1) the latent variable structural equation 

model; (2) the latent variable measurement equation model; and (3) the choice model. In the 

following presentation, we will use the index l for latent variables (l=1,2,…,L), and the index i 

for alternatives (i=1,2,…,I). In the current set-up, we assume a stated preference exercise (as in 

the empirical context of the paper) in which each respondent provides a single set of indicators 

(of the latent variables) in the measurement equation model, but is presented with multiple 

choice scenarios for the choice component estimation. So, we will use the index t for choice 

occasion (t=1,2,…,T). Note also that the presence of individual-specific latent variables 

immediately engenders a covariance pattern among the multiple choice instances of the same 

individual, because the individual-specific (stochastic and MVSN-distributed) latent variables 

enter into the utility functions of each choice instance from the same individual. Finally, we will 

use the index q for individuals (q=1,2,…,Q), though, as appropriate and convenient, we will 

suppress this index in parts of the presentation.  

 

3.1. Latent Variable Structural Equation Model 

For the latent variable structural equation model, we will assume that the latent variable *
lz  is a 

linear function of covariates as follows: 

,*
ll ηz  wαl       (9) 

where w  is a )1
~

( D  vector of observed individual-specific covariates (not including a 

constant), lα  is a corresponding )1
~

( D  vector of coefficients, and l  is a random error term. In 

our notation, the same exogenous vector w  is used for all latent variables; however, this is in no 

way restrictive, since one may place the value of zero in the appropriate row of lα  if a specific 
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variable does not impact *
lz . Next, define the )

~
( DL  matrix ),...,( 21  Lαααα , and 

)1( L vectors ),...,,( **
2

*
1  Lzzz*z  and )'.,,,,( 321 L η  To allow correlation among the 

latent variables, η  is assumed to be standard multivariate skew-normally distributed: 

),(SMVSN~ *
Ωη 







 
 Γρ

ρ
Ω

1* , where Γ is a correlation matrix of size )( LL  (we assume 

the matrix Γ to be a correlation matrix rather than a covariance matrix due to identification 

considerations as discussed later in the paper). In matrix form, Equation (9) may be written as: 

η αwz* .          (10) 

 

3.2. Latent Variable Measurement Equation Model 

For the latent variable measurement equation model, let there be H continuous variables 

) ..., , ,( 21 HSSS with an associated index h ) ..., ,2 ,1( Hh  . Let hhhh δS  *zd
 
in the usual 

linear regression fashion, where hδ  is a scalar constant, hd  is an )1( L vector of latent variable 

loadings on the hth continuous indicator variable, and h  is a normally distributed measurement 

error term. Stack the H continuous variables into a )1( H vector S, the H constants hδ  into a 

)1( H vector δ , and the H error terms into another )1( H  vector ) ..., , ,( 21 Hξ . Also, let 

sΣ  be the covariance matrix of ξ . And define the )( LH   matrix of latent variable loadings 

  .,...,, 21
 Hdddd  Then, one may write, in matrix form, the following measurement equation for 

the continuous indicator variables: 

ξdzδS *  .          (11) 

Similar to the continuous variables, let there also be G ordinal indicator variables, and let 

g be the index for the ordinal variables ) ..., ,2 ,1( Gg  . Let the index for the ordinal outcome 

category for the gth ordinal variable be represented by gj . For notational ease only, assume that 

the number of ordinal categories is the same across the ordinal indicator variables, so that 

}. ..., ,2 ,1{ Jjg   Let *
gS  be the latent underlying variable whose horizontal partitioning leads to 

the observed outcome for the gth ordinal indicator variable, and let the individual under 

consideration choose the gn th ordinal outcome category for the gth ordinal indicator variable. 
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Then, in the usual ordered response formulation, we may write the following for the individual: 

gggg δS ~~~*  *zd ,
 gg nggng S ,

*
1,   , where gδ

~
 is a scalar constant, gd

~
 is an )1( L vector of 

latent variable loadings on the underlying variable for the gth indicator variable, and g
~

  is a 

standard normally distributed measurement error term (the normalization on the error term is 

needed for identification, as in the usual ordered-response model; see McKelvey and Zavoina, 

1975). Note also that, for each ordinal indicator variable, 

  JgggNNgggg gg ,1,0,1,2,1,0, and,0  ,  ;...  . For later use, let 

.),...,,(and,),...,,( 211,3,2,   Gg ψψψψψ Jggg   Stack the G underlying continuous 

variables *
gS  into a )1( G vector *S  and the G constants gδ

~
 into a )1( G vector δ

~
. Also, 

define the )( LG   matrix of latent variable loadings   ,
~

,...,
~

,
~~

21


 Gdddd  and let *s

Σ  be the 

correlation matrix of )
~

 ..., ,
~

 ,
~

(
~

21 Gξ . Stack the lower thresholds  Gg
gng  ..., ,2 ,11, 

 
into a 

)1( G  vector lowψ  and the upper thresholds  Gg
gng  ..., ,2 ,1,   into another vector upψ . 

Then, in matrix form, the measurement equation for the ordinal indicators may be written as: 

up
*

low
** ψSψξzdδS   ,

~~~
.        (12)  

Define    .)
~

,(and,)
~

,( ,)
~

,( , , 
 ξξξdddδδδSSS *


 Then, the continuous parts of 

Equations (11) and (12) may be combined into a single equation as: 



























**

*

)(Var and ,~~)E(with,
sss

sss

ΣΣ

ΣΣ
Σ '


ξ

zdδ 

dzδ
sξzdδS

*

*
* .     (13) 

 

3.3. Choice Model 

Assume a typical random utility-maximizing model, and let i be the index for alternatives (i =1, 

2,3,…,I). Note that some alternatives may not be available to some individuals during some 

choice instances, but the modification to allow this is quite trivial. So, for presentation 

convenience, we will assume that all alternatives are available to all individuals at all choice 

instances. The utility for alternative i at time period t (t=1,2,…,T) for individual q is then written 

as (suppressing the index q):  
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,)( titititi εU  *
i zγxβ    (14) 

where tix is a (D×1)-column vector of exogenous attributes. β  is a (D×1)-column vector of 

corresponding coefficients, ti  is an )( LN i  -matrix of exogenous variables interacting with 

latent variables to influence the utility of alternative i, iγ  is an )1( iN -column vector of 

coefficients capturing the effects of latent variables and its interaction effects with other 

exogenous variables, and ti is a normal error term that is independent and identically normally 

distributed across individuals and choice occasions. The notation above is very general. Thus, if 

each of the latent variables impacts the utility of alternative i purely through a constant shift in 

the utility function, ti  will be an identity matrix of size L, and each element of iγ  will capture 

the effect of a latent variable on the constant specific to alternative i. Alternatively, if the first 

latent variable is the only one relevant for the utility of alternative i, and it affects the utility of 

alternative i through both a constant shift as well as an exogenous variable, then iN =2, and ti  

will be a )2( L -matrix, with the first row having a ‘1’ in the first column and ‘0’ entries 

elsewhere, and the second row having the exogenous variable value in the first column and ‘0’ 

entries elsewhere.1  

Next, let the variance-covariance matrix of the vertically stacked vector of errors 

]) ..., , ,([ 21  tIttt εεεε  be Λ  and let ) vector1( ) ..., , ,( 21  TITεεεε .
 
The covariance of ε  is 

ΛIDEN T , where TIDEN  is an identity matrix of size T.2  Define the following vectors and 

matrices: matrix), ( ),...,,( 21 DIItttt  xxxx matrix), ( ),...,,( 21 DTI  Txxxx  

),...,,( 21  tIttt UUUU   vector)1( I , ),...,,( 21  TUUUU ) vector1( TI , 

                                                            
1  In the empirical context of the current paper, we use unlabeled alternatives and thus the individual-specific 
demographic and latent variables are introduced purely as interaction terms to alternative-specific attributes. In the 
notation of Equation (14), individual-specific demographic variables are introduced by interacting them with 
alternative attributes as part of the xti vector, while the individual-specific latent variables are introduced by 
specifying φti as a matrix containing only alternative-specific attributes (that is, by interacting the latent variables 
with alternative-specific attributes with no constant shift effect, because of the unlabeled nature of the alternatives). 
Indeed, in this case, φti is of the same size across all alternatives, and γi is the same across all alternatives. However, 
in the presentation here, we will maintain a more general notation that includes the case of labeled alternatives.  
2 For the unlabeled alternatives case of our empirical context, there is no meaning to having a general covariance 
matrix Λ  for the error terms across alternatives. Thus, Λ is specified to be an identity matrix of size I. But, for 
completeness, we will formulate the model with a general Λ matrix that may be specified for labeled alternatives.  
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 matrix, ),...,, 21  T  











LNT
I

i
i

1

. Also, define the 








 


I

i
iNI

1

matrix γ , which is initially filled with all zero values. Then, position the )1( 1N  

row vector 1γ   in the first row to occupy columns 1 to 1N , position the )1( 2N  row vector 2γ   

in the second row to occupy columns 1N +1 to ,21 NN   and so on until the )1( IN  row vector 

Iγ   is appropriately positioned.  Then, in matrix form, we may write the following equation for 

the vector of utilities across all choice instances of the individual: 

)matrix ()(where,)( LTITT   γλελzxβεzγxβU ** IDENIDEN .    (15)                            

As in the case of any choice model, for the case of labeled alternatives, one of the 

alternatives has to be used as the base when introducing alternative-specific constants and 

variables that do not vary across the I alternatives. Also, only the covariance matrix of the error 

differences is estimable. Taking the difference with respect to the first alternative, only the 

elements of the covariance matrix Λ


 of ),,...,,( 32 I 
 

where 1  ii  ( 1i ), are 

estimable. Λ  is constructed from Λ


 by adding an additional row on top and an additional 

column to the left. All elements of this additional row and column are filled with values of 

zeroes. In addition, an additional scale normalization needs to be imposed on Λ


, which may be 

accomplished by normalizing the first element of Λ


 to the value of one. Third, in MNP models, 

when only individual-specific covariates are used, exclusion restrictions are needed in the form 

of at least one individual characteristic being excluded from each alternative’s utility in addition 

to being excluded from a base alternative (but appearing in some other utilities; (see Keane, 1992 

and Munkin and Trivedi, 2008).  

 

3.4. Overall Model System Identification and Estimation  

Let θ  be the collection of parameters to be estimated:  

, ]Vech( ),Vech( , ),Vech( , ),(Vech,),Vech( ),(Vech),Vech([ )ΛγΣψδρΓαθ


βd
 

where 

)(Vech α , )Vech(ρ , )(Vech d


, and )(Vech γ  represent vectors of the elements of the α , ρ , d


, 

and γ , respectively, to be estimated, and Γ)(Vech  represents the vector of the non-zero upper 
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triangle elements of Γ (and similarly for other covariance matrices). For future use, define 

,TIGHE  and  .1)1(
~  TIGE  

To develop the reduced form equations, we define some additional notations as follows:  

matrix) ( ),( LE  λdπ


, 

 vector)1( ),(  Eεξ


 ,        

where  Σ0
Λ0

0Σ
0 ,MVN~,MVN~ EEE






















 . 

Now, replace the right side of Equation (10) for *z  in Equations (13) and (15) to obtain the 

following system: 

ξηdαwdδξηwdδξzdδS *


 )(α        (16)                         

εληαwλxβεηαwλxβεzλxβU *  )( .   (17) 

Next, consider the )1( E  vector   USSU ,


. Define 

        











 πη
αwλxβ

αwdδ
SU



.        (18) 

Then, by successive application of properties 1 and 2 from Section 2.2, we obtain  

),
~

,,
~

( *
~ ΩωMVSN
Γ

B ~SU E                                                                                                        (19) 

where 
  ,

~~
 matrix, )1()1(~~

~1~
   vector,)1(

~
~~

* 1-
Γ

1-
Γ

*

*
ωΓωΓ

Γρ

ρΩ 








 













  EEE
αwλxβ

αwdδ
B



   

,~,
~

~ ρωρΣΓΓ -1
Γ
πππ   and 

Γ
ω~  is the diagonal matrix of the standard deviations of Γ

~
. 

General and necessary identification conditions for ICLV models have yet to be 

developed, but good discussions of sufficiency conditions may be found in Stapleton (1978), Vij 

and Walker (2014), Alvarez-Daziano and Bolduc (2013), and Bhat and Dubey (2014). So we 

will only list the sufficiency conditions here: (1) Identification of each of the ordinal 

measurement equation system and the choice model hold, as discussed in Sections 3.2 and 3.3, 

respectively, (2) Γ  is a correlation matrix, and the measurement equation error term covariance 

matrix Σ


 is strictly diagonal, (3) For each latent construct or variable (that is for each *
lz ), there 

is at least one indicator variable that loads only on that latent variable and no other latent variable 
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(that is, there is at least one factor complexity one indicator variable for each latent variable), (4) 

If a specific variable (or specific interaction variable of an individual-specific attribute and an 

alternative-specific attribute in the case of unlabeled alternatives) impacts the utility of an 

alternative in the choice model through the x  vector, the utility of that alternative not depend on 

any latent variable that contains that specific variable (or specific interaction variable in the case 

of unlabeled alternatives) as a covariate in the structural equation system.  

Next, to estimate the model, we need to develop the distribution of the vector 








  *uSSu ,


, where     ,,...,,,,...,, **
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*
121






 


ttt tImmtmt

** uuu*
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),(*
ttmtitim miUUu

tt
  

and tm  indicates the chosen alternative at choice occasion t.
 
To obtain the vector Su from SU ,  

define a matrix M  of size    TIGHTIGH  *)1( . Fill this matrix with values of zero. 

Then, insert an identity matrix of size HG  into the first HG   rows and HG  columns of the 

matrix M . Next, consider the last TI *)1(   rows and TI  columns of the matrix M . Position a 

block-diagonal matrix in these rows and columns, each block diagonal being of size 

))()( I1-I  and containing the matrix tM , which itself is an identity matrix of size )1( I  with 

an extra column of ‘-1’ values added at the th
tm  column. Then, )(SUSu M , and we can write 

),,,(*)1(
*Ω


ωBMVSN ~Su TIGH  where BB

~
M


 and 

.)( and  ,
~

 ,)( )( ,1 111 πρωρωω
ρ

ρ *

*

*

MMΓMΓΓΓ
Γ

Ω *

*
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                                  (20)                

where ω

 is the diagonal matrix of standard deviation of Γ


.  

In the conditioning representation for MVSN variables (see Section 2), we may write: 

ωΓωΓρω
Γ

ΩΩ * 
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1
where,,

0
MVN~ *

~

1

0 σ
σ

σ

BC EH

C
.                         (21)   

Next, partition Su into a component corresponding to the continuous observed indicators 

(captured in the vector S) and another component corresponding to the continuous latent 

underlying constructs manifested in the form of the ordinal indicators and the utility differentials 

in the choice model: ,)~,(  uSSu  where .])(,)[(~  ** usu  Correspondingly, also partition B


 

into components for the mean of the vectors S  and u~ ,, ~







  uS BBB


 and appropriately 
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partition the covariance elements Γ


 and σ  in Ω : 
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using Equation (21), we may write: 
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Also, using Property 3 in Section 2.2, define the following for a specific value of sS  : 

,),(1Θ),(),(μ ~~~00~~~0 SuSSSuuSS σσBsσBsBBsσ  -1
SuS

-1
S

-1
SuS

-1
S ΓΓΘΓΓΓμΓ


u  

and .~~~~ uS
-1
SuSu ΓΓΓΓΘ 


u  Then, the conditional density function of uC ~0 andC  given sCS   is 

multivariate normally distributed: 
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That is,  

 )(|)~,
~

( ~0, ~0
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hCfC  111
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 )g .               (24) 

Next, supplement the threshold vectors defined earlier as follows:  






   ,,~

*)1( TIlowlow ψψ , 

and  






   TIup *)1(,~ 0ψψup , where TI *)1(   is an 1*)1(  TI -column vector of negative 

infinities, and TI *)1( 0  is another 1*)1(  TI -column vector of zeroes ( lowψ~  and upψ~  are 

1)1
~

( E  vectors). Then the likelihood function may be written as: 
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            (25)                         

where gD~  is the region of integration such that }~~~:~{~ uplow ψψ  ggDg , 

),,;( *
Γ

Ω
S  SS ωBsS 


Sf  is the MVSN density function of dimension H (number of continuous 

indicators in the measurement equation) given by (see Property 3 of Section 2.2): 
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  SS ΓΓ

* ΩΩ  ωωS S .                                                                                                                     (26) 

The denominator in the expression in Equation (25) is given by: 











 


0

0
0

Θ

μ
)(|]0[Prob sCSC  .                                                                                           (27) 

The likelihood function in Equation (25) involves the evaluation of a 1)1(
~  TIGE  

dimensional rectangular integral, which can be cumbersome and difficult as the number of 

ordinal indicators or the number of alternatives or the number of choice occasions per individual 

increases. Hence, we use Maximum Approximate Composite Marginal Likelihood (MACML) 

approach proposed by Bhat (2011), as it only involves the computation of univariate and 

bivariate cumulative distribution functions. 

 

3.5. The MACML Estimation Approach 

The MACML approach, similar to the parent CML approach (see Varin et al., 2011, Lindsay et 

al., 2011, Yi et al., 2011, and Bhat, 2014, for recent reviews of CML approaches), maximizes a 

surrogate likelihood function that compounds much easier-to-compute, lower-dimensional, 

marginal likelihoods. The CML approach, which belongs to the more general class of composite 

likelihood function approaches (see Lindsay, 1988, and Bhat, 2014), may be explained in a 

simple manner as follows. In the SN-ICLV model, instead of developing the likelihood function 

component for the joint probability of the observed ordinal indicators and the observed choice 

outcome conditional on the observed continuous variable vector (the second component of 

Equation (25)), one may compound (multiply) the probabilities of each pair of observed ordinal 

indicators, and each combination of an ordinal indicator with the choice outcome, conditional on 

the observed continuous variable vector. The CML estimator (in this instance, the pairwise CML 

estimator) is then the one that maximizes the resulting surrogate likelihood function. The 

properties of the CML estimator may be derived using the theory of estimating equations (see 

Cox and Reid, 2004, Yi et al., 2011, and Bhat, 2014). Specifically, under usual regularity 

assumptions (Molenberghs and Verbeke, 2005, page 191, Xu and Reid, 2011), the CML 

estimator is consistent and asymptotically normally distributed (this is because of the 
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unbiasedness of the CML score function, which is a linear combination of proper score functions 

associated with the marginal event probabilities forming the composite likelihood; for a formal 

proof, see Xu and Reid, 2011 and Bhat, 2014).  

In the context of the proposed SN-ICLV model, consider the following (pairwise) 

composite marginal likelihood function for an individual q as follows: 
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In the above CML approach, the MVNCD function appearing in the CML function is of 

dimension equal to three for ),Pr( gggg njnj    (corresponding to the probability of each pair 

of observed ordinal indicators), equal to 1I  for );Pr( tgg mnj    (corresponding to each 

combination of an ordinal indicator and the observed choice outcome at a specific time period t), 

and equal to 1)1(2 I  for ),Pr( tt mm   (corresponding to each combination of observed choice 

outcomes at time period t and time period t ).  To write out the CML function explicitly, define 

the following matrices: (1) A selection matrix gtA   (g=1,2,…,G and t=1,2,…,T) of 

dimension EI
~

)1(  : Fill this matrix with values of zero for all elements and position an 

element of ‘1’ in the first row and first column. Then, position an element of ‘1’ in the second 

row and the (g+1)th column.  Also, position an identity matrix of size 1I  in the last 1I  rows 

and columns from 2)1)(1(  tIG   to  1)1(  tIG ; (2) A selection matrix gg N  

( gg , =1,2,…,G, )gg  of dimension E
~

3 : Fill this matrix with values of zero for all elements 

and position an element of ‘1’ in the first row and first column. Then, position an element of ‘1’ 

in the second row and the (g+1)th column, as well as an element of ‘1’ in the third row and the 

( 1g )th column; (3) A selection matrix tt R  ( tt , =1,2,…,T, )tt   of dimension  

EI
~

]1)1(*2[  : Fill this matrix with values of zero for all elements and position an element 

of ‘1’ in the first row and first column. Then, insert an identity matrix of size 1I  in rows 2 to 

1)1( I  and columns 2)1)(1(  tIG  to 1)1(  tIG . Similarly, position another 

identity matrix of size 1I  in the rows 2)1( I  to 1)1(*2 I  and columns 
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2)1)(1(  tIG  to 1)1(  tIG ; (4) EE
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With the above definitions, we may write: 
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where  ),,;( *
Γ

Ω
S  SS ωBsS 


Sf  and  )(|]0[Prob 0 sCS C  are as provided in Equations (26) and 

(27), respectively. 

In the above expression, an analytic approximation approach is used to evaluate the 

MVNCD functions in the second, third, and fourth elements (this analytic approach is embedded 

within the MACML approach of Bhat, 2011). Specifically, the logarithm of Equation (29) is 

computed for each of the individuals q in the sample using the MACML approach 
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( )( log , θqMACMLL ) and the MACML estimator is then obtained by maximizing the following 

function:  

.)(log)(log
1

,



Q

q
qMACMLMACML LL θθ                                                                                             (30) 

The covariance matrix of the parameters θ  may be estimated by the inverse of Godambe’s 

(1960) sandwich information matrix (see Zhao and Joe, 2005).  

   1)()( θθ GVMACML
11 )]()][([)]([  θθθ HJH ,   

where )(θH  and )(θJ  can  be estimated in a straightforward manner at the MACML estimate 

MACMLθ̂  as follows: 
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3.6. Ensuring the Positive-Definiteness of Matrices 

The covariance matrices in the CML function need to be positive definite. This can be assured by 

ensuring that the covariance matrix Θ  in Equation (23) is positive definite, which itself requires 

that 






 
 Γρ

ρ
Ω

1*  in the structural equation system be positive definite and the covariance 

matrix of utility differentials in the choice model, Λ


, also be positive definite. The simplest way 

to ensure the positive-definiteness of these matrices is to use a Cholesky-decomposition and 

parameterize the CML function in terms of the Cholesky parameters (rather than the original 

covariance matrices). For ,*Ω we also need to ensure that the Cholesky decomposition  *Ω
L


  is 

such that  *Ω  is a correlation matrix. This is done by parameterizing the diagonal terms of  *Ω
L


 as 

follows: 
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In the estimation, the Cholesky elements in the matrix *Ω
L


 are estimated, guaranteeing that *Ω  

is indeed a correlation matrix. In addition, the top diagonal element of Λ


 has to be normalized to 

one (as discussed earlier), which implies that the first element of the Cholesky matrix of Λ


 is 

fixed to the value of one. 

4. APPLICATION TO BICYCLIST ROUTE CHOICE 

4.1. Background 

Americans are less dependent on motorized vehicles today and are driving less than in 2005. 

This trend is particularly being led by millennials (those born between 1983 and 2000) who wait 

longer to obtain a driver’s license and who drive significantly fewer miles than previous 

generations of young Americans (see Dutzik and Baxandall, 2013). The decrease in driving, not 

surprisingly, has been associated with an increase in travel by other means of transportation. For 

instance, the number of workers commuting by the bicycle mode has increased by 39 percent 

between 2005 and 2011. At an absolute level, 18 percent of the U.S. population age 16 or older 

rode a bicycle at least once during the summer of 2012, according to the 2012 National Survey of 

Bicyclist and Pedestrian Attitudes and Behavior (Schroeder and Wilbur, 2013). These trends of 

decreasing driving and the increasing use of non-motorized forms of travel has not gone 

unnoticed by planners and policy leaders. In particular, there is increasing attention today on 

designing built environments that promote the use of non-motorized travel modes of 

transportation, as part of an integrated land use-transportation approach to address traffic 

congestion issues (see, for example, Metropolitan Transportation Commission, 2009, and 

Southern California Association of Governments, 2012). This is as opposed to the predominantly 

one-dimensional and resource-intensive solution in the past of building additional roadway 

capacity, which is becoming increasingly more difficult to sustain from a financial and 

environmental perspective.  

Even as transportation professionals view the promotion of non-motorized forms of 

transportation as an element of a multidimensional toolbox of strategies to address traffic 

congestion issues (and consequent air pollution and greenhouse gas emissions considerations),  

health scientists view walking and bicycling as a means to build up a “health capital” from 

physical activity participation. Specifically, it is now well established in the epidemiological 
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literature that physical activity is important for the health and well-being of individuals. In 

addition to reducing the incidence of obesity and its several concomitant adverse mental and 

physical health consequences, physical activity presents benefits even to non-obese and non-

overweight individuals from the standpoint of increasing cardiovascular fitness, improving 

mental health, and decreasing heart disease, diabetes, high blood pressure, and several forms of 

cancer side effects (National Center for Health Statistics, 2010).   

In the context of the above discussion, the empirical focus of this paper is on bicycle 

route choice. This emphasis is motivated by the fact that designing good routes for bicycling 

(with desired facilities along the way) is an important component of promoting bicycling in the 

first place. Besides, with limited funds, policy makers need to identify the best pathways along 

which to invest in bicycle facilities. Additionally, a good knowledge of bicyclist route choice 

decisions can help design vibrant and physically active cities. At its core, route choice entails an 

analysis of how individuals perceive, and trade-off among, a host of route attributes such as 

travel distances, travel times, traffic volumes, terrain grade, parking presence and type (no 

parking allowed or parallel parking or angled parking), speed limits, number of cross-streets, and 

the type and number of traffic control devices along a route.  

To be sure, there have been many studies in the recent past that have examined bicyclist 

route choice decisions. These studies have used revealed preference data (that is, collecting route 

choice in a natural setting and then developing a set of non-chosen alternatives) or stated 

preference data (that is, providing a hypothetical set of two to three routes characterized by 

specific attributes, and asking the individual to make a route choice between the presented 

routes).3 Some recent examples of revealed preference-based bicyclist route choice models 

include Menghini et al., 2010, Hood et al., 2011, Broach et al., 2012, and Rendell et al., 2012), 

while some recent examples of stated preference-based bicyclist route choice models include 

                                                            
3 There are advantages and disadvantages of using revealed preference and stated preference data for bicyclist route 
choice analysis. Revealed preference data are naturalistic and provide information on the actual chosen alternative. 
However, they are relatively cumbersome to collect, provide limited variation in relevant route attributes and also 
require the generation of non-chosen paths (and inappropriate generation of non-chosen paths can lead to biased 
estimation results). Stated preference data are easier to collect, provide variation over a range of potentially relevant 
attributes (since the routes are constructed by the analyst) to provide rich trade-off information, obviate the need to 
generate choice sets, and can examine attributes/attribute levels that are not manifested in current bicycling routes. 
Limitations of stated preference data include comprehension difficulties in the hypothetical scenarios, and 
exaggeration effects to attempt to influence policy decisions. Stinson and Bhat (2003) and Hood et al. (2011) discuss 
the advantages and disadvantages of revealed and stated preference data in more detail. In this paper, as we will 
discuss in the next section, a stated preference survey is used in the analysis.  
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Sener et al., 2009, Caulfield et al., 2012, and Chen and Chen, 2013. These earlier studies have 

made important contributions to our understanding of bicyclist route choice decisions, and have 

underscored the fact that bicyclists do indeed consider a range of route attributes when making 

their route choices (in contrast to the typical practice in travel demand modeling that assumes 

that distance is the sole criterion in bicyclist route choice decisions; see also Menghini et al., 

2010 and Rendell et al., 2012). Earlier studies have also indicated that the valuation of route 

attributes differ according to trip purpose (commuting versus non-commuting) and demographic 

characteristics.  But none of these earlier route choice studies have explicitly considered 

bicycling attitudes and perceptions. In fact, except for Sener et al. (2009) and Chen and Chen 

(2013), earlier studies have not even considered potential taste (sensitivity) variations across 

individuals to route attributes due to unobserved individual characteristics.  For instance, some 

individuals may be avid and intense pro-bicycle enthusiasts (relative to their otherwise 

observationally equivalent peers), and this may translate to increased sensitivity to such route 

operational characteristics as number of cross-streets (because pro-bicyclists may see cross-

streets as a nuisance). Of course, it is also possible that pro-bicycle enthusiasts have a decreased 

sensitivity to the number of cross-streets because they take things in stride. Similarly, some 

bicyclists may be very safety conscious (say an unobserved variable to the analyst) relative to 

their observationally equivalent peers, which can then get manifested in the form of increased 

sensitivity to on-street parking attributes, bikeway facility characteristics (such as a continuous 

versus discontinuous facility), and roadway functional characteristics (such as motorized traffic 

volumes along route and speed limit on roadway). But even Sener et al. (2009) and Chen and 

Chen (2013) consider the effects of unobserved characteristics only implicitly, by allowing 

continuous (in the case of Sener et al., 2009) or discrete (in the case of Chen and Chen, 2013) 

random distributions to capture sensitivity variations across individuals to route attributes (that 

is, taste heterogeneity). This random distribution approach, while better than assuming the 

absence of the moderating effects of unobserved factors, still treats unobserved psychological 

preliminaries of choice (i.e., attitudes and preferences) as being contained in a “black box” to be 

integrated out. On the other hand, the ICLV approach allows a deeper understanding into the 

route choice decision process of bicyclists by developing a conceptual structural model for the 

“soft” psychometric measures associated with individual attitudes and perceptions. Specifically, 

the latent constructs of attitudes and perceptions are related to observed individual-specific 
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covariates in the structural equation model, and these latent constructs then are interacted with 

the “hard” observed route attribute variables to explain route choice. In doing so, a parsimonious 

and behavioral structure is provided to the nature of heterogeneity (across individuals) in route 

attribute effects. Importantly, this specification immediately considers both observed and 

unobserved heterogeneity in route attribute effects (because the latent constructs are related to 

observed individual variables), as well as accommodates covariance in the route attribute effects 

(because the same latent variable may be interacted with multiple route attributes; thus, for 

example, safety consciousness can lead to increased sensitivity to multiple route attributes at 

once). Finally, our specification immediately allows non-normal distribution effects for the 

heterogeneity effects of route attributes, rather than a priori imposing a normal distribution. 

To our knowledge, this is the first application of an ICLV structure to bicycle route 

choice modeling, in addition to this being the first application of the SN-ICLV model in the 

econometric literature. In addition, we apply the SN-ICLV model to a repeated choice data case, 

rather than the cross-sectional analysis of some other ICLV studies (such as Prato et al., 2012). 

 

4.2. Data and Sample Formation 

The data for this study is drawn from a 2009 web based survey conducted by the University of 

Texas at Austin. Details of the survey procedures are provided in Sener et al. (2009), and so only 

a brief overview of the survey is provided here. The focus of the survey effort was on obtaining 

information from individuals (aged 18 years or above) who have had some experience in 

bicycling, since the objective was to elicit useful information for an assessment of bicycle 

facilities and an analysis of bicycling concerns/reasons. Further, given the focus on bicyclists, the 

route choice model estimates are valid even though we do not have a representative sample of 

bicyclists. This is due to Manski and Lerman’s (1977) result for exogenous samples, which is 

applicable here because the alternatives in the route choice analysis are unlabeled alternatives 

constructed by the analyst. In this sense, we do not have a choice-based sample because 

respondents are not chosen based on their route choice. 

The survey collected limited information on demographic (age, gender, education, and 

household size) and employment-related characteristics (commute distance, work schedule 

flexibility), along with much more comprehensive information on the bicycling characteristics of 

the respondents (in the rest of this paper, we will refer to the demographic and employment-
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related characteristics as individual-specific attributes). In addition, the survey solicited 

respondent views on three psychological construct indicators related to the overall quality of 

bicycle facilities, bicycling safety from traffic crashes, and the frequency of non-commute 

bicycling during the year. All these three indicator variables were measured on a 4-point ordinal 

scale, as follows: (1) overall quality of bicycle facilities (very inadequate, inadequate, adequate, 

very adequate), (2) bicycle safety from traffic crashes (very dangerous, somewhat dangerous, 

somewhat safe, and very safe), and (3) frequency of non-commute bicycling (about once or twice 

a month, about once a week, 2-3 days per week, and 4-5 days (or more) per week). We 

hypothesize that individuals with a “pro-bicycle” attitude (the first latent construct we use) will 

be more positive about the quality of bicycle facilities (the first indicator variable) and will 

undertake more bicycling for non-commuting purposes (the third indicator variable). Also, we 

propose that a “safety-conscious” personality (the second latent construct we use) will tend to 

have a lower evaluation of bicycle safety from traffic crashes (the second indicator variable).  

The route choice stated preference (SP) scenarios were presented in the form of a table 

with three columns and five rows (each column representing a hypothetical route, and each row 

representing a certain level of an attribute; respondents were asked to choose the route they 

would use from the three routes presented). The route attributes included the following: 

 On-street parking – Parking type (none, angled, or parallel), parking turnover rate, length 

of parking area, and parking occupancy rate. 

 Bicycle facility characteristics – On-road bicycle lane (a designated portion of the 

roadway striped for bicycle use) or shared roadway (a shared roadway open to both 

bicycle and motor vehicle travel), width of bicycle lane if present or overall roadway 

width if shared roadway, and bicycle facility continuity. 

 Roadway physical characteristics – Roadway grade, and number of stop signs, red lights 

and cross streets. 

 Roadway functional characteristics – Motorized traffic volume and speed limit. 

 Roadway operational characteristics – Travel time. 

The route attribute levels corresponding to the attributes listed above, except travel time, are 

available in Sener et al. (2009), and reproduced in Table 1 for completeness. Before discussing 

the generation of travel time attribute levels in the experiments, we should note that separate 

experimental designs were developed for commuter bicyclists (those who bicycle for commuting 
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purposes, some of whom may also bicycle for non-commuting reasons) and non-commuter 

bicyclists (designated to be those who bicycle only for non-commuting purposes). The 

identification of respondents into these two bicyclist groups was based on questions before the 

SP experiments were presented. Further, travel time was included as an attribute only for 

commuter bicyclists, since non-commute travel is mainly for recreation pursuits with no specific 

destination in mind. The travel time attribute level for each route (for commuter bicyclists) in the 

SP experiments was designed to be pivoted off the actual commute time by bicycle as reported 

by the individual. This was done to preserve some amount of realism in presenting alternative 

routes in the stated choice experiments.  

In total, there are 11 route attributes for commuting-related SP experiments, and 10 route 

attributes for non-commuting-related experiments. To reduce respondent burden when evaluating 

routes, we used a partitioning mechanism where only five attributes were used to characterize 

routes for any single respondent. At the same time, the selection of the five attributes for any 

individual was undertaken in a carefully designed rotating and overlapping fashion to enable the 

capture of all variable effects when the responses from the different SP choice scenarios across 

different individuals are brought together. Each respondent is presented with four choice 

questions (or choice experiments) in the survey.  

The survey included a total of 1689 respondents. After screening for missing data and 

other inconsistencies, the final sample size included a total of 1429 respondents with a total 

sample size of 5716 (1429 individuals with 4 choice occasions each). Further, we split the 

sample into 70% for estimation and 30% for prediction. Thus, the estimation and prediction 

samples included 1000 respondents (with 4000 choice occasions) and 429 respondents (with 

1716 choice instances), respectively. 

4.3. Impact of Latent Variables

 

The route choice experiments involve unlabeled route alternatives, in which each route is 

represented by a set of attributes. Thus, the impact of the latent variables on route choice is 

characterized by moderating the effect of these route attributes on route choice. Based on the 

discussion in the previous section, we expect that pro-bicycle enthusiasts will be less sensitive to 

route physical and operational characteristics, while safety conscious bicyclists will be highly 

sensitive to on-street parking attributes, bikeway facility characteristics, and roadway functional 
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characteristics. The overall conceptual diagram for the model system is provided in Figure 1. 

First, both the latent constructs, pro-bicycle and safety consciousness, are specified as a function 

of the individual-specific characteristics of cyclists in a structural equation model (see the center 

of Figure 1).  The two latent constructs are mapped to cyclists’ perceptions through indicator 

variables in a measurement equation model (shown separately at the bottom of Figure 1). As 

discussed in the previous section, the “pro-bicycle” attitude is mapped to the ordinal indicators 

related to the overall quality of bicycle facilities and the frequency of non-commute bicycling, 

while the “safety conscious” personality is mapped to the ordinal indicator related to bicycling 

safety from traffic crashes. The latent constructs and individual-specific variables (subject to the 

identification issues discussed in Section 3.4) are then interacted with the route attributes to 

formulate the utility of each unlabeled route alternative. The utility of a route is manifested in the 

actual observed route choice in the stated preference experiments.    

 

4.4. Explanatory Variables in Route Choice Model  

In the route choice model, we consider all the route attributes described in Table 1. In the 

discussion below, we discuss our general expectations of the effects of these route attributes as 

well as the interaction effects with latent variables. For the parking related variables (parking 

type, parking turnover rate, length of parking area and parking occupancy rate), we expect to 

observe a negative coefficient, as routes with parking facilities, high parking turnover rate, high 

parking area length, and high parking occupancy rate are likely to cause ride discomfort to 

bicyclists and at the same time increase the likelihood of crashes between motorized vehicles and 

bicyclists (due to the presence of blind spots, reduction in sight distance and limited lateral space 

for maneuverability). We also allow interaction effects with the latent variable “safety 

consciousness”. Second, for the bicycle facility variables (on-road bicycle lane rather than a 

shared roadway, bikeway facility width, and continuous bicycle facility indicator variable), we 

expect positive coefficients, as the presence of a separate bicycle lane or a large facility width or 

a continuous bicycle facility along a route is likely to encourage the use of the route due to better 

maneuvering and cushion space, lower chances of accidents, and less interruptions in bicycling. 

We consider interactions among the bicycle facility variables and the latent variable ‘pro-

bicycle’ to test the hypothesis that individuals who are more “pro-bicycle” would be more 

accommodating of limited bicycle facilities relative to those who are less “pro-bicycle”. Third, 
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we expect the physical characteristics of the roadway (terrain grade and number of stop signs, 

red lights, and cross streets) to impact route choice. For terrain grade, one may observe positive 

or negative effects on bicyclists’ route choice decisions. Thus, bicyclists may prefer flat terrains 

for the commute (relative to non-commute travel purposes), so that they do not overexert and 

they arrive at work in a presentable way. But, for non-commute bicycling, respondents may 

prefer a moderate grade over no grade as they may prefer some level of physical activity benefit. 

Further, assuming that “pro-bicycle” individuals are likely to be fitter, we hypothesize that they 

are more likely to prefer moderate to high grades over flat terrains. For the number of stop signs, 

red lights, and cross-streets, we anticipate a negative influence on route choice because of the 

travel disruption, and we hypothesize that this negative influence will be particularly pronounced 

for avid “pro-bicycle” individuals who bicycle often. Fourth, for roadway functional 

characteristics (traffic volume and speed limit), we also expect negative coefficients, as high 

motorized traffic volumes and high speed limits increase the likelihood of accidents and the 

consequences of an accident. We allow an interaction between the ‘safety’ latent variable and 

roadway functional characteristics, with the expectation that individuals who are safety 

conscious would particularly shy away from routes with high motorized traffic volumes and high 

speed limits. Finally, we expect a negative coefficient on the travel time variable for commute 

bicycling route choice.  

 

4.5. Structural Equation Model Results 

Table 2 provides the results for the effects of individual-specific variables on the two latent 

constructs in the structural equation model, each of which is discussed in turn in the subsequent 

sections. But before doing so, a couple of issues. For the effects of the age variable on the latent 

constructs, we attempted continuous functional forms as well as spline effects (that is, piecewise 

linear effects), but the dummy variable specification as in Table 2 provided the best results. 

Second, we have introduced the specification for all the dummy variables in Table 2 in such a 

way that the estimated coefficients are all positive. This is accomplished by choosing the base 

category for each exogenous variable such that the base category has the lowest value on the 

latent constructs. This is done so that the location values of the latent constructs (that is, the αw  

component in Equation (10)) is always positive, which helps when we interpret the moderating 
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effects of the latent constructs on the sensitivity to route attributes in the route choice model (see 

Section 4.7).  

 

4.5.1. Pro-Bicycle Attitude 

The results in Table 2 indicate that the pro-bicyclist tendency is the highest for individuals in the 

18-24 years age group (the youngest age group) and progressively decreases thereafter. This 

result may be a reflection of the increasing acceptance and use of alternatives modes of 

transportation (other than driving alone) by young individuals (the so-called millennials), a trend 

that started to surface in about 2008 (Pucher et al., 2011). This trend has been associated with 

factors such as higher environmental consciousness in the younger generation, the high costs of 

insurance and fuel at a time when the economy has been weak, and substitution of in-person 

“hangouts” by virtual “hangouts” using social mobile devices.  The steady decrease in pro-

bicyclist attitudes with age may also be an indirect manifestation of the fact that bicycling 

requires physical effort, and the participation levels and intensity of physical activity, in general, 

tend to decrease with age (Pucher and Renne, 2003).  

The pro-bicycle attitude also has a clear gender association, with men more likely to have 

pro-bicyclist tendencies than women (see Pucher et al., 2011). This may reflect a preference for 

less strenuous forms of physical activity among women or may be attributable to less 

discretionary time available to invest in bicycling and recreation because of women’s traditional 

work-family responsibilities (Garrard et al., 2008). In addition, Table 2 shows a higher pro-

bicycling attitude among single person households relative to other types of households, 

consistent with some earlier studies (for example, Handy et al., 2010) that have found a higher 

propensity to bicycle among people living alone.  

 

4.5.2. Safety-Conscious Personality 

For the ‘safety-conscious’ latent variable, we observe that individuals in the middle age group 

(between 25-44 years of age) and beyond (more than 44 years of age) are more safety conscious 

than younger individuals (between 18-24 years of age, which is the base age category). This may 

be reflective of humans tending to be opportunistic and less risk-averse when young (between 

18-24 years of age) due to sensation-seeking and a feeling of invincibility, but becoming less 

adventurous and more risk-averse in their late 20’s and beyond when child-rearing and career-
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building take center stage (Turner and McClure, 2003 and Dohmen et al., 2010). In the bicycling 

context, it may also be related to the worry about slower reflexes and recovering from bicycle-

related crash injuries, combined with family responsibilities, when individuals are beyond 44 

years of age (which makes this group of individuals the most safety conscious).  

The gender variable also affects the ‘safety-conscious’ latent construct;  women are more 

safety-conscious than men in the context of bicycling safety from traffic crashes, a finding 

generally consistent with the psychological literature (see Akar et al., 2013). For example, 

Croson and Gneezy (2009) offer three explanations for the gender difference in risk-taking 

(which is on the reverse scale of safety-consciousness). The first is based on the notion of “risk 

as feelings” (see also Loewenstein et al., 2001), which states that our instinctive and intuitive 

emotions dominate reasoned approaches when faced with risk. Further, since women experience 

feelings of nervousness and fear more than men in anticipation of negative outcomes, the net 

result is a heightened risk-averseness (or higher safety consciousness) among women. The 

second is based on the notion of confidence; many earlier studies indicate that men tend to be 

more overconfident in uncertain situations (see also Soll and Klayman, 2004 and Niederle and 

Vesterlund, 2007), which translates to more risk-taking (and less safety-consciousness) in men 

than women. The third explanation is tied to the notion of believed appropriate response; that is, 

men tend to view a risky situation as a challenge that warrants participation, while women tend 

to view risky situations as threats that must be avoided (McDaniel and Zuckerman, 2003 and 

Meier-Pesti and Penz, 2008). In the context of the current paper, bicycling represents the risky 

situation, given that bicyclists in the U.S. are 2.3 times more likely to be fatally injured on a 

given trip relative to motorized vehicle occupants (see Beck et al., 2007).  

Finally, Table 2 indicates that the lower the education status of an individual, the higher 

is the level of concern about safety from traffic crashes. Rosen et al., (2003) found a similar 

result that individuals with high education status exhibit more risk-taking tendencies compared to 

individuals with low education status. In the context of bicycling, it is possible that individuals 

with higher levels of education tend to be more aware of traffic safety rules and regulations, and 

have a more objective and less negative perspective of safety from traffic crashes 

The correlation matrix of η, which is standard multivariate skew-normally distributed, 

),(SMVSN~ *
Ωη is given by: 
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where the t-statistics of the estimated parameters are provided in parenthesis. As can be 

observed, there is significant skew in both the pro-bicycle and safety-consciousness latent 

constructs. The implied shapes of the marginal skew-normal density functions for the two latent 

constructs are provided in Figure 2. There is a clear left skew in the density functions, suggesting 

a large fraction of individuals who do not have a favorable opinion about bicycling in general 

and a large fraction of individuals who also are relatively insensitive to bicycling safety from 

crashes. However, as should be obvious from the figure, the distribution of the safety-

consciousness tendency is much closer to the normal than that of the pro-bicycle attitude. We did 

not have any a priori hypotheses about these distributions, since these can be context-specific. 

However, we should note that the left skew for safety consciousness is rather consistent with the 

longer right tail generally observed in the social-psychological literature (see, for example, 

Bakshi and Madan, 2006). That is, in the context of risk-taking, more people lie in the lower 

spectrum of risk-taking, though there is that small fraction of high risk-takers. In any case, the 

important point is that the empirical fit shows that the latent constructs (and especially the pro-

bicycling attitude) are not symmetric and are not normally distributed. Statistically speaking, the 

skew parameters in the ρ  vector (see the first column of the covariance matrix *
Ω  of Equation 

(33)) are different from zero, indicating that the latent constructs are statistically different from 

normal distributions. Finally, there is a significant negative correlation between the pro-bicycle 

and safety-conscious latent constructs, which is quite intuitive. That is, individuals who are more 

pro-bicycle than their observationally equivalent peers are also less concerned about the dangers 

of bicycle-related crashes.  

 

4.6. Measurement Equation Model Results 

The measurement equation model provides the loading of the latent constructs on the indicator 

variables (see the bottom of Figure 1). In our empirical context, all the three indicator variables 

are of an ordinal nature, and Equation (12) in Section 3.2 applies. In this equation, the parameter 

vectors δ
~

 and ψ  do not have any substantive interpretations, and simply map the scale of the 
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underlying latent variable vector *z  to the observed ordinal indicators (we do not present the δ
~

 

and ψ  estimates here to conserve on space, but these are available from the authors). More 

important are the estimates of the vector d
~

 in Equation (12). The estimated values for this vector 

are as follows: (1) The loading of the “pro-bicycle” latent variable on the overall quality of 

bicycle facilities is 1.71 (t-statistic of 8.96), showing that respondents with a high pro-bicycle 

attitude also have a favorable opinion of the quality of bicycle facilities, (2) The loading of the 

“safety consciousness” personality on bicycling experience from the perspective of safety from 

traffic crashes is -1.10 (t-statistic of -15.01), reflecting the expected lower evaluation of traffic 

safety during bicycling by safety-conscious bicyclists, and (3) The loading of the “pro-bicycle” 

attitude on the frequency of non-commute bicycling throughout the year is 0.27 (t-statistic of 

11.23), showing the positive impact of a favorable bicycle attitude on non-commute bicycling 

frequency.  

 

4.7. Route Choice Model Results 

Table 3 provides the parameter estimates for the route choice model parameters of the SN-ICLV 

model. In arriving at the final specification, we attempted a number of interaction effects of route 

attributes with individual-specific observed variables, in addition to interaction effects of route 

attributes with the two latent  constructs (whenever the two effects can be identified based on the 

sufficiency conditions discussed in Section 3.4). However, none of the individual-specific 

observed variable interaction effects turned out to be statistically significant (except for trip 

purpose interacted with terrain grade) when the latent construct interaction effects were also 

included. That is, our results essentially showed that individual-specific observed variables 

impact route choice through the latent constructs and not directly, providing substantial support 

for the ICLV model structure and the specification used in the paper.  

In the discussion of Table 3 below, and purely for interpretation ease, we will interpret 

the coefficients on the latent constructs as though the latent constructs were deterministic 

(technically, the latent constructs are skew-normally distributed, engendering unobserved 

heterogeneity in the moderating effects of the latent constructs on the sensitivity to route 

attributes). Specifically, we will assume that the latent constructs are at their location value of 

αw , which, by specification of the structural equation model, is always positive (see Section 

4.5.1 and 4.5.2). Also, we note here that the parameters in Table 3 provide the effects of 
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variables on the utility valuation of routes. Interaction effects of route attributes with the latent 

constructs/bicyclist characteristics are shown in Table 3 by indenting the labels for latent 

constructs/bicyclist characteristics under the route attributes. 

The effects of on-street parking characteristics indicate that all bicyclists prefer no 

parking rather than any form of parking on their route (note that the base category for parking 

type is “absence of parking”, and the signs of all the parking type-related variables are negative). 

Parking presents a general hindrance to bicycle movement and restricts the cushion between 

motorized traffic and bicyclists. The results also indicate that angled parking is preferred to 

parallel parking, presumably because of better visibility and line of sight for bicyclists as cars 

pull out from an angled parking configuration. On the other hand, parallel parking (a) presents 

more disruption to bicyclists as motorists maneuver into or out of a parallel parking spot, and (b) 

poses a “dooring” problem to bicyclists. As importantly, and intuitively, bicyclists who are 

safety-conscious are more concerned about (and stay away from) routes with parking, 

particularly those with parallel parking. The effects of the remaining parking variables are also as 

expected, and reveal that routes with high parking turnover rate, length of parking area, and 

parking occupancy rate reduces the attractiveness of bicycling routes, particularly so for safety 

conscious individuals.  All of these parking attributes present disruptions to the movement of 

bicyclists because of more potential conflict occasions and conflict durations during a bicyclist’s 

trip.   

The effects of bicycle facility characteristics reveal that routes with a continuous bicycle 

facility (the whole route has a bicycle lane or wide outside lane) are preferred relative to those 

with a discontinuous facility (see also Caulfied et al., 2012). Further, bicyclists prefer routes with 

no bicycle lane and a wide outside lane of width greater than or equal to 10.5 feet to routes with 

a bicycle lane of width less than 6.75 feet (we did not find statistically significant differences in 

preferences between a 3.75 feet bicycle lane and a 6.25 feet bicycle lane, and so both of these 

levels form the base category). That is, bicyclists appear to prefer wide bicycle facilities (even if 

not explicitly demarcated and separated from motorist lanes) to demarcated but narrow bicycle 

lanes. Bernhoft and Carstensen (2008) also found a similar result. While this result may seem 

counterintuitive, it is suggestive of the notion that facility width is a better representation of 

space cushion in the mental perception map of bicyclists than is facility separation. Interestingly, 
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we did not find any statistically significant interaction effect of a safety conscious personality 

with bicycle facility characteristics.  

The effects of roadway physical characteristics provide some surprising results in the 

context of terrain grade. To interpret the coefficients, we should note first that the location of the 

pro-bicycle latent construct varies (across individuals) from a value of zero to the value of 0.637 

(mean of 0.158), while the location of the safety consciousness construct varies from a value of 

zero to the value of 0.372 (mean of 0.126). Then, the results in Table 3 indicate that all 

individuals (technically in the location) most prefer moderate hills to flat grades, especially for 

non-commuting bicycling (as can be observed from the negative coefficient on commuting 

bicycling). This trend may be attributed to the preference for a bicycle route that is not 

monotonous in landscape or physical effort, especially for bicycling for recreation/leisure (see 

Stinson and Bhat, 2003 for a similar result).  The results for “steep hills” are a little more tricky. 

At the mean location value for the pro-bicycle attitude of 0.158, the coefficient of steep hills is 

0.047 (=0.087-0.252*0.158) for non-commuting bicyclists and -0.072 (=0.087-0.252*0.158-

0.119) for commuting bicyclists. That is, non-commuting bicyclists prefer steep hills to a flat 

grade, while commuting bicyclists prefer flat grades to steep hills. The latter effect is intuitive, 

because individuals would like to arrive at work in a reasonably presentable fashion. However, 

surprisingly and when examining the coefficient on the pro-bicycling variable, the results show 

that individuals who are higher on the pro-bicycle scale have a lower preference for moderate 

and steep grades relative to individuals who are lower on the pro-bicycle scale. This is contrary 

to our hypothesis presented in Section 4.4. Perhaps this reflects a pre-trip underestimation of the 

strenuousness of bicycling along moderate to steep grades by individuals who are lower on the 

pro-bicycle scale, because they bicycle lesser and have less experience. The second variable in 

the category of roadway physical characteristics reflects the reduced likelihood of using routes 

with a higher number of traffic controls and cross-streets, particularly for individuals who are 

pro-bicycle and potentially see traffic controls as very annoying and disruptive (see also 

Menghini et al., 2010 and Prato et al., 2012).  

Next, the effects of roadway functional characteristics show that bicyclists prefer routes 

with low volumes of motorized traffic to routes with moderate and high volumes of motorized 

traffic (see also Prato et al., 2012 for a similar result). This is likely to be a combination of a 

larger space cushion over the stretch of the route when there is only light traffic as well as a 
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lower likelihood of crashes. As one may expect, safety-conscious bicyclists, in particular, shy 

away from routes with moderate to high motorized traffic volumes. Similar safety related issues 

extend to the effect of speed limit on route choice (as also found by Caulfied et al., 2012), with 

bicyclists (and particularly safety-conscious bicyclists) preferring routes with a speed limit of 

less than or equal to 35 miles per hour to routes with speed limits exceeding 35 miles per hour. 

Finally, the coefficient for travel time (relevant only for commute travel) is negative, suggesting 

that cyclists prefer routes with lower travel times. We did not find statistically significant effects 

of the latent constructs on the travel time effect.  

 

4.8. Measures of Data Fit 

In this section, we provide measures of fit for the route choice predictions from our proposed 

SN-ICLV model, the corresponding ICLV model that imposes normal distributions for the latent 

constructs, as well as an MNP model that ignores the latent constructs but considers observed 

and unobserved heterogeneity in the effects of route attributes. We would like to note here that, 

unlike many earlier ICLV-based studies that compare the ICLV model with a simple discrete 

choice model without any accommodation of observed or unobserved heterogeneity, we consider 

both observed and unobserved heterogeneity in the “strawman” MNP specification. We believe 

this is only fair, and that many earlier ICLV studies have not used an appropriate non-ICLV 

discrete choice model yardstick to compare the estimated ICLV model with. In developing our 

MNP specification, we extensively tested for observed and unobserved heterogeneity. At the 

end, only the random (normal) distributions for terrain grade and motorized traffic volumes 

turned out to be statistically significant. This is as opposed to the SN-ICLV specification in 

which the error terms in the structural equation system for the latent constructs permeates into 

unobserved heterogeneity effects for all route attributes that are interacted with one or both latent 

constructs. Thus, in Table 3, unobserved heterogeneity appears for 12 route attribute effects 

(angle parking, parallel parking, parking turnover rate, length of parking area, parking occupancy 

rate, moderate hills, steep hills, moderate # and high # of stop signs, red lights and cross streets, 

moderate and heavy traffic volumes, and high speed limit), and in a very parsimonious manner 

because all these effects originate from only two latent constructs.  

The predictions from the route choice models in the SN-ICLV, ICLV, and MNP models 

are compared as follows. For the SN-ICLV and ICLV models, the model system is estimated as 
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discussed in Section 3 (for ICLV model, we simply fix the skew parameters to zero in the 

structural equation). For the MNP model, we use a MACML estimation procedure as described 

on Bhat (2011) (the detailed estimation results for the ICLV and MNP models are not presented 

here to conserve on space, but may be obtained from the authors). Then, using Equation (17) and 

the estimated parameters from the MACML estimation for the three different models, one can 

obtain the logarithm of the probability of the sequence of observed choices for each respondent 

from each model, which is the predictive log-likelihood function of the route choice model at 

convergence )ˆ(θ L . Then, the SN-ICLV and the ICLV models can be compared using the 

familiar likelihood ratio test. For the test between the SN-ICLV and MNP models, one can 

compute the adjusted likelihood ratio index with respect to the log-likelihood at equal shares: 
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where )ˆ(θ L  and )(c L  are the log-likelihood functions at convergence and at equal shares (at 

each choice instance), respectively, and M is the number of parameters estimated in the model. 

To test the performance of the two non-nested models (i.e. the SN-ICLV and MNP models) 

statistically, the non-nested adjusted likelihood ratio test may be used. This test determines if the 

adjusted likelihood ratio indices of two non-nested models are significantly different. In 

particular, if the difference in the indices is   )( 2
1

2
2  , then the probability that this 

difference could have occurred by chance is no larger than  5.0
12 )]()(2[ MMc  L   in 

the asymptotic limit. A small value of the probability of chance occurrence indicates that the 

difference is statistically significant and that the model with the higher value of adjusted 

likelihood ratio index is to be preferred. 

The above predictive likelihood ratio test (for the comparison of the SN-ICLV and ICLV 

models) and non-nested adjusted likelihood ratio test (for the comparison of the SN-ICLV and 

MNP models) are undertaken both in the estimation sample and the validation sample. We also 

evaluate the performance of the three models intuitively and informally by computing the 

average probability of correct prediction across all choice instances, in both the estimation and 

validation samples. The use of testing on both the estimation and validation samples is to ensure 

that there is no over-fitting effects during evaluation.  
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The results for the estimation sample are presented in the second main column of Table 4. 

The first row provides the log-likelihood at equal shares, which is, of course, the same across the 

three models. The second row indicates the superior performance of the SN-ICLV model in 

terms of the predictive log-likelihood value, as does the adjusted likelihood ratio index in the 

fifth row. The sixth row formally shows the predictive likelihood ratio test result of the 

comparison of the SN-ICLV model over the ICLV model, indicating the clear dominance of the 

SN-ICLV data fit. The same result is obtained in the next row through a non-nested adjusted 

likelihood ratio test comparing the SN-ICLV model with the MNP model; the probability that the 

adjusted likelihood ratio index difference between the SN-ICLV and MNP models could have 

occurred by chance is literally zero. The average probability of correct prediction (see the last 

row of the table) reinforces the results from the statistical tests. Similar results are obtained in the 

validation sample. In summary, the SN-ICLV model clearly outperforms the other two models 

from a statistical standpoint. 

 

4.9. Relative Effects of Route Attributes 

All the route attributes in Table 4 are dummy (discrete) variables (or switches), except for travel 

time for commute-related route choice, and so one can readily obtain the relative importance of 

the route attributes. While one cannot technically compare the relative effects of the dummy 

variables and the travel time variable for commute-related route choice, one approach to get an 

order of magnitude effect is to compute the (dis-)utility effect of travel time at the mean bicycle 

commute travel time value of 30 minutes in the sample. This yields a value of -0.93, which may 

be compared with the coefficients on the route attribute dummy variables.  

The magnitudes of the coefficients in Table 3 indicate that routes with long travel times 

(for commuters) and heavy motorized traffic volume are, by far, the most unlikely to be chosen. 

Other route attributes with a high impact include whether the route has a continuous bicycle 

facility or not, high parking occupancy rates and long lengths of parking when parking is 

allowed, and a high speed limit (more than 35 mph) on the route. On the other hand, bicycle 

facility width (if a bicycle lane exists) or width of wide outside lane (if a bicycle lane does not 

exist) are the least important attributes in bicyclist route choice evaluation, while the impact of 

terrain grade and angle parking are also quite small. 
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The results above have at least four general implications for bicycling infrastructure 

investments. First, the results suggest that providing some kind of a continuous facility (either in 

the form of a wide outside lane or in the form of an exclusive bicycle lane) is more important 

than the specific type of facility provided (whether a wide outside lane or whether an exclusive 

bicycle lane). Second, there is a suggestion that providing a wide outside lane (without any 

demarcation in motorized vehicle and bicycle movement) may be somewhat better than 

providing a relatively narrow but exclusive bicycle lane (from the perspective of the 

attractiveness of a route to bicyclists). This is consistent with the concept of vehicular bicycling, 

which is based on the notion that bicycling safety is improved by sharing of the roadway 

between motorists and bicyclists, and educating motorists to recognize bicyclists as legitimate 

users of roadways (see Sener et al., 2009 and Pucher et al., 2011). However, we must emphasize 

again here that the precise form of the bicycle facility pales in comparison to providing a 

continuous facility of some form in the first place. Third, our results imply that disallowing 

parking on potential routes would be a good strategy to attract bicyclists to use these routes. If 

parking has to be allowed due to other considerations, restricting the length of parking and the 

hours of parking may be an approach to reduce the deterrent effects on bicycling along the route.  

Additionally, the notion of limiting the duration of parking for a specific vehicle, while may be 

helpful from other transportation considerations, does seem to discourage bicycling along the 

route (since limiting parking duration results in frequent vehicle turnovers). Planners may want 

to consider these parking-related effects on bicyclist route choice when designing and investing 

in bicycle facilities. Doing so also has the potential to promote bicycling, since safety conscious 

bicyclists (and by extension, individuals who may not be bicycling because of their worry about 

safety when bicycling) are particularly sensitive to parking-related attributes. Fourth, other 

important issues that planners need to consider in designing bicycle facilities are speed limit 

restrictions and ways to control motorized traffic volumes. 

  

5. CONCLUSIONS 

Integrated choice and latent variable (ICLV) models enable researchers to provide a structure to 

unobserved effects in choice modeling, and are gaining popularity as a means to unravel the 

decision process of individuals in choice situations. However, a substantial limitation of 

traditional ICLV models is that they impose a normal distribution assumption for the unobserved 
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latent constructs. But there is no theoretical basis for making such an assumption. Besides, 

imposing this assumption when the structural errors are non-normal can render all parameter 

estimates inconsistent.  In the current paper, we have proposed a skew-normal distribution form 

for the latent constructs. To our knowledge, this is the first such ICLV model proposed in the 

econometric literature.  The multivariate skew-normal (MSN) distribution that we use is 

tractable, parsimonious in parameters that regulate the distribution and its skewness, and includes 

the normal distribution as a special interior point case (this allows for testing with the traditional 

ICLV model). It also is flexible, allowing a continuity of shapes from normality to non-

normality, including skews to the left or right and sharp versus flat peaking toward the mode (see 

Bhat and Sidharthan, 2012). It also immediately accommodates correlation across the latent 

variables because of its multivariate structure. The resulting skew normal ICLV (SN-ICLV) 

model we develop is suitable for estimation using Bhat’s (2011) maximum approximate 

composite marginal likelihood (MACML) inference approach. 

The proposed SN-ICLV model was applied to model bicyclists’ route choice behavior. In 

this study, two latent variables - pro-bicycle attitude and safety consciousness in the context of 

traffic crashes - were specified to moderate the effect of route attributes in bicyclist route choice 

decisions. These latent variables were assumed to be manifested in three ordinal indicator 

variables associated with (a) perceptions about the overall quality of bicycle facilities, (b) 

bicycling experience from the perspective of safety from traffic crashes, and (c) how often the 

respondent bicycles throughout the year for non-commuting reasons. A stated preference 

methodology using a web-based survey of Texas bicyclists provided the route choice data to 

implement the SN-ICLV model. The results showed that individual-specific observed variables 

impact route choice through the latent constructs we developed and not directly, providing 

substantial support for the ICLV model structure and the specification used in the paper. 

Importantly, the results showed evidence for non-normality in the latent constructs, with the 

proposed SN-ICLV model soundly rejecting the traditional ICLV model (with normal latent 

constructs) and a multinomial probit model (with unstructured heterogeneity in the influence of 

unobserved factors on the sensitivity to route attributes) based on data fit considerations.  

Further, the results suggest that the most unattractive features of a bicycle route are long travel 

times (for commuters), heavy motorized traffic volume,  absence of a continuous bicycle facility, 

and high parking occupancy rates and long lengths of parking zones along the route.  
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In conclusion, from a methodological standpoint, this paper has developed an extension 

of the typical ICLV models to incorporate potential non-linearity in the latent constructs. The 

resulting model should be applicable in a variety of choice contexts. From a substantive 

standpoint, the model developed here may be used by planners to assess and improve existing 

bicycle routes as well as to plan better routes by understanding trade-offs among route attributes. 
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Figure 1: Conceptual Diagram for Considering Psychological Constructs in Bicyclists’ Route Choice Analysis 
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Figure 2: Marginal Probability Density Plots of latent constructs 
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Table 1. Bicycle Route Attribute Levels Selected for the SP Experiments 
Attribute 
Category 

Attribute Attribute Attribute levels 

 
On-street 
parking 

Parking type 
The parking configuration on a shared 
roadway (for instance, parallel parking) 

1. None 
2. Parallel 
3. Angle 

Parking turnover 
rate 

The likelihood of a cyclist encountering a 
car leaving a parking spot along the route 

1. Low (A cyclist very occasionally encounters a car leaving a parking spot) 
2. Moderate (A cyclist sometimes encounters a car leaving a parking spot) 
3. High (A cyclist usually encounters a vehicle leaving a parking spot) 

Length of 
parking area 

The length of the motor vehicle parking 
facility on the bicycle route 

1. Short (½-1 city block) 
2. Moderate (2-4 city blocks) 
3. Long (5-7 city blocks) 

Parking 
occupancy rate 

The percentage of parking spots occupied 
in a motor vehicle parking facility 

1. Low (0-25%) 
2. Moderate (26-75%) 
3. High (76-100%) 

Bikeway 
facility 

Facility 
continuity 

A bicycle route is considered to be 
continuous if the whole route has a bicycle 
facility (a bike lane or wide outside lane) 
and discontinuous otherwise  

1. Continuous – the whole route has a bicycle facility 
2. Discontinuous – the whole route does not have a bicycle facility 

Bikeway facility 
type and width 

The width of the bike lane when it is 
present; otherwise the roadway width  

1. A bicycle lane 1.5 bicycle width wide (or 3.75 feet wide)  
2. A bicycle lane 2.5 bicycle width wide (or 6.25 feet wide) 
3. No bicycle lane and a 1.5 car width (10.5 feet) wide outside lane 
4. No bicycle lane and a 2.0 car width (14.0 feet) wide outside lane 
5. No bicycle lane and a 2.5 car width (17.5 feet) wide outside lane 

Roadway 
physical 

characteristics 

Roadway grade 
The terrain grade of the bicycle route (for 
instance, moderate hills) 

1. Flat – no hills 
2. Some moderate hills 
3. Some steep hills 

Number of stop 
signs, red lights 
and cross streets 

Number of stop signs and red lights 
encountered on the bicycle route 

1. 1-2 
2. 3-5 
3. More than 5 

Roadway 
functional 

characteristics 

Traffic volume 
Traffic volume on the roadways 
encountered on the bicycle route 

1. Light 
2. Moderate 
3. Heavy 

Speed limit 
Speed limit of the roadways encountered 
on the bicycle route 

1. Less than 20 mph 
2. 20-35 mph 
3. More than 35 mph 

Roadway 
operational 

characteristics 
Travel time 

Travel time to destination (for commuting 
bicyclists only) 

1. Stated travel time for commute – y 
2. Stated travel time for commute – x 
3. Stated travel time for commute 
4. Stated travel time for commute + x 
5. Stated travel time for commute + y 

If stated travel time ≤ 25 minutes x = 5, y = 10; 
If stated travel time > 25 and ≤ 45 minutes x = 5, y = 15; 
If stated travel time > 45 minutes x = 10, y = 20; 
The travel time obtained after the operations is rounded 
off to the nearest multiple of 5 

Source: Sener et al., 2009.  
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Table 2: Structural Equation Parameter Estimates 

Latent 
Variable 

Attribute Attribute Level Estimate (t-stat) 

Pro-bicycle 

Age 
(base: greater than 44 years) 

Age 18-24 years 0.524 (8.952) 

Age 25-34 years 0.177 (7.970) 

Age 35-44 years 0.031 (2.500) 

Gender 
(base: female) 

Male 0.034 (3.218) 

Household Type 
(base: non-single household) 

Single household 0.079 (5.795) 

Safety-
conscious 

Age 
(base: age 18-24 years) 

Age 25-44 years 0.022 (1.902) 

Greater than 44 years 0.079 (6.236) 

Gender 
(base: male) 

Female 0.084 (9.037) 

Education Status                     
(base: bachelor’s degree or 
graduate degree) 

High school or less  0.209 (8.333) 

Associate degree/some college 
degree 

0.080 (9.319) 
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Table 3: SN-ICLV Choice Model Parameter Estimates 

 
Attribute 

Attribute Level and 
Interactions 

Estimate (t-stat) 

On-Street 
Parking 

Characteristics 

Parking type 
(base: absence of parking) 

Angle parking is permitted -0.192 (-40.104) 

       Safety-conscious -0.014 (-1.676) 

Parallel parking is permitted -0.346 (-67.640) 

       Safety-conscious -0.041 (-1.905) 

Parking turnover rate 
(base: low and moderate parking turnover) 

High -0.184 (-22.342) 

       Safety-conscious -0.191 (-6.903) 

Length of parking area 
(base: short 0.5-1 city blocks) 

Moderate (2-4 city blocks) -0.297 (-26.257) 

High (5-7 city blocks) -0.341 (-24.171) 

       Safety-conscious -0.299 (-5.928) 

Parking occupancy rate 
(base: low 0-25%) 

Moderate (26-75%) -0.144 (-13.114) 

High (76-100%) -0.483 (-29.018) 

       Safety-conscious -0.138 (-2.556) 

Bicycle Facility 
Characteristics 

Continuous bicycle facility   
(base: discontinuous) 

Continuous facility 0.529 (72.071) 

Bicycle facility width/type 
(base: a bicycle lane of width 3.75 or 6.25 ft) 

No bicycle lane and a wide 
outside lane of width ≥ 10.5 ft 

0.013 (2.107) 

Roadway 
Physical 

Characteristics 

Terrain grade 
(base: flat-no hills) 

Moderate hills 0.230 (27.817) 

Commuting bicycling -0.101 (-9.415) 

Pro-bicycle -0.115 (-5.331) 

Steep hills 0.087 (5.510) 

Commuting bicycling -0.119 (-11.363) 

Pro-bicycle -0.252 (-7.597) 

# of Stop signs, red lights, and cross streets 
(base: low 1-2) 

Moderate (3-5) -0.183 (-18.209) 

Pro-bicycle -0.045 (-1.946) 

High (more than 5) -0.315 (-24.695) 

Pro-bicycle -0.045 (-1.946) 

Roadway 
Functional 

Characteristics 

Traffic volume 
(base: light) 

Moderate -0.273 (-23.768) 

Safety-conscious -0.339 (-13.534) 

Heavy -0.882 (-61.996) 

Safety-conscious -0.479 (-15.791) 

Speed limit 
(base: low-less than 20 mph and moderate 
30-35 mph) 

High (more than 35 mph) -0.337 (-33.388) 

Safety-conscious -0.195 (-6.923) 

Roadway 
Operational 

Characteristics 
Travel time Travel time (minutes) -0.032 (-12.610) 
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Table 4. Measures of Fit of Route Choice Model in Estimation and Validation Sample 

Summary Statistic 
Estimation Sample Validation Sample 

SN-ICLV ICLV MNP SN-ICLV ICLV MNP 

Log-likelihood at equal shares for choice model  -13183.35 -5655.66 

Predictive log-likelihood at convergence -3091.77 -3121.36   -3416.18 -1441.78 -1492.38 -1584.30 

Number of parameters 32 30 31 32 30 31 

Number of observations 4000 1729 

Predictive adjusted likelihood ratio index  0.763 0.761 0.739 0.740 0.731 0.714 

Predictive likelihood ratio test between SN-ICLV 
and ICLV models 

Test statistic [-2*(LLICLV-LLSN-ICLV)]=59.18 
> Chi-Squared statistics with 3 degrees of 

freedom at any reasonable level of 
significance 

Test statistics [-2*(LLICLV-LLSN-ICLV)]=99.20 
> Chi-Squared statistics with 3 degrees of 

freedom at any reasonable level of 
significance 

Non-nested adjusted likelihood ratio test between 
the SN-ICLV and MNP models (validation) 

  0001.000.23     0001.045.18   

Average probability of correct prediction 0.75 0.73 0.69 0.69 0.66 0.64 

 


