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We present ONETEP ~order-N electronic total energy package!, a density functional program for
parallel computers whose computational cost scales linearly with the number of atoms and the
number of processors. ONETEP is based on our reformulation of the plane wave pseudopotential
method which exploits the electronic localization that is inherent in systems with a nonvanishing
band gap. We summarize the theoretical developments that enable the direct optimization of strictly
localized quantities expressed in terms of a delocalized plane wave basis. These same localized
quantities lead us to a physical way of dividing the computational effort among many processors to
allow calculations to be performed efficiently on parallel supercomputers. We show with examples
that ONETEP achieves excellent speedups with increasing numbers of processors and confirm that the
time taken by ONETEP as a function of increasing number of atoms for a given number of processors
is indeed linear. What distinguishes our approach is that the localization is achieved in a controlled
and mathematically consistent manner so that ONETEP obtains the same accuracy as conventional
cubic-scaling plane wave approaches and offers fast and stable convergence. We expect that
calculations with ONETEP have the potential to provide quantitative theoretical predictions for
problems involving thousands of atoms such as those often encountered in nanoscience and
biophysics. © 2005 American Institute of Physics. @DOI: 10.1063/1.1839852#

I. INTRODUCTION

The equations of quantum mechanics govern the corre-
lated motions of electrons and nuclei and are thus essential in
any theoretical description of the chemical or physical prop-
erties of matter. Apart from trivial cases, these equations are
impossible to solve with pen and paper and highly sophisti-
cated computational methods for their solution have been
devised.1,2 Amongst them the Kohn–Sham density functional
theory ~DFT! formalism3,4 for electronic structure calcula-
tions has become established as an approach that provides a
very good description of electron correlation effects while
keeping the size of calculations tractable. DFT calculations
have become an indispensable tool for the study of matter
with myriads of applications in areas such as chemistry,5

biochemistry,6 polymers,7 and materials8,9 to name a few.
However even DFT calculations suffer from an unfavorable
scaling: the time taken to perform such a calculation on a
computer increases asymptotically with the cube of the num-
ber of atoms. This cubic scaling is a consequence of the
delocalized nature of the wave functions which are the eigen-
solutions of the Kohn–Sham single particle Hamiltonian,4,10

and limits the number of atoms we can treat to a few hundred
at most. There are many exciting problems at the interface
between the microscopic and mesoscopic worlds,
particularly in the emerging fields of biophysics and nano-

science, whose theoretical investigation would be possible
only with an accurate quantum mechanical description of the
interactions between thousands of atoms.

In an attempt to extend the application of DFT to such
problems, researchers in recent years have put substantial
effort into the construction of DFT methods which are
linear-scaling,11,12 i.e., with a cost which increases asymp-
totically only linearly with the number of atoms. These meth-
ods exploit the electronic localization13,14 that is inherent in
systems with a band gap and seek to optimize quantities that
~in principle! are infinite in extent, but decay exponentially,
such as the single-particle density matrix10 or Wannier
functions.15,16 A common point between these methods is
that the onset of linear-scaling occurs only after the number
of atoms exceeds a critical value. An important performance
characteristic then is the crossover point, the number of at-
oms at which a linear-scaling approach becomes faster than a
conventional cubic-scaling approach. This crossover point is
system dependent but often lies in the order of hundreds of
atoms. As single processor workstations are capable of cal-
culations with roughly no more than 100 atoms, it is impor-
tant to use multiprocessor ~parallel! computers if we are to
reap any benefits from linear-scaling DFT. Conversely, we
could argue that only linear-scaling methods are suited to
take best advantage of parallel computers since, only with
them does an eightfold increase in computational power al-
low calculations for eight times as many atoms instead of
only twice as many atoms as in conventional approaches. It
is not surprising therefore that the development of linear-
scaling methods has often advanced hand in hand with the
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development of suitable algorithms for calculations on par-
allel computers.17–20

To be useful, a linear-scaling method should have a sys-
tematic way to reduce error to any value desired, in the same
way as conventional methods. However progress towards
this goal has been slow as it has been difficult to devise
generally applicable schemes to truncate the exponentially
decreasing ‘‘tails’’ of the density matrix or Wannier functions
while maintaining control over the accuracy or the stability
of the iterative minimization procedure. Most linear-scaling
approaches use nonorthogonal localized basis sets to express
their ~also localized! functions. These approaches can be
classified into methods which use atomic-like basis sets such
as Gaussian functions,21 Slater functions,22 spherical Bessel
functions23 or numerical atomic orbitals,24 and methods
which use simpler localized basis sets such as polynomials25

or real-space grids.19,26

Our linear-scaling method27 is different from all other
approaches as it uses a basis set of highly localized functions
which are orthogonal. This approach allows for systematic
control of truncation errors and is compatible with an accu-
rate representation of the kinetic energy operator,28 which
ensures variational behavior with respect to the basis set.29

Our linear-scaling method is implemented in ONETEP ~order-
N electronic total energy package! which has been developed
with algorithms intended for calculations on parallel super-
computers and is the subject of this paper.

We give a brief presentation of the formalism of linear-
scaling methods in Sec. II. In Sec. III we focus on ONETEP,
and explain its capabilities with theoretical arguments and
example calculations. In Sec. IV we give an overview of the
principles behind the parallel implementation of ONETEP

which is based again on the real space localization. Finally in
Sec. V we demonstrate how ONETEP takes advantage of par-
allel computers in order to perform calculations with thou-
sands of atoms.

II. THEORETICAL BACKGROUND

Our aim is to solve a set of single-particle Schrödinger
equations in a potential V(r), as is the case in DFT

Ĥc i~r!5F2

\2

2m
¹2

1V~r!Gc i~r!5e ic i~r!, ~1!

where Ĥ is the single-particle Hamiltonian of the system
with energy eigenvalues e i and corresponding spatial eigen-
functions ~also known as ‘‘orbitals’’! c i(r) which are or-
thogonal.

All the information about the ground state of our system
is contained in the single-particle density matrix r(r,r8),

r~r,r8!5(
i

f ic i~r!c i
*~r8!, ~2!

where f i is the occupancy of state c i(r) and at zero tempera-
ture it is restricted to either 0 or 1. The charge density n(r),
which is the central quantity in DFT, is given by the diagonal
elements of the density matrix

n~r!52r~r,r!, ~3!

where the factor of 2 above is included to account for elec-
tronic spin as we assume here a closed shell description.
Provided there is a band gap in the system, the density ma-
trix ~2! decays exponentially30–32 as a function of the dis-
tance between r8 and r. This property can be exploited to
truncate the density matrix to a sparse band-diagonal form
such that the amount of information it contains increases
linearly with its size. To achieve this in practice, the density
matrix is expressed in the equivalent form ~throughout this
paper a summation will be implied over repeated Greek in-
dices!

r~r,r8!5fa~r!Kabfb*~r8!, ~4!

where the $fa% are a set of spatially localized, nonorthogo-

nal basis functions and the matrix K, as defined by the above
equation, is called the density kernel.33 This form allows for
a practical, ‘‘coarse-grained’’ truncation of the density matrix
through truncation of the density kernel. Thus we ensure the
density kernel is sparse by enforcing the condition

Kab
50 when uRa2Rbu.rcut , ~5!

where Ra and Rb are the ‘‘centers’’ of the localization re-
gions of the functions fa(r) and fb(r).

Often a linear combination of atomic orbitals ~LCAO!
approach is followed where the basis $fa% consists of atomic
orbitals. Their radial shapes can be expanded in spherical
Bessel functions,23 Gaussians34,35—where sparsity is com-
monly imposed via ‘‘thresholding’’ 36 rather than by Eq.
~5!—and numerical atomic orbitals as in the SIESTA

program37 where instead of the density kernel, orthogonal
Wannier-like functions are truncated. All these sets of func-
tions are taken preoptimized and remain fixed during the
calculation. Based on only operations with a linear cost such
as the construction of the Hamiltonian matrix in the LCAO
basis and sparse matrix algebra, a number of efficient
techniques38–41 have been developed that minimize the en-
ergy while satisfying the difficult nonlinear constraints of
density matrix idempotency or Wannier-like function
orthogonality.42

The main concern with approaches of the LCAO type is
the transferability of the basis set. Even with the available
recipes for the generation of high quality atomic
orbitals,24,43–45 the number of such functions per atom can be
large, and a good level of expertize is needed to generate a
basis set of the size and type that balances efficiency and
required accuracy for each new problem. The size of sparse
matrices for a given rcut increases with the square of the
number of atomic orbitals per atom while the operation cost
~prefactor! for linear-scaling matrix multiplications increases
with the cube. As a rule, preliminary calculations with a
number of basis sets are performed to select the most suitable
one and ‘‘calibrate’’ the method. This is in contrast to the
‘‘black box’’ behavior of the plane wave approach where
systematic improvement of the basis is guaranteed by in-
creasing a single parameter. Hence, while low level LCAO
calculations are relatively easy to do, improving the accuracy
quickly becomes both technically demanding and computa-
tionally very expensive.
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III. OVERVIEW OF ONETEP

The state of affairs in ONETEP is different from other
linear-scaling approaches. We overcome the matrix size
problem by using a minimal number of $fa% localized func-
tions per atom and address the transferability issue by opti-
mizing these functions during the calculation. Therefore the
$fa% are no longer our ~atomic orbital! basis set, rather they
are quantities to be determined during the calculation along
with the density kernel K. We call the $fa% nonorthogonal
generalized Wannier functions ~NGWFs! ~Ref. 27! ~see Fig.
1!. We enforce strict localization on our NGWFs by confin-
ing them to spherical regions centered on atoms and by con-
stantly truncating any contributions that may develop outside
these localization spheres during our conjugate gradients

optimization46 procedure. To achieve this, we expand them
in a basis of periodic sinc47 or psinc48 functions $Dk(r)%:

fa~r!5(
k

Dk~r!Ck ,a . ~6!

Each psinc is a highly localized spike-like function and the
index k indicates the grid point on which Dk(r) is centered
as the set of psincs covers a regular grid of points throughout
the volume of the simulation cell. Each fa(r) then is con-

fined in its localization sphere of radius r loc
a centered on an

atom, by truncating its expansion in Eq. ~6!, as shown in Fig.
2. In general, for an arbitrary localized basis set, such an act
of truncation would lead to a breakdown of the conjugate
gradients minimization schemes employed in electronic
structure calculations.46 Only for the case of an orthogonal
basis set are the gradient contributions inside and outside the
localization sphere decoupled49 so that the selective optimi-

zation of quantities inside the localization sphere is stable.
By construction, the psinc basis set is orthogonal.

The psinc functions, through which all quantities are ul-
timately expressed in ONETEP, are connected to plane waves
by means of a Fourier transform. Due to this property
ONETEP is essentially a linear-scaling reformulation of the
plane wave pseudopotential DFT approach. The quality of
the psinc basis set can be systematically improved by vary-
ing only one parameter, the grid spacing of the psincs, which
is equivalent to the kinetic energy cutoff of the plane waves.
The equivalence of our method with the conventional plane-
wave pseudopotential approach can be best demonstrated by
example. We have chosen here the case of the hydrogen bond
formed by two water molecules as a rather challenging test
involving a weak chemical bond, close to the limits of the
accuracy of DFT. In Fig. 3 we plot the energy as a function
of the bond distance. Calculations with ONETEP and with the
conventional plane wave pseudopotential approach as imple-
mented in the CASTEP code50 were carried out using the same
norm-conserving pseudopotentials and plane waves up to the

FIG. 1. ~Color! Left, one delocalized orbital c i(r) from a conventional DFT calculation with the CASTEP code ~Ref. 50! on a peptide. Right, three optimized
NGWFs fa(r), fb(r), and fg(r) from a ONETEP calculation on the same peptide.

FIG. 2. Imposing localization on the fa(r) function in real space. From the
regular grid of psinc functions Dk(r), only the ones within its localization
sphere are allowed to contribute to fa(r).

FIG. 3. The potential energy curve of two hydrogen bonded water mol-
ecules as a function of H-bond distance calculated with ONETEP ~this work!,
CASTEP ~conventional plane wave pseudopotential approach!, and NWChem
~Gaussian basis all-electron approach!.
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same kinetic energy cutoff of 95 Ry. The NGWF localization
sphere radii r loc

a in ONETEP were set to 3.3 Å. There is excel-
lent agreement between ONETEP and CASTEP as the two
curves essentially coincide. The equilibrium bond length and
the curvature of the curve at this length as determined by
ONETEP differ from the CASTEP results by only 0.3% and
0.5%, respectively. In the same figure we also show the po-
tential energy curve obtained with the all-electron Gaussian
basis function code NWChem ~Ref. 51! using the cc-pVTZ
basis52 augmented with its corresponding set of diffuse
functions.53 This substantial basis set is necessary here to
describe accurately the weak interactions due to the hydro-
gen bond and comprises 280 contracted Gaussian atomic or-
bitals. In contrast, the ONETEP calculation uses only 12 NG-
WFs ~four on each oxygen atom and one on each hydrogen
atom!—these numbers show how large the difference in ma-
trix sizes in accurate calculations with ONETEP and LCAO-
type codes can be. Given the fact that NWChem performs
all-electron calculations, the agreement with ONETEP is ex-
tremely good: the equilibrium bond length and the curvature
of the curve at this length as determined by ONETEP differ
from the NWChem results by 0.6% and 2.3%, respectively. It
is also worth observing from Fig. 3 the smoothness of the
ONETEP curve. This is a consequence of the strict mathemati-
cal consistency of all operations in ONETEP, such as the fact
that because of the plane wave nature of our basis we are
able to calculate both the kinetic and Hartree energies using
the same Fourier transform methods.54 This, combined with
the fact that the psinc functions are fixed in space which
means that they do not involve so-called ‘‘Pulay forces,’’ 55

greatly facilitates the essential calculation of forces on atoms
irrespective of their position.

A known difficulty of self-consistent calculations is that
the number of iterations needed to reach a given convergence
threshold per atom can be very large, and can often be exac-
erbated by large basis sets. Even in methods such as ONETEP

where the computational cost of each NGWF conjugate gra-
dients iteration is linear-scaling, the number of such itera-
tions can be so large that self-consistent minimization is pro-
hibitively inefficient. To overcome this obstacle, we have
developed a preconditioning scheme48 which enables our
calculations to converge in a small number of iterations
~typically 20–40! which is independent of the number of
atoms. We will return to this point in Sec. V.

IV. PARALLELIZATION STRATEGY

Our formulation of the ONETEP algorithm is similar to
that presented in our earlier work27 with a few exceptions
noted below. We shall only review the parts relevant to the
implementation on parallel computers here; for full details
we refer the reader to our earlier paper.27 Furthermore, here
we seek to give the reader a general overview of concepts
rather than an exhaustive description of algorithms which we
leave for another, more technical paper.

We use the Message Passing Interface ~MPI! library for
communication between processors56,57 and note that in this
parallelization approach each processor possesses its own in-
dependent portion of the data. Our parallelization strategy

requires distribution across processors both of the computa-
tional effort and the data. Our model is such that all proces-
sors perform equivalent tasks at all times and as a result our
parallel code can also run on computers with a single pro-
cessor without any modification. In our discussion we will
use NP to represent the total number of processors, num-
bered from 0 to (NP21).

A. Data parallelization

Two types of data are parallelized in ONETEP. First, there
is data directly associated with each atom such as the expan-
sion coefficients Ck ,a of the NGWFs in the psinc basis ac-
cording to Eq. ~6!. The number of such coefficients increases
linearly with the number of atoms, and since our basis set
consists of a large number of highly localized psinc functions
distribution of such quantities is essential. Secondly, there is
data whose size is proportional to the volume of the simula-
tion cell, such as the charge density and the local potential.
While their size formally does not depend on the number of
atoms, in practice larger simulation cells are needed to ac-
commodate increasing numbers of atoms and soon distribu-
tion of simulation cell related quantities becomes essential.
Figure 4 illustrates our parallelization strategy for atomic

data and for simulation cell data.
Our parallelization strategy for the atomic data takes ad-

vantage of the strict localization of the NGWFs. Each pro-
cessor P is assigned a number of atoms Nat

(P) which is a
subset of the total number of atoms Nat in the system. The
distribution of atoms is performed so that the number of
NGWFs NNGWF

(P) on each processor is approximately the same
in order to achieve balance in the load of the computation.
Another important issue is the minimization of the necessary
communication between processors. As shown in Fig. 4, we
desire the atoms allocated to a processor to be in close prox-
imity so that the number of their NGWF localization sphere
overlaps with those of atoms belonging to other processors is
as small as possible. This, in turn, minimizes the number of
NGWFs that need to be communicated from one processor to
another when computing quantities such as the Hamiltonian

FIG. 4. Schematic two-dimensional example of our data parallelization
strategy. For clarity only four processors are shown ~numbered from 0 to 3!
and nine atoms which are represented as dots. The distribution of atomic
data to processors involves partitioning the material into fragments made up
of atoms in close proximity. The distribution of simulation cell data involves
partitioning the simulation cell into slabs.
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matrix in the NGWF representation Hab5^fauĤufb&. To
achieve this goal we create a Peano ‘‘space filling’’ fractal
curve based on which we rearrange the atoms according to
their proximity in space.18 A further positive outcome from
this technique is that it leads to clustering of nonzero values
near the diagonal of our sparse matrices.

The distribution of simulation cell related quantities such
as the charge density to processors is more straightforward,
as shown in Fig. 4. The simulation cell is partitioned into
slabs along one of its dimensions and each processor is allo-
cated the quantities that belong to its slab.

B. Parallelization of operations and communication

The distribution of data described in the preceding sec-
tion allows the division of the computational work among
the processors. The bulk of the computation goes first into
the calculation of the total electronic energy

E@$Kab%,$fa%#52KabHba1EDC@n# , ~7!

where the first term is the band structure energy and the
second term is the ‘‘double-counting’’ 11 correction which
contains the exchange-correlation energy and terms compen-
sating for spurious interactions contained in the first term.
Second, but just as demanding from a computational view-
point, we have the calculation of the gradient of the energy
with respect to the NGWFs in the psinc basis

dE

dfa~r!
54 Ĥfb~r!Kba. ~8!

ONETEP is designed so that the number of operations to cal-
culate these quantities increases asymptotically only linearly
with the number of atoms.27 As atomic data are distributed,
communication between processors is required, and the en-
ergy of Eq. ~7! is calculated as a sum of contributions from
each processor

E@$Kab%,$fa%#5 (
P50

NP21

E (P)@$Kab%,$fa%#

5 (
P50

NP21 F (
P850

NP21

Kab^fb
(P8)u Ĥufa

(P)&

1EDC@n (P)#G , ~9!

where each function fb
(P8)(r) from a processor P8ÞP must

be communicated to P , provided its localization sphere over-
laps with the sphere of fa

(P)(r). The second term of Eq. ~9!
is calculated entirely on P from its slab of the charge density
n (P), with the exception of the exchange-correlation energy
for the case of generalized gradient approximation ~GGA!
functionals where some communication between the proces-
sors is required to obtain the gradient of the charge density
(“n) (P). A related approach is followed in the calculation of
the NWGF gradient in Eq. ~8! where each processor only
computes and stores the gradient relevant to its functions
dE/dfa

(P)(r).

A suitable communication model for the above tasks
should allow for pairwise ‘‘point-to-point’’ communication
between all distinct pairs of processors. A further demand is
that the model must allow processors uninterrupted compu-
tation while sending and receiving only the NGWFs needed
due to overlapping localization spheres. We have developed
an efficient communication algorithm which is scalable in
principle to an arbitrary number of processors. Our commu-
nication model consists of 2NP21 steps and is outlined in
Fig. 5. Again, for the sake of conciseness, we focus here on
one specific example with four processors, therefore we have
2342157 steps. At each step we show four boxes num-
bered from 0 to 3, representing the four processors. The ar-
rows connecting them indicate the direction of point-to-point
communication. Next to each communication step we show a
434 matrix whose elements represent all the possible pairs
of processors. The shaded elements represent the computa-
tion taking place at each step: the column is the processor
that performs the computation while receiving data from the
processor of the corresponding row. Step 1 always involves
the diagonal elements of the matrix and thus no communica-
tion. As a consequence of our parallelization strategy for
atomic data, the matrix of Fig. 5 has increasing sparsity away
from the diagonal. Our algorithm takes this feature into ac-
count and communicates data only when it is required for
computation.

Our parallelization strategies for atomic data and simu-
lation cell data cannot be independent of each other; for ex-
ample, the calculation of the Hartree ~Coulomb! potential
contribution to the Hab matrix requires operations between
atomic data such as the $fa% and simulation cell data such as
the Hartree potential V̂H(r). These operations are performed
in subregions of the simulation cell which are independent of
system size by means of the FFT-box technique which allows
us to retain an accurate representation of quantum mechani-
cal operators and their properties.28,54

V. LINEAR-SCALING WITH PROCESSORS
AND WITH ATOMS

ONETEP is a general purpose electronic structure code
and as such it should be able to take advantage of parallel
computers in all potential applications. While ONETEP has all
the familiar characteristics of the plane wave approach ~sys-
tematic basis set, periodic boundary conditions, pseudopo-
tentials! most of the computation is done in real space with
localized functions. Based on these considerations, the par-
allel algorithms we have described in Sec. IV are intended to
be scalable with the size of the calculation to an arbitrary
number of processors. In practice we need to have more than
one atom per processor for the communication not to domi-
nate the total computational time. However, we have ob-
served that only ten atoms per processor Nat

(P) is already
enough for good parallel scaling in most cases. All the cal-
culations we report here were performed on the Sun Fire 15K
parallel supercomputer of the Cambridge-Cranfield high per-
formance computing facility ~CCHPCF!.

A straightforward way to assess the performance of our
code on parallel computers is by measuring the speedup of
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the computational time on increasing the number of proces-
sors. In Fig. 6 we show the speedups we obtain for calcula-
tions run on 4, 8, 16, 32, 48, and 64 processors. We focus
here on two examples, an 800-atom chiral boron nitride
nanotube and a 1403-atom polyglycine peptide in a globular
conformation. We observe that both curves show an almost
linear speedup up to 64 processors. The speedups we achieve
remain substantial even when we get to 64 processors with

79% of the ideal value for the case of the nanotube and 72%
in the case of polyglycine. The very regular structure of the
nanotube leads to an ideal partitioning of the atomic data by
our parallelization strategy to achieve a near-optimal balance
of the computation and communication load, hence the par-
allel speedup in this case is greatest. The irregular three-
dimensional structure of the polyglycine is a challenging test
for our parallel algorithms. While these irregularities are re-
flected in the jumps that the polyglycine curve in Fig. 6
displays with the increasing number of processors, it is par-
ticularly pleasing to note that the speedups remain high
through its range, from which we can conclude that the dis-
tribution of atoms to processors and hence the balancing of
tasks is still done in a satisfactory way.

In addition to the linear decrease of the time for a given
calculation as a function of increasing the number of proces-
sors, the other significant performance advantage of a code
such as ONETEP is the linear-scaling of the total time with the

FIG. 5. Our point-to-point communi-
cation model. Only four processors are
shown for clarity ~numbered from 0 to
3!. The arrows indicate the direction
of communication at each step. The
column of each shaded element shows
the processor performing computa-
tions while receiving data from the
processor of the corresponding row.

FIG. 6. Parallel scalability tests of ONETEP on the SUN Fire 15K supercom-
puter of the CCHPCF. The speedup for the time taken for a single NGWF
iteration is plotted as a function of the number of processors for a polygly-
cine molecule ~broken line! and a boron nitride nanotube ~solid line!.

TABLE I. Total energy calculations with ONETEP on pieces of DNA with 64
processors. The time taken in hours is shown as a function of the number of
atoms, and equivalently, base pairs. Also shown are the number of NGWF
iterations needed to converge and the final convergence of the energy per
atom.

Atoms Base pairs Total time ~h! Iterations DE/atom (Eh)

117 2 2.0 26 1.331028

379 6 6.4 29 6.631029

641 10 11.2 29 7.631029

1296 20 26.1 30 1.131028

1951 30 42.8 29 1.131028

2606 40 56.9 31 6.631029
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number of atoms for a fixed number of processors. We have
used DNA fragments of increasing length to test the linear-
scaling properties of ONETEP with the number of atoms. The
structures are of B-DNA which is the form in which DNA is
commonly encountered in physiological conditions within
cells and are constructed by repeating an alternating se-
quence of adenine-thymine and guanine-cytosine base pairs.
We have used an orthorhombic simulation cell for these cal-
culations with dimensions 30 Å330 Å3220 Å. It is pos-
sible to have such massive simulation cells in our calcula-
tions because in contrast to the conventional plane wave
approach where empty space is very expensive in memory,
ONETEP involves only atom-localized quantities and empty
space costs little. While our simulation cell obeys periodic
boundary conditions, it is so large that the supercell

approximation46 holds extremely well, i.e., all our DNA
pieces are nonperiodic ~their chemically active ends were
terminated by hydrogen atoms! and are so far apart from
their periodic images that for all intents and purposes they
can be considered as isolated. The DNA calculations were
performed at a psinc grid spacing equivalent to a plane wave
kinetic energy cutoff of 42 Ry. We have used standard norm-
conserving pseudopotentials for all elements taken from the
CASTEP ~Ref. 50! library of pseudopotentials. The radii of the
NGWF localization spheres r loc

a were set to 3.2 Å for the
hydrogens and 3.3 Å for other elements while the cutoff
threshold rcut for the density kernel K was set to 13.2 Å.
These generous thresholds yield results practically indistin-
guishable from the infinite cutoff limit, yet still the time and

memory taken by our calculations increase only linearly with
the number of atoms rather than as the cube. We have per-
formed calculations on fragments with 2, 6, 10, 20, 30, and
40 base pairs ranging from 117 to 2606 atoms using 64 pro-
cessors. Table I summarizes our results. We considered the
conjugate gradients optimization of the energy to be con-
verged when the root-mean-square value of the gradient with
respect to all NGWFs @Eq. ~8!# was less than 1026 Eh a0

3/2 .
This threshold leads to convergence in the energies of
1028 Eh per atom or better as shown in Table I.

In Fig. 7 we plot the time taken to calculate the total
energy for each piece of DNA as a function of the number of
atoms. We observe that the curve obtained is essentially a
straight line. To compare with a conventional cubic-scaling
plane wave code we also show in the same figure calcula-
tions with CASTEP,50 again on 64 processors, with the same
kinetic energy cutoff, pseudopotentials, and convergence
thresholds. What differs is that we are restricted to using a
simulation cell with much smaller dimensions 30 Å330 Å
330 Å for the CASTEP calculations as the memory require-
ments for its delocalized orbitals are proportional to the vol-
ume of the simulation cell. The largest piece of DNA that can
fit in this simulation cell is only eight base pairs long ~510
atoms! but as we can see in Fig. 7 the cost of the calculation
due to cubic scaling is already so severe that, even without
the memory limitations, adding more atoms would soon lead
to unfeasibly long computing times. The inset in Fig. 7 fo-
cuses on two important points about the ONETEP calculation.
First, the cost of each iteration is indeed linear with the num-

FIG. 7. Total energy calculations with ONETEP on pieces of DNA with 64 processors. The total time taken by each DNA piece is plotted as a function of the
number of atoms. Also shown are times for calculations of equivalent quality with CASTEP. More details on the ONETEP calculations are shown in the inset: on
the left axis the number of NGWF iterations is plotted as a function of the number of atoms ~triangles! and on the right axis the time per iteration in hours
is plotted as a function of the number of atoms ~squares!.
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ber of atoms. Second, the linearity of the total computational
time as a function of the number of atoms is a result of our
preconditioning scheme48 which ensures this ‘‘true linear-
scaling’’ behavior by making the number of iterations small
and independent of the number of atoms, as mentioned in
Sec. III.

Quantum mechanical calculations produce a great deal
of information that can be difficult to analyze, especially
when very large numbers of atoms are involved as in the
case of ONETEP. It is therefore very helpful to have the ca-
pability to extract information in a visual manner. For this
reason we have built into ONETEP the functionality to output
information from our calculations in a form suitable for vi-
sualization. An example is shown in Fig. 8 where we show
three dimensional plots obtained from our calculation on the
20 base-pair ~1296 atom! piece of DNA. On the left side of
Fig. 8 we show an isosurface of the charge density corre-
sponding to a value of 0.005 e2/a0

3 which is a quantity di-
rectly comparable with experimental x-ray diffraction data.
The shape of this surface is very informative: one can distin-
guish a major and a minor groove which are characteristic of
the structure of B-DNA. It also gives us an indication of the

areas most likely to be reached by enzymes intended to dock
with DNA. This isosurface is colored according to the values
of the total electrostatic potential, ranging from blue for the
low values to red for the high values. Another useful plot is
shown on the right side of Fig. 8 which depicts contours of
the charge density on the plane defined by the heterocyclic
rings of a cytosine-guanine base pair. These contours clearly
show that the bases are connected with three hydrogen bonds
and their relative strengths are also indicated.

Due to the relationship of ONETEP with the conventional
plane wave approach, we can often take advantage of the
significant technical experience which has been accumulated
when adding functionality to the code. Thus, we have al-
ready implemented in ONETEP a range of well established
GGA exchange-correlation functionals. We show in Table II
how our calculations with these functionals compare with the
well-established CASTEP code. As a test system we used the
smallest of our DNA pieces ~two base pairs, 117 atoms, its
structure is shown on the left of Fig. 7! and a much smaller
simulation cell ~dimensions 20 Å320 Å320 Å) so that the
CASTEP calculations do not take excessive amounts of time to
run. All the other parameters were kept the same as in our

FIG. 8. ~Color! ONETEP calculations on a 20 base-pair piece of DNA ~1296 atoms!. Left, electrostatic potential plotted on an isosurface of the charge density.
Right, charge density contours on the plane of the hydrogen bonds of a cytosine-guanine pair.
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larger DNA calculations. The quantity we compare here is
the binding energy between the DNA piece and its two iso-
lated strands. This binding energy mainly arises from the five
hydrogen bonds ~two from the adenine-thymine pair and
three from the guanine-cytosine pair! that keep the DNA to-
gether. In Table II we show the binding energies we obtained
for the various functionals with ONETEP and CASTEP. We ob-
serve that the agreement between the two codes is exception-
ally good with differences in the range 0.5%–1.5%.

VI. CONCLUSIONS

We have presented ONETEP, an implementation for par-
allel computers of our linear-scaling DFT method27 which is
a reformulation of the conventional cubic-scaling plane wave
approach. We have shown that by exploiting the real space
localization of the electronic system that is inherent in non-
metallic materials, we are able to optimize with linear cost
strictly localized quantities expressed in terms of a delocal-
ized plane wave basis. These same localized quantities have
led us to a physical way of dividing the computational effort
among many processors to achieve excellent computational
speedups with increasing numbers of processors. We have
confirmed that the time taken by ONETEP as a function of
increasing number of atoms for a given number of processors
is indeed linear, which means that we can take full advantage
of computational resources. We have performed density
functional calculations on a number of systems containing
thousands of atoms which confirm that the localization is
always achieved in a controlled and mathematically consis-
tent manner. Thus, ONETEP provides the same accuracy as
conventional cubic-scaling plane wave approaches, and of-
fers fast and stable convergence. We believe that ONETEP will
open the door to a whole new level of accurate large scale
simulation with enormous potential for applications in the
computational modeling of problems in important areas such
as nanoscience and biophysics. We will soon be able to use
ONETEP to optimize structures and perform dynamical simu-
lations. Furthermore we expect that the common starting
point we share with the conventional plane wave approach
will facilitate the reformulation to the ONETEP framework of
all the computational machinery that has been developed for
the calculation of important experimental observables such
as second and higher order derivatives of the energy to ex-
ternal perturbations,58 nuclear magnetic resonance chemical

shifts,59 or changes in electric polarization.60 By coupling
ONETEP with a new hybrid scheme61 for classical mechanical
simulations with quantum accuracy in required regions we
can also envisage a capability to perform simulations with
millions of atoms and thus approach problems well into the
mesoscopic regime.
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8 A. H. Nevidomskyy, G. Csányi, and M. C. Payne, Phys. Rev. Lett. 91,
105502 ~2003!.

9 L. Colombi Ciacchi and M. C. Payne, Phys. Rev. Lett. 92, 176104 ~2004!.
10 R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Mol-

ecules ~Oxford University Press, New York, 1989!.
11 G. Galli, Curr. Opin. Solid State Mater. Sci. 1, 864 ~1996!.
12 S. Goedecker, Rev. Mod. Phys. 71, 1085 ~1999!.
13 W. Kohn, Phys. Rev. 115, 809 ~1959!.
14 W. Kohn, Phys. Rev. Lett. 76, 3168 ~1996!.
15 E. I. Blount, Solid State Phys. 13, 305 ~1962!.
16 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 ~1997!.
17 C. M. Goringe, E. Hernández, M. J. Gillan, and I. J. Bush, Comput. Phys.

Commun. 102, 1 ~1997!.
18 M. Challacombe, Comput. Phys. Commun. 128, 93 ~2000!.
19 J.-L. Fattebert and J. Bernholc, Phys. Rev. B 62, 1713 ~2000!.
20 C. K. Gan and M. Challacombe, J. Chem. Phys. 118, 9128 ~2003!.
21 E. R. Davidson and D. Feller, Chem. Rev. ~Washington, D.C.! 86, 681

~1986!.
22 C. F. Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends, Theor. Chem.

Acc. 99, 391 ~1998!.
23 P. D. Haynes and M. C. Payne, Comput. Phys. Commun. 102, 17 ~1997!.
24 J. Junquera, O. Paz, D. Sánchez-Portal, and E. Artacho, Phys. Rev. B 64,

235111 ~2001!.
25 E. Hernández, M. J. Gillan, and C. M. Goringe, Phys. Rev. B 55, 13485

~1997!.
26 P. Fernández, A. Dal Corso, A. Baldereschi, and F. Mauri, Phys. Rev. B

55, R1909 ~1997!.
27 C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Diéguez, and M. C. Payne,

Phys. Rev. B 66, 035119 ~2002!.
28 C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, C. J. Pickard, and M. C.

Payne, Comput. Phys. Commun. 140, 315 ~2001!.
29 C.-K. Skylaris, O. Diéguez, P. D. Haynes, and M. C. Payne, Phys. Rev. B

66, 073103 ~2002!.
30 R. Baer and M. Head-Gordon, Phys. Rev. Lett. 79, 3962 ~1997!.

TABLE II. The binding energy in kcal/mol for the two strands of a two
base-pair piece of DNA ~117 atoms! as calculated with various exchange-
correlation functionals with ONETEP ~this work! and with CASTEP ~Ref. 50!.
The % difference of the ONETEP results with respect to CASTEP is also shown.

Functional ONETEP CASTEP Difference ~%!

LDAa,b 61.7 61.4 0.5
PBEc 42.6 42.3 0.7
RPBEd 32.9 32.4 1.5
PW91e 44.0 43.5 1.1

aReference 62.
bReference 63.
cReference 64.
dReference 65.
eReference 66.

084119-9 Linear-scaling density functional J. Chem. Phys. 122, 084119 (2005)

Downloaded 31 Mar 2011 to 18.111.89.111. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



31 S. Ismail-Beigi and T. A. Arias, Phys. Rev. Lett. 82, 2127 ~1999!.
32 L. He and D. Vanderbilt, Phys. Rev. Lett. 86, 5341 ~2001!.
33 R. McWeeny, Rev. Mod. Phys. 32, 335 ~1960!.
34 C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem.

Phys. Lett. 253, 268 ~1996!.
35 M. C. Strain, G. E. Scuseria, and M. J. Frisch, Science 271, 51 ~1996!.
36 E. Schwegler and M. Challacombe, J. Chem. Phys. 105, 2726 ~1996!.
37 J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera, P. Ordejón, and

D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 ~2002!.
38 X. P. Li, R. W. Nunes, and D. Vanderbilt, Phys. Rev. B 47, 10891 ~1993!.
39 J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106, 5569 ~1997!.
40 P. D. Haynes and M. C. Payne, Phys. Rev. B 59, 12173 ~1999!.
41 U. Stephan, Phys. Rev. B 62, 16412 ~2000!.
42 J. Kim, F. Mauri, and G. Galli, Phys. Rev. B 52, 1640 ~1995!.
43 O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979 ~1989!.
44 S. D. Kenny, A. P. Horsfield, and H. Fujitani, Phys. Rev. B 62, 4899

~2000!.
45 E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, Phys. Rev. B 66,

205101 ~2002!.
46 M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos,

Rev. Mod. Phys. 64, 1045 ~1992!.
47 In our earlier work ~Refs. 27 and 54! we refer to these functions as ‘‘pe-

riodic bandwidth limited delta functions.’’
48 A. A. Mostofi, P. D. Haynes, C.-K. Skylaris, and M. C. Payne, J. Chem.

Phys. 119, 8842 ~2003!.
49 E. Artacho and L. M. del Bosch, Phys. Rev. A 43, 5770 ~1991!.
50 M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S.

J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 ~2002!.
51 T. P. Straatsma, E. Apra, T. L. Windus et al., NWChem, A Computational

Chemistry Package for Parallel Computers, Version 4.5, Pacific Northwest
National Laboratory, Richland, Washington, 2003.

52 T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 ~1989!.
53 R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96,

6796 ~1992!.
54 A. A. Mostofi, C.-K. Skylaris, P. D. Haynes, and M. C. Payne, Comput.

Phys. Commun. 147, 788 ~2002!.
55 P. Pulay, Mol. Phys. 17, 197 ~1969!.
56 Message Passing Interface Forum, http://www.mpi-forum.org/
57 P. Pacheco, Parallel Programming with MPI ~Morgan Kaufmann, San

Fransisco, CA, 1996!.
58 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod.

Phys. 73, 515 ~2001!.
59 C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 ~2001!.
60 R. Resta, Int. J. Quantum Chem. 75, 599 ~1999!.
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