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In this paper, an integer programming (IP) model is presented to assign MBA and undergraduate students to
groups to solve an exam case in an operations research (O.R.) course. It is assumed that the students have a

basic understanding of mathematical programming and are now ready to build their first real-life model in class.
Thanks to the direct link with the student’s situation and the immediate repercussion on the exam assignment,
students can quickly understand the problem and are willing to help to define the problem in class. The example
illustrates many O.R.-related issues, such as the balance between problem complexity and solution quality, and
the need for dynamic rather than static models. Thanks to its simplicity and practicality, this exercise is an ideal
tool to make the often complex domain of O.R. more accessible.
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1. Introduction
Various sources in the literature mention that teach-
ing O.R. to undergraduates and MBA students is not
an easy task. Teachers can easily overwhelm students
by minimum cost flow or traveling salesman prob-
lem procedures, by dynamic programming principles,
or any other useful tool, often without succeeding in
convincing people of the usefulness of these mod-
els. The column “Issues in Education,” published in
OR/MS Today, illustrates the complexity of the O.R.
teaching process and provides useful hints and tricks
about how to actually reach your public when teach-
ing O.R.

The literature on teaching O.R. to undergraduate
and MBA students is rich and widespread. Although
this paper has no intention of summarizing the bulk
of material available in the literature, it mentions two
valuable publication streams that might be interest-
ing to an O.R. teacher. A first set of publications
spends effort on the choice of example models taken
from business applications when teaching O.R. and
using their model formulations and solution tech-
niques. Selecting the business examples that are attrac-
tive and easily understandable to an MBA audience
with an often diverse background is a key parame-
ter for the success of an O.R. course. Guidelines are
already given in early publications such as Grenander
(1965) and others. More recent publications are also
available in the public domain (see, e.g., Carraway
and Clyman 1997, Miser 2000, Borsting et al. 1988,

Strasser and Ozgur 1995, Chen 1981, Kao et al. 1997).
Second, another stream of publications focuses on
the teaching method rather than on the applications
and spends a lot of attention on the use of, e.g.,
spreadsheets and more sophisticated computer soft-
ware, as well as the applicability of, e.g., independent
learning or case teaching methods in O.R. courses.
These topics have already been discussed decades
ago by various authors (see e.g., Grenander 1965 and
James 1988, among others). The most recent publi-
cations that present fresh and novel ideas in O.R.
teaching methods are by Belton and Scott (1998),
Böcker (1987), Bodily (1996), Franz (1989), Lasdon and
Liebman (1998), Powell (1995, 1998, 1997), Tingley
(1987), Liberatore and Nydick (1998), Liebman (1994,
1998), Winston (1996), Zahedi (1985), Tavares (1994),
Evans (1992), Aggarwal (1978), Corner and Corner
(2003), Robinson et al. (2003), Corner (1997), and Eaves
(1997).

This paper presents a simple problem formulation
for undergraduate and MBA students. The model is
fairly easy to understand, but has a direct impact on
the students and the whole class. Moreover, the prob-
lem formulation is general, leaving it open for small
modifications to practical problems from the service
sector or from industry. The experience is that when
students need to build a real model that builds a
solution that immediately affects their own current
situation, they actively participate in the model for-
mulation development and easily see opportunities
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for extensions to other environments or even their
own business. The model discussed in this paper is
used in a teaching session to promote student activ-
ity and collaboration. The concept of authentic and
active learning tasks has been widely discussed in
literature, outside the field of O.R. A complete and
general overview of research results, advantages, and
disadvantages is outside the scope of this paper. How-
ever, a short reference and comparison with the pro-
posed model and teaching method is given in §2 of
this manuscript.

The presentation of this paper is as follows. Sec-
tion 2 gives a short description of the problem and its
relevance for pedagogical purposes and gives some
background information about the types of students.
Section 3 presents a mathematical model formula-
tion for the assignment of cases to students, which
is illustrated with a small example. Section 4 gives
some potential topics that can be used to open a
discussion in class and highlights some repeating
questions/concerns/remarks that frequently come up
during the teaching session. It also gives some notions
of my own experience when using the model in
classes. Section 5 provides conclusions.

2. Background Information
This section gives a brief overview of the problem
description for which a mathematical model will be
built, the teaching method used in an single three-
hour class session, and the type of students partici-
pating in the course.

2.1. Problem Description
Students in O.R. courses often cannot see the value
of optimization, because problem descriptions are
too trivial or too complex; both are far from their
own brief business experience. In my course, students
must analyze a case study for their final exam. This
case is analyzed in groups, and each group has a
different case. For a problem that is challenging and
applicable to students, I use the final case assignment
as an example of an integer-programming modeling
problem. In one of the first sessions, I give the stu-
dents short abstracts of the exam cases. Based on these
abstracts, they rank order the cases by preference, as
well as their level of knowledge of O.R. This indica-
tion of knowledge level is optional and is particularly
useful with diverse groups such as MBA students.
The first two- or three-class sessions are on model-
ing and optimization. The problem formulation of this
manuscript requires a basic understanding of linear
programming (LP) and integer programming (IP).

The model is formulated and built in a software
tool AIMMS (http://www.aimms.com) in a three-hour

session. The session closes with the final distribution
of the cases to the students according to the solu-
tion found. The literature has already discussed alloca-
tion of students to groups, taking various constraints
and objectives into account. Results are published in
Mingers and O’Brien (1995), Beheshtian-Ardekani and
Mahmood (1986), Donohue and Fox (1993), Miyaji
et al. (1987), and Muller (1989). The papers by Baker
and Powell (2002), Sampson et al. (1995), and Stallaert
(1997) even refer to alternative methods for assigning
students to groups in a class environment.

2.2. Active Learning
The introduction of this paper showed numerous
papers about the O.R. teaching process, which seeks
to convince a diverse audience of MBA students about
the ease and relevance of O.R. tools and techniques.
The current paper presents a simple and easily under-
standable O.R. model used in an active and collabo-
rative way with immediate results and effect to the
audience.

Active learning has received considerable attention
in literature outside O.R. The pedagogical approach
for this example can be classified as an active learning
process, for the following reasons:

1. Active learning requires student activity and
engagement during the learning process. Because the
problem formulation of the current paper is built up
through class discussions, it requires student activity
from start until end. The engagement is promoted by
the model’s relevance for every student and its imme-
diate impact on their course evaluation.

2. Collaborative learning refers to teaching methods
with student interactions working towards a common
goal. During model formulation, interactions between
students are crucial (§4.1). Through discussions and
careful choice of parameters, constraints, and objec-
tives with often conflicting goals, this example seeks
to convince students that a model is an abstraction, a
simplification, and a reflection of the real-life problem.
The common goal aspect is embedded in the nature of
the proposed problem, which is to assign every stu-
dent to the best group to solve the final exam case.
The concept of “best” is reflected in the objectives and
constraints of the formulation, which contains, among
others, elements of fairness between the students, the
need for the right balance of student background and
knowledge per group, and the maximization of stu-
dent’s preferences.

For an overview and critical review of collaborative
and active learning methods, see Prince (2004).

2.3. Student Population
The exercise is given in various O.R. courses at the
Vlerick Leuven Gent Management School and the
Ghent University in Belgium. The full-time MBA stu-
dents at Vlerick Leuven Gent Management School
consists of a group that varies between 45 and 55
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international students (60% male, 40% female) with
an average age of 30 years and a minimum required
job experience of three years. The master’s students
at Vlerick Leuven Gent Management School have
no work experience, but had finished their under-
graduate studies one year earlier. Group size varies
between 55 to 65 students (approximately 60% male,
40% female), with an average age of 23 years. The
groups at Ghent University are undergraduate stu-
dents following economics-business engineering, with
a major in operations management. Their group size
varies, and the average age of the students is 22 years.

Although the course outline differs among groups,
the general purpose of the course is threefold and
can be summarized along the following lines. First,
students need to get acquainted with the terminol-
ogy and techniques of O.R., including LP, IP, and
nonlinear programming. They are expected to under-
stand the underlying assumptions of each approach
and to build (small) models on their own, using
often simple and easily accessible software tools such
as the Microsoft Excel Solver or any other student-
friendly tool. Although many problem formulations
can be easily modeled by student-friendly tools such
as Solver, it is shown that more sophisticated tools
(see, e.g., the AIMMS Figure 3 in §3.2) allow the user
to very quickly build a complex large-sized model
with a graphical user interface (GUI). Second, stu-
dents need to get the feeling that any model is a
simple and careful abstraction from reality and that
final decisions are never made solely on the basis
of a computer output. Sensitivity analysis, alternative
solution generations, and allowing for subjective feel-
ings and dialogue are a matter of degree and do not
harm the usefulness of any model. At the end, peo-
ple make decisions, not software tools! In §4.1, some
often-straightforward model extensions that are fre-
quently proposed during class discussions are given.
Last, the students need to be convinced that O.R. is
a methodology that can be used in a practical set-
ting. Rather than a black art for mathematicians or
scientists, it is a tool used by practitioners who get
involved in complex decision-making processes. It is
the ultimate goal of the course to convince people
that some problems are so complex that they cannot
be properly solved without the use of combinatorial
optimization models. This complexity issue is often
easy to grasp when students try to find solutions for—
at first glance—simple problem themselves, quickly
realizing that the number of possible solutions grows
very quickly with the problem size. A brief summary
of the complexity issues discussed in class for the
model of §3 is given in §4.2.

The exam cases are selected from different dis-
ciplines, such as production, finance, and human
resource management. This makes it more likely that

the student preferences are distributed equally over
the cases, which leads to a higher solution quality of
the model. Experience has shown that when students
are asked to gradually build the model in groups,
they get a feeling about the complexity of the problem
formulation, and the acceptance rate of the solution
is high.

3. The Model
3.1. The Mathematical Formulation
The problem formulation depends on the discussion
with the students and varies along the background of
the students, their constraint formulations, and their
objectives. A possible set of problem parameters, the
two sets of decision variables, and a problem formu-
lation are given below.

Problem parameters
S Set of students, index s
G Set of groups, index g
C Set of cases, index c

ws�c Preference weight of student s for case c
lc Minimum number of times that case c will be

assigned to a group
uc Maximum number of times that case c will be

assigned to a group
msg Maximal number of students in one group
A Set of advanced students

Decision variables
xs�g� c = 1, if student s is assigned to group g to solve

case c,
= 0, otherwise.

yg�c = 1, if the members of group g have to solve
case c,

= 0, otherwise.

Minimize
�S�∑

s=1

ws�c ∗ xs�g� c� (1)

subject to
�G�∑

g=1

�C�∑

c=1

xs�g� c = 1 ∀ i ∈ S� (2)

�C�∑

c=1

yg�c = 1 ∀g ∈G� (3)

�S�∑

s=1

xs�g� c ≤M ∗ yg�c ∀g ∈G� ∀ c ∈C� (4)

�G�∑

g=1

yg�c ≤ lc ∀ c ∈C� (5)

�G�∑

g=1

yg�c ≥ uc ∀ c ∈C� (6)
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�S�∑

s=1

�C�∑

c=1

xs�g� c ≤msg ∀g ∈G� (7)

�A�∑

s=1

�C�∑

c=1

xs�g� c ≥
�A�
�G� ∀g ∈G� (8)

xs�g� c ∈ �0�1�� yg�c ∈ �0�1��

∀ i ∈ S� ∀g ∈G� ∀ c ∈C� (9)

Expression (1) maximizes the total group preferences.
A higher preference for a particular case is translated
in a higher ws�c value. Constraint set (2) ensures that
each student is assigned to a single group/case com-
bination. Constraint set (3) ensures that each group
has to solve exactly one single case. Constraint set (4)
is a big M constraint that links the xs�g� c and yg�c vari-
ables. More precisely, the constraints ensure that stu-
dents can only be assigned to a particular group/case
combination (left-hand side (LHS) of the constraint)
if the group is assigned to that particular case (right-
hand side (RHS)). The next two constraint sets ensure
an equal distribution of cases among the groups and
guarantee that each case c is distributed at least lc
times (5) and maximum uc times (6). Constraint set (7)
ensures that each group contains at least msg group
members. Constraint set (8) ensures that the advanced
modeling students, if any, are equally divided among
the groups. Constraint set (9) forces the decision vari-
ables to take binary values.

3.2. An Illustrative Example
This section describes a small example that aims to
assign 12 student (�S� = 12) to three groups (�G� = 3).
The maximal group size msg equals 4 and the avail-
able number of cases equals 3 (�C� = 3). The student
preferences and their background knowledge (expert
in modeling, indicated by yes or no) are summarized
in Table 1.

Table 1 Student Preferences and Background
Knowledge

S w1 w2 w3 Adv.

1. Paul 1 2 3 Yes
2. Marie 2 1 3 No
3. Susan 1 3 2 No
4. Peter 2 3 1 Yes
5. John 1 2 3 No
6. Ann 2 3 1 No
7. Clive 1 2 2 No
8. Adam 1 3 2 No
9. Kristen 1 3 2 Yes
10. Heidi 1 2 3 Yes
11. Macie 1 3 2 No
12. Walt 2 1 3 No

Figure 1 Network Representation of the Problem Formulation

Top: x1,1,1
Mid: x1,1,2
Bottom: x1,1,3

Susan

Peter

John

Ann

Clive

Adam

Kristen

Heidi

Macie

Walt

Case1

Case2

Case3

y1,1
Group1

y1,2
y1,3

Group2

Group3

y2,1

y2,2

y2,3

y3,1

y3,2

y3,3

Top: x1,2,1
Mid: x1,2,2
Bottom: x1,2,3

Top: x1,3,1
Mid: x1,3,2
Bottom: x1,3,3

Marie

Paul

Figure 1 shows a network representation of the
assignment problem. The figure shows the x1�g� c vari-
ables for Paul and all yg�c variables. In total, the prob-
lem contains 12 ∗ 3 ∗ 3 = 108 xs�g� c variables, 3 ∗ 3 = 9
yg�c variables, and 36 constraints (excluding the binary
constraints given in Equation (9)).

Figure 2 shows an optimal solution obtained with
a total preference value equal to 31. Seven students

Figure 2 Example Assignment Solution

Susan***
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John***

Ann**

Clive**

Adam***
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Paul***
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Figure 3 The Student/Group/Case Assignment Problem Using the AIMMS Interface

have their first-choice case (indicated by ∗∗∗), whereas
Peter, Ann, Clive, and Walt have their second-choice
case (∗∗). Macie is the unluckiest of the group because
she has received her last-choice case (∗).

Thanks to the small size of the problem, it is easy to
see that a similar total preference can be obtained by
switching, e.g., Macie and Marie, to obtain an alter-
native optimal solution. The preference of Macie goes
up with one star whereas the preference of Marie
goes down by one star, still reaching the total prefer-
ence value of 31. However, for larger instances, these
alternative solutions are hard to find. Note that the
group of Marie can probably live with the switch,
because the original group contained only three-stars
assignments. Switching people from groups to obtain
a more fair case assignment will be discussed in §4.1.

Figure 3 shows the GUI that is projected in class
during the construction of the model. This interface
can be easily used to guide the students in their prob-
lem formulation and allows a simple translation of the
decision variables, constraint definition, and objective
formulation in a software tool. The GUI is prepared
and shows the preferences of the students (input data)
received a couple of days earlier. The model is built
during the class discussion, and a solution is shown
at the end of the discussion.

4. Teaching Experience
The problem description is fairly easy to understand
and immediately gets attention when students hear
that this class is about an exam case assignment.
The group discussion consists of three parts. First,
§4.1 shows that the model formulation has a focus
on both the definition of objective and constraints, as
well as the translation of these ideas into formulas.
Second, once the model has been formulated, it easily
can be shown that the complexity of these problem
types quickly goes up as the size of the class increases.
Section 4.2 shows how to open a discussion about
hints and tricks for how to reduce problem complex-
ity. Moreover, once the solution is shown to the audi-
ence, people always comment on issues and quickly
see room for improvement. It can easily be shown that
optimization can be seen as a dynamic process where
there is room for subjectivity by adding or deleting
extra constraints. This also gives the opportunity to
show how a near-optimal solution can be obtained
quickly, without losing too much quality. Finally, §4.3
illustrates that a discussion of real-life applications of
similar models is a necessary and often requested con-
clusion that enables many students to translate their
specific work situation (in case of MBA students) to
these types of problem descriptions.
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4.1. Model Formulation

4.1.1. Choice of Decision Variables. One of the
most animated and probably most important discus-
sions is the choice of the decision variables xs�g� c
and yg�c in the model presented in §3. From a stu-
dent’s point of view, an obvious choice of vari-
ables would be to split the student/group assign-
ment and group/case assignment into two binary
variables, xsg and ygc, respectively. However, when
confronted with the problem objective and/or the
constraints, people quickly multiply the variables
leading to quadratic problem formulation or run into
trouble during constraints formulations. These discus-
sions give the instructor an opportunity to start a dis-
cussion on the difference between LP, IP, and non-
linear programming and illustrate the importance of
careful decision variable definition.

4.1.2. Choice of Objective Function. The formu-
lation of the objective function is mostly a straightfor-
ward choice. However, other objectives might lead to
alternative or completely different solutions, satisfy-
ing other needs of the group. An interesting discussion
is the difference between a global group optimum and
a more individual-oriented optimum.

A global group optimum objective is given in (1)
and searches for the maximum total preference of the
group without considering variation between indi-
viduals. However, people are often collegial to each
other and prefer a fair assignment above an assign-
ment with many happy people and some frustrated
people that received their last-choice case. This leads
to a more individual-oriented optimum approach that
tries to minimize the number of unlucky students that
received their last-choice case.

Obviously, different approaches to set up a more
fair objective function can be discussed in class, and
experience shows that students quickly come up with
proposed changes in the weights of the preferences,
without changing their relative rankings, to stimu-
late a more fair distribution of cases among students.
An extended objective function is shown in class
that aims to avoid low student/case preferences. The
introduction of an extra decision variable z that finds
the worst assigned student/case preference (worst is
equal to the lowest assigned ws�c preference value for
a student s that needs to solve case c) by means of the
following set of constraints:

z≤
�G�∑

g=1

�C�∑

c=1

ws�c ∗ xs�g� c ∀ s ∈ S� (10)

When this variable is added to the objective function
(eventually weighted to give more importance to a
fair case distribution), the model will try to avoid bad

preference case assignments to students. In the exam-
ple of §3.2, this will lead to the more fair case distri-
bution as discussed by switching two people.

It is easy to open a discussion to show that the
more individual-oriented objective can never be bet-
ter than the group optimum in terms of total pref-
erences. In class, both approaches are discussed and
compared, and it is often the case that the total prefer-
ence is equal for the two approaches, which illustrates
the presence of alternative optimal solutions for the
problem. Moreover, it demonstrates that optimization
is often a dynamic process where there is room for
subjectivity, discussion, and changes on request of the
user(s).

4.1.3. Maximal Group-Size Constraint. The most
difficult part of the formulation is the big M con-
straint set to link the xs�g� c and yg�c variable s. During
the construction of this constraint set, the big M is
introduced as a “big” number. This raises the question
of “what is big enough?” It can be shown to students
that the M needs to be big enough to avoid eliminat-
ing optimal solutions, but that smaller M values are
preferable to tighten the RHS of the constraint. When
students are asked to determine the minimal value
of the big M , many respond that the minimal value
must be equal to the size of the student set, because
the LHS of this constraint is the sum of all students
(i.e., M = �S�). This is not an easy exercise, because
only a few students can further reduce the big M
value to M = msg and can even delete an important
constraint from the formulation. In doing so, the orig-
inal constraints given in constraint sets (4) and (7) can
be reduced to a single constraint set:

�S�∑

s=1

xs�g� c ≤msg ∗yg�c ∀g ∈G� ∀ c ∈C� (11)

An alternative approach is to replace the constraint
set of Equation (4) by a constraint for each xs�g� c vari-
able as given below. The different approaches can be
compared and discussed in class:

xs�g� c ≤ yg�c ∀ i ∈ S� ∀g ∈G� ∀ c ∈C� (12)

4.2. Model Complexity
Once a model formulation has been selected, a discus-
sion can be started about the balance between prob-
lem complexity and solution quality. It can be easily
shown that when the class size increases, it is often
hard to find an optimal solution in a reasonable time.
Section 4.2.1 shows that the problem complexity can
often be reduced by adding or changing constraints or
by fixing the values of some of the decision variables.
Section 4.2.2 gives an example of how a near-optimal
search often reduces the computational effort dramat-
ically, without much impact on solution quality.
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4.2.1. Problem Complexity. To further reduce the
complexity, students need to become aware of alterna-
tive problem formulations. More precisely, when they
are shown that the group number does not matter to
each student, it can be easily shown that the number
of yg�c variables can be reduced dramatically.

The information contained in (5)–(6) allows one to
reduce the number of decision variables and con-
straints. In the example of §3.2, the lower value lc
and upper value uc on the number of times each case
needs to be assigned to groups allows the user to
preassign a number of cases to groups, without los-
ing optimality. Indeed, each case needs to be solved
exactly once, and hence there will be no need for con-
staint sets (5)–(6) when the groups are preassigned
to the cases as y1�1 = y2�2 = y3�3 = 1 and y1�2 = y1�3 =
y2�1 = y2�3 = y3�1 = y3�2 = 0 (see Figure 4).

However, it is important to show to students that
not all yg�c variables can be preassigned. An easy
example with three cases and 10 groups and lc = 3
and uc = 4 values (which often corresponds to the
problem size of the MBA classes) shows that fixing
y1�1 = y2�1 = y3�1 to 1 for the first case and, likewise,
fixing y4�2 = y5�2 = y6�2 to 1 and y7�3 = y8�3 = y9�3 = 1
for the two other cases still guarantees finding the
optimal solution. However, the assignment for the last
group, i.e., y10� c� cannot be fixed because there is one
case that will be assigned four times instead of three
times, and the model needs to determine which case
this will be.

Figure 4 Simplified Network Representation of the Problem
Formulation
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Figure 5 Truncated Search to a Heuristic Solution
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4.2.2. Solution Quality. Even with the preassign-
ments discussed in the previous section, finding the
optimal solution often requires a lot of time. Conse-
quently, when the problem is solved in real time in
class, we often set a tolerance to allow near-optimal
solutions.

Figure 5 shows the two space reduction rules that
are used in light of the case study of this paper. It
explains how lower and upper bounds are used in
a search process, how node reduction rules work in
a branch-and-bound search, and how this often has
little or no effect on the solution quality but dramati-
cally reduces the solution time.
LP/IP Gap. The gap between the LP relaxation and

the optimal IP solution can be used to show the differ-
ence between the two techniques and the use of lower
and upper bounds in a branch-and-bound search pro-
cess (left part of the figure). This process can be accel-
erated by setting a tolerance equal to (no effect) or
larger than (search space reduction) this gap. Obvi-
ously, people quickly come up with the correct idea
that if the tolerance has been set too small, this
approach has no effect on the solution time. Moreover,
this tolerance gives a deviation from the LP-relaxed
upper bound (in case of a maximization problem) and
gives hardly any information on the maximum devi-
ation between the heuristic solution found and the
(unknown) optimal solution.
Optimality Tolerance. This space reduction ap-

proach is less obvious to understand and requires a
basic understanding of the branch-and-bound solution
methodology. A tolerance can be set as a maximum
allowable deviation between the optimal (unknown)
solution and the solution the students want to obtain.
This tolerance defines a zone around the dynamic
best-known solution (BKS) in which the branch-and-
bound approach can truncate nodes. The right part of
the figure shows that the first BKS, denoted by LB1� is
set with a x% tolerance such that only solutions that
are x% better than the current BKS are worth investi-
gating. Once a new BKS is found (LB2), this tolerance
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threshold dynamically shifts and the search continues
in the same way.

The problem formulation discussed in this paper
serves as an ideal tool to elaborate on the complexity
dimension of various problem formulations in terms
of computational difficulty. Illustrating the need for
dedicated solution procedures or heuristic search pro-
cedures is not key in the discussion with the stu-
dents but can be done at later sessions when the
students are more familiar with various optimization
techniques. Moreover, the need for heuristic solution
approaches can be further discussed in the light of
other heuristics, such as greedy optimization, trun-
cated branch-and-bound, metaheuristic search, and
many more.

4.3. Usefulness in a Business Environment
One of the major advantages of the problem descrip-
tion is how easy it is to understand the problem and
the direct implication on the daily life of the stu-
dent. A second advantage lies in the broad applica-
tion domain of similar model descriptions and hence
the feeling that these O.R. models are applicable
outside the class room. At the end of the teaching ses-
sions, students are asked to formulate similar problem
descriptions, that occur in their direct environment.
Experience has shown that people quickly come up
with problem descriptions from their own experience,
and MBA students often come back with a similar
problem description applicable to their own busi-
ness or service environment. Undergraduate students
often refer to timetabling problems, exam schedul-
ing problems, and assignment problems where stu-
dents receive locations for their next Erasmus year. In
an Erasmus year, students study one semester or a
complete academic year abroad at another university.
They express their preferences for these foreign uni-
versities but may be assigned to a location which was
not their first preference

This session is often extended with cases and prob-
lem descriptions from literature or references coming
from my own experience. One of the most popular
extensions to students are all kinds of staff-scheduling
problems that are basically similar assignment prob-
lems within the presence of numerous constraints.
These constraints are often dictated by internal com-
pany policies, which renders them useable to start a
real-life discussion from different angles. The nurse-
scheduling problem case at the University Hospital,
Ghent, Belgium (Maenhout and Vanhoucke 2008b)
and the crew-scheduling case at Brussels Airlines,
Brussels, Belgium (Maenhout and Vanhoucke 2008a)
are used as illustrative material and are easily under-
stood by people because they tackle problems with
which they are familiar.

5. Conclusion
In this paper, a simple yet applicable assignment
model has been presented to divide a class of students
in groups such that each group receives exactly one
exam case to solve. The problem formulation can be
set up in class during a discussion round and can be
easily incorporated in a software tool without exces-
sive use of time.

The advantages of using this model description
for teaching purposes are threefold. First, the simple
problem formulation is easy to understand and has
direct implications on the students because it deals
with their final exam assignment of the course. This
makes the problem particularly interesting to them,
which obviously leads to a high class participation.
Second, the model can be used to illustrate many
O.R.-related issues, such as the need for heuristic
search of a solution, the necessary dynamic adapta-
tions during problem formulation, or the tricks and
hints to reduce the problem complexity. Finally, the
problem formulation can be easily translated to other
settings and environments, which makes it valuable
for MBA students to translate this model to their busi-
ness or service environment.
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