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Abstract. In this paper we present an extension of a previously developed 
generic student model based on Bayesian Networks. A new layer has been 
added to the model to include prerequisite relationships. The need of this new 
layer is motivated from different points of view: in practice, this kind of 
relationships are very common in any educational setting, but also their use 
allows for improving efficiency of both adaptation mechanisms and the 
inference process. The new prerequisite layer has been evaluated using two 
different experiments: the first experiment uses a small toy example to show 
how the BN can emulate human reasoning in this context, while the second 
experiment with simulated students suggests that prerequisite relationships can 
improve the efficiency of the diagnosis process by allowing increased accuracy 
or reductions in the test length. 

1. Introduction 

In last years, much interest has been devoted to the development and use of user 
models based on Bayesian Networks (BNs). Successful examples can easily be found 
in research literature: in student modeling [4,7,9]; in user profiling for information 
retrieval [14], for inferring user goals and needs [8], etc. All this research has shown 
that this probabilistic framework offers a theoretically sound methodology for 
accurate diagnosis in such contexts. 

The main goal of our previous work on this field was the development of a generic 
Bayesian student knowledge model that a) could be used for any domain and b) 
included proposals to simplify the knowledge engineering effort required (parameters 
of the Bayesian network). First results in this field were described in [10]: an 
integrated approach for Bayesian student modeling. Later on, in this model was 
evaluated and proposed as the basis of computer adaptive testing based in Bayesian 
networks [11]. To this end, several adaptive criteria for item selection were defined 
and tested using simulated students. In this way, the integration of a probabilistic user 
model with adaptive item selection criteria was used to improve the accuracy and 
efficiency of the diagnosis process. 

In parallel to this work, our research group was also working in the MEDEA 
project.  MEDEA is a component-based architecture that allows the integration of 
different learning systems to be used intelligently for instruction. To achieve this task, 
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MEDEA provides a built-in student model and an instructional planner. Learning 
components are integrated as web services following high-level pre-established 
protocols. Courses developed with MEDEA guide students in their learning process, 
but allow them free navigation to better suit their learning needs. So it was natural to 
integrate our probabilistic generic student model into the MEDEA architecture. 

However, there were several problems for this integration, being the most 
important that prerequisite relationship had been excluded from our theoretical model. 
In the next section, we will briefly present MEDEA’s student model with special 
emphasis in the knowledge model. A short explanation of the reasons why this kind of 
relations were not considered in the first place will be provided, together with a 
discussion of why these relationships need to be included in the new model and how 
this can be achieved. The third section presents some preliminary evaluation results of 
the new prerequisite layer: a first qualitative experiment uses a small toy example to 
show how the BN prerequisite model can emulate human reasoning in this context, 
while a second experiment with simulated students is used to evaluate how the 
efficiency of the diagnosis process can be improved in accuracy and/or reductions of 
test lengths by using the new prerequisite layer. The paper concludes with some 
conclusions and future lines of research.  

2. Building a generic student model for MEDEA 

As described in [2], MEDEA’s student model is divided in two main sub-models: the 
attitude model and the knowledge model. The attitude model contains information 
such as preferred learning styles, motivation, learning goals, preferences and technical 
experience. This information is provided by the student when registering for a course, 
and can be updated by user demand. Course designers use the student attitude model 
to establish relations between the student profile and some parameters relative to 
instructional settings (information that is managed by the instructional planner). For 
example, when a new course is developed in MEDEA, a course designer can specify 
that for students with low motivation, the way of teaching should be more interactive 
(multimedia tests with feedback instead of just showing contents). 

But the focus of this paper is the knowledge model. As aforementioned, one of the 
main problems that needed to be solved before the integrated student model 
developed in our previous research [9] could be integrated into the MEDEA 
architecture was that prerequisite relationships had not been considered. But the need 
for introducing prerequisite relationships in the model was evident in the very first 
effort to validate the MEDEA architecture, which was the development of a web-
based course of Logic. One of the teachers of this subject at our university started to 
collaborate with our research group. When building the domain model, he only used 
two kinds of relationships: aggregation (is_a, is_part_of) and prerequisite, which he 
represented in separate graphs for better legibility.  Fig 1. shows parts of such graphs: 
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Aggregation relationships for Logic 
 

Prerequisite relationships for Logic 

Fig. 1. Parts of the graphs for aggregation and prerequisite relationships for the Logic course 

Aggregation and prerequisite relationships are very commonly used in educational 
settings (real or virtual). Fig. 2 shows an example of a domain model of a course 
divided in topics, subtopics and atomic concepts (modeled by a BN). Nodes in this 
network represent Knowledge items (KIs), while links are represented by light arrows 
for aggregation relationships, and bold arrows for prerequisite relationships. 

 
 A 

T1 T2 Tn 

S11 S21 

C1 C2 

Subject 

Topics 

Subtopics 

ConceptsC3 

S22 

 
Fig. 2. Graph for relationships between the KIs 

One of the main reasons for disregarding prerequisite relationships when building 
our integrated knowledge student model was that, if they are introduced in the model 
together with the aggregation relationships, the meaning of the relations between 
nodes becomes somehow unclear and the specification of the parameters gets more 
difficult. For example, in the above network, for node T2 the parameters needed are 
the conditional probabilities P(T2/T1,S21,S22). But the fact of different types of 
relationships are mixed in the conditioning distribution makes this probability 
difficult to estimate, and even in some cases it seems that the meaning of such events 
is unclear (for example, we would need to provide the probability of knowing a topic 
T2 given that its parts S21 and S22 are known but its prerequisite T1 is unknown). 

But obviously, prerequisite relationships are useful when modelling a domain, and 
not only because they are very common in educational settings, but also because they 
can serve as guide for important instructional actions like adequate curriculum 
sequencing, selection of the instructional focus, generation of tailored exercises, etc., 
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and, last but not least, because they can provide useful information about the student’s 
knowledge state that should be not disregarded. 

So once the need for including such relations in the model was disclosed, we had to 
find a way to include them in our model. Due to the problems aforementioned with 
combining the two kinds of relations (meaning of the causal relationships and 
difficulty of parameter specification), and, consistently with human way of 
simplifying the representation of structured knowledge by using separate graphs (as 
our teacher on Logic did), we decided to adopt a multi-layered approach similar to the 
described in other works [12], [13]. The proposed knowledge student model for 
MEDEA is an overlay multi-layered model with four different layers: (a) estimated 
layer, that stores the information based on the student behavior during the instruction 
(pages visited, time in each page, etc.); (b) assessed layer, that contains the 
information inferred using the assessment components (e.g. SIETTE1); (c) 
infered_by_prerequisite layer, that is a BN that represents prerequisite relationships 
and (d) inferred_ by_ granularity layer, that is a BN that represents aggregation 
relationships. 

In MEDEA, the instructional planner uses the information contained in such layers 
to take instructional decisions, so for example the planner calls to an assessment 
component whenever a significant difference between values stored in the estimated 
and assessed layers exist or the planner selects the next concept to be taught using the 
information contained in prerequisite and granularity layers, etc. 

Our next step was then to try to find the meaning of prerequisite relationships and 
the way to model them under the BN framework. It seems clear that if A is 
prerequisite of B, knowing A must have causal influence in knowing B, so the correct 
direction of the link is A  B. Fig. 3 represents this kind of relationship as a BN. 

 A B 
P(A) P(B/A)  

Fig. 3. BN for a prerequisite relationship 

Regarding the conditional distribution (parameters) needed, we thought that, it was 
sensible to assume that P(+b/¬a)=0+ε (the weakest the prerequisite relationship, the 
bigger the ε). Regarding to P(+b/+a), we decided to use estimations based on the 
difficulty of the knowledge item as defined by the teacher when constructing the 
domain. In MEDEA, when the teacher edits the domain model (using a tool called 
DOM-EDIT), he also supplies a linguistic value (low, medium, high) for each KI in 
the curriculum. This linguistic value is then converted into a probability d that 
represents the difficulty of the knowledge item in itself, i.e., given that all its 
prerequisites are known.  Concerning the meaning of the relation, at least two kind of 
inferences that will be of interest when diagnosis student’s knowledge state can be 
performed: 

• If A is unknown, it is very likely that B is also unknown. 

                                                           
1 SIETTE [5] is an adaptive web-based testing tool based on IRT that can be used 

independently or integrated in a learning environment. By means of web services, SIETTE 
has been integrated in the MEDEA architecture to serve as a powerful diagnosis tool for 
student modeling. 
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• If B is known, it is very likely that A is also known. 
This model can be easily extended for the case of a set of two or more prerequisite 

nodes for a KI, by modifying the traditional noisy AND/OR gates (depending on 
whether all the prerequisites of the KI are needed or there are alternative ways of 
getting to know it), in which instead of using 1-ε we use the probability value d 
associated to the KI to represent its intrinsic difficulty. 

Let us then describe how the BNs for the aggregation and prerequisite layers have 
been defined: each elementary concept node Ci can take two values: known 
(represented by 1) and not_known (represented by 0), while for aggregated nodes 
(subtopics, topics, subject, etc), we use discrete random variables whose behavior will 
be emulated by binary nodes (known, not_known)2. The conditional probabilities for 
the aggregation and prerequisite BNs parameters are estimated in our model by pre-
defined functions that use some features specified by the course designer, which 
namely are: difficulty degrees for each KI (that, as explained before, will be converted 
into probabilities d that represent their intrinsic difficulty, i.e, the probability of 
knowing the KI given that all its prerequisites are known) and normalized weights wij 
for aggregation relationships between two knowledge items Ki and Kj. From this 
information, an estimation of the parameters needed for the BNs of each layer is done 
as follows: 

• For granularity relationships, the following formula is used: 

     


 ++=====

otherwise0
xw...xwyif1)xK,...,xy/KP(K kk11

kk11i ii   

• For prerequisite relationships, the following formulas are used: 




ε+
======= therwiseo      0

1xxif       xKxK1KP k1
kk11i

...d),...,/(  
(Modified noisy 
AND-gate) 


 ===ε+==== therwiseo  

0xxif  0xKxK1KP k1
kk11i d

...),...,/(
(Modified noisy  
OR-gate) 

3. Evaluation of the prerequisite model 

When evaluating adaptive systems, it is important to separate the evaluation of the 
accuracy of the user model from the evaluation of the efficacy of the adaptations 
based on such user models [3], [1]. If the accuracy of the user model is tested in 
advance, possible inefficiencies of the mechanisms for adaptation will be more easily 
isolated and identified and the weakest points can be improved. This section presents 
a preliminary evaluation of the performance of the new prerequisite layer (the 
aggregation layer had previously been evaluated with satisfactory results [11]). This 
evaluation should be considered then as an evaluation of the accuracy of the 
knowledge student model and not as an evaluation of MEDEA. To this end, two 
experiments have been performed: the first one is based on the use of a small toy 
example to study from a qualitative point of view the reasoning process in the 

                                                           
2  This emulation is possible because, as explained in [11], the probability of knowing a KI can 

be interpreted as the degree of knowledge reached in such KI 
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prerequisite BN, while the second one aims to explore how the use of the prerequisite 
layer can improve the efficiency of the diagnosis process. 

3.2. Experiment 1: a small toy example 

For a first informal evaluation of the performance of this approach, we used a small 
toy example (originally presented in [6], a previous study about prerequisite 
relationships) about finding the Least Common Multiple (LCM). Fig. 4 shows a BN 
for such domain, which is an adaptation of the original undirected graph (in which the 
only difference is that arcs have been directed). 

 

addN 

mult by 0

add mult 0 

subN 

find div 

multiply LCM find prime

prime 

OR 

AND

AND

 

Fig. 4. BN for finding the LCM. Adapted from [6]  

Each node in this network is binary and takes values known (1) and not_known 
(0); addN/subN to add/substract natural numbers, mult, multiply, and so on. Node add 
mult 0 is an intermediate node that summarizes the abilities contained in its parent 
nodes. Regarding the parameters, we have used the values shown in Table 13. 

P(addN = 1) = 0.8 
P(mult by 0 = 1) = 0.9 

P(prime = 1 / multiply = 1)  =  0.8 
P(prime  = 1 / multiply = 0)  =  0 


 ====   otherwise      

 if     )P( 0
1 0 mult  addN 0.90 mult addN, 1/  0 mult add  P(find div = 1 / multiply = 1)  =  0.6 

P(find div  = 1 / multiply = 0)  =  0 


 ===== otherwise 

if  )P(    0.7
0 subN 0  mult add        0 subN0, mult add 1/  mult P(LCM = 1 / find prime = 1)  =  0.8 

P(subN = 1 / addN = 0)  =  0 


 ====   otherwise      

 if    )P( 0
1 0 mult  addN  0.8prime div, find 1/ prime find  P(sub N = 1 / addN = 1)  =  0.8 

P(subN = 1 / addN = 0)  =  0 

Table 1. Parameters for the BN modeling prerequisites in the problem of finding the LCM 

The set of evidences that were introduced in this network was also taken from [6] 
and is shown in Table 2, together with the evolution of the probabilities (of knowing 
the knowledge items). New evidences introduced are marked as “new ev”, former 
evidences as “ev”, arrows are used to mark if the probability has increased or 
decreased after considering the evidence and nodes that have already been diagnosed 
(one of its two values has reached probability 1) are marked as known or not_ known: 

                                                           
3 Other sets of parameters were tried, with no significant differences. 



Introducing prerequisite relations in a multi-layered Bayesian student model      7 

 initial state  e1  e2  e3  e4 

addN 0.8 0.704  ↓ 1 known 1 known 1 known 

Mult by 0 0.9 0.892 ↓ 0.917 ↑ 0.917 = 0 new ev 

subN 0.64 0.548 ↓ 0.832 ↑ 0.832 = 1 known 

add mult 0 0.648 0.555 ↓ 0.842 ↑ 0.842 = 0 not_known 

mult 0.539 0.318 ↓ 1 new ev 1 ev 1 ev 

find div 0.667 0 new ev 0 ev 0 ev 0 ev 

prime 0.431 0.255 ↓ 0.8 ↑ 1 new ev 1 ev 

find prime 0.207 0 not_known 0 not_known 0 not_known 0 not_known 

LCM 0.165 0 not_known 0 not_known 0 not_known 0 not_known 

Table 2. Results of the inference as new evidence is added to the BN 

So we can see that, in this example, the use of a BNs and the modified noisy 
AND/OR gates allows to emulate human way of reasoning as described in [6]: after 
considering evidence e1 (find div is not_known), the probability of knowing the rest of 
the nodes decreases and the nodes from which find div is a prerequisite (find prime 
and LCM) are diagnosed as not_known; after considering evidence e2 (mult is known), 
the probability of all nodes increases and node addN is diagnosed as known (because 
it is a common prerequisite in both ways of being able to multiply); after adding 
evidence e3 (prime is known) nothing changes, (but this information is stored and will 
be of importance in the next step), and finally, after adding evidence e4 (mult by 0 is 
not_known), add mult 0 is diagnosed as not known (and consequently, the knowledge 
about multiply must come from the other node in the modified OR-gate, so subbN is 
diagnosed as known).  

So this small example suggests that a) prerequisite relationships can be very useful 
for efficiently diagnosing student’s state of knowledge, because, as stated in [6], they 
can be used for adapting the items posed to a student so items too difficult or too easy 
are avoided; b) the BN framework is very suitable for emulating human’s way of 
reasoning in such context. 

3.3. Experiment 2: using the prerequisite layer to improve diagnosis 

In this section we present an empirical study with simulated students that was 
conducted to evaluate whether or not the use of the prerequisite layer could improve 
the diagnosis process. Next we present the conditions of this study together with the 
results obtained. 
In the simulations, we used the same trial network that in our previous work [11], that 
consists in fourteen concepts and one hundred questions. Concepts are grouped using 
their intrinsic probability of being known (d) as a measure of their difficulty: C1 to C6 
are easy (d = 0.75); C7 to C10 are medium, (d = 0.5); and C11 to C14 are difficult, (d = 
0.25). Each question is related with one to three concepts and each concept is related 
to several questions. Each question has six possible answers, and therefore a common 
guessing factor of 1/6. There are four different groups of twenty-five questions each, 
with different slips and discriminations factors (parameters that are used to determine 
the probability of a correct answer given the knowledge state of its related concepts, 
see [11] for more details).   
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A prerequisite relationship structure between concepts has been created for this 
trial network and is shown in Fig. 5. The parameters of this network are: for the nodes 
without parents, their prior probabilities; for the rest, the conditional probabilities 
required are computed using the formulas presented in section 2.  

C13 
C14 C2 C7 

C10 C1 C6 

C5 

C12 C4 C11

C9 C8 C3 

AND

 

Fig. 5. Prerequisite BN defined for the trial network 

Obviously, when prerequisite relationships are introduced in the model the 
difficulty of the KIs changes, because if for example an easy concept has several 
difficult concepts as prerequisites, the concept is not easy anymore. But the use of the 
BN allows taking this fact into account easily, because once the prerequisite BN is 
initialized, a prior probability r for each concept is computed. This number represents 
then the total difficulty of the KIs, as it is a function of its intrinsic difficulty d, of the 
intrinsic difficulty of its prerequisite Kis and of the ε used to model the strength of the 
relation (in this experiment, ε=0). These values are then used in our approach to re-
classify the concepts into categories: easy if 0.7≤ r ≤1; medium if 0.3< r ≤ 0.7; and 
difficult if 0.3< r ≤ 0. So for example, in our experiment, after considering the 
prerequisite relationships, only C5 resulted to be easy, C9 and C12 were medium and 
the rest of the concepts difficult. This re-categorization of concepts has been 
considered also when generating the simulated students. Four categories of simulated 
students have been generated: novice, intermediate, good and expert, determined 
according to the number of concepts known and their total difficulty r.    
The experiment with simulated students is described next: 
1. Random generation of simulated students (45 of each type, making a total of 180) 

taking into account the total difficulty r of the concepts and consistently with 
prerequisite relationships. 

2. Selection of a test item to be asked. An item is randomly4 selected. 
3. Simulation of the student’s answer. Let Q be an item (question) node. Let 

p=P(Q/Pa(Q)). A random k number in [0,1] is generated. If k ≤ p, then the answer 
is correct (Q=1) and incorrect (Q=0) otherwise. 

4. Updating the probabilities. For each Ci, pi=P(Ci/Q=q) is computed, being q the 
value taken by Q in the previous step (0 or 1).  

5. Stopping criterion. As termination criterion a combination of two criteria is used: 
the test finishes when a previously fixed maximum number of questions is reached 
(in this experiment this value is 60), or when all the concepts have been evaluated. 
To determine whether a concept has been evaluated, a fixed threshold u  is used (in 
this experiment, 0.2). If the probability of knowing a concept is greater than or 

                                                           
4 Adaptive item selection criteria could be used, but this was not the purpose of this study 
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equal to 1-u, then the concept is diagnosed as known, whereas if it is smaller than 
u, the concept is diagnosed as not_known. The rest are considered not-diagnosed. 

6. Test results. The cognitive state generated in the previous step is compared to the 
true cognitive state. The number of correctly/incorrectly/not-diagnosed concepts is 
computed. 

7. Adding evidences. The concepts evaluated as known or not_known in the test are 
introduced as evidences in the prerequisite BN. The idea is to propagate this 
information in the network, so we concepts that have not been diagnosed yet can 
be correctly classified as known or not_known. 

8. Prerequisite results. As in step 6, the cognitive state generated in the previous step 
is compared to the true cognitive state. The number of correctly/incorrectly/not-
diagnosed concepts is computed. 

9.  Final results. The results obtained in steps 6 and 9 are compared to see how the 
prerequisite relationship improves the results obtained by the test. 

Steps 1 to 6 are similar to our former experiments, being the main differences: a) 
concepts are re-categorized according to their prior probability r of being known and 
b) only valid (i.e., complying with prerequisite relationships) knowledge states for 
simulated students are generated. Steps 7 to 9 are new and account for prerequisite 
relationships with the goal to improve diagnosis. The results of this new experiment 
are shown in Table 3, that presents percentages of correctly, incorrectly and 
not-diagnosed concepts for each of the fourteen concepts in the network (results of 
step 6 and 8, respectively). 

 
 Before prerequisites After prerequisites 
 Correct Incorrect Not diag. Correct Incorrect Not diag.
C1 95,00 1,11 3,89 97,78 1,67 0,56 
C2 91,11 1,11 7,78 97,22 2,78 0,00 
C3 96,67 1,11 2,22 98,89 0,56 0,56 
C4 95,00 2,22 2,78 97,22 2,22 0,56 
C5 93,33 2,22 4,44 93,89 2,22 3,89 
C6 97,78 0,00 2,22 99,44 0,56 0,00 
C7 96,11 0,00 3,89 100,00 0,00 0,00 
C8 83,89 0,00 16,11 91,67 1,11 7,22 
C9 96,11 1,67 2,22 96,67 2,78 0,56 
C10 71,67 2,78 25,56 86,11 7,78 6,11 
C11 90,56 1,11 8,33 97,22 1,67 1,11 
C12 75,56 3,89 20,00 78,33 4,44 17,22 
C13 98,33 1,11 0,00 98,33 1,11 0,00 
C14 68,89 1,11 30,00 88,89 6,67 4,44 

Table 3. Percentage of correct/incorrect/not-diagnosed concepts before and after using the 
prerequisite BN 

These results show how the number of not-diagnosed concepts decreases, and most of 
them are diagnosed correctly. The best results are obtained for concepts C10 and C14, 
which increase the correct percentage in 14.44 % and 20% respectively. In some 
cases, the number of incorrectly diagnosed concepts increases, but always in smaller 
proportion that the number of correct diagnosis.  The global results of the experiment 
are shown in Table 4: 
. 
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 Before prerequisites After Prerequisites
Correct 89.29 94.40 
Incorrect 1.43 2.58 
Not-diagnosed 9.29 3.02 

Table 4. Percentages of correct, incorrect and not-diagnosed concepts 

In this case, the number of non-diagnosed concepts decreases in 6.27 %, i.e, more 
than two thirds of undiagnosed concepts are diagnosed) and, from them, 81.65% are 
correctly classified while the 18.35% are incorrectly classified. These results supports 
the conclusion presented in [6]: “not considering valid prerequisites relationships does 
not lead to a wrong assessment of a student’s knowledge state, but it renders the 
assessment less efficient in the sense that more answers than necessary have to be 
collected”. Probably, the undiagnosed nodes only needed a few more items to be 
diagnosed, but, exploiting the prerequisite structures, we can further assess student’s 
knowledge state without needing any more items. The next issue to be studied now is: 
how many questions are needed to reach a performance comparable to the model 
without prerequisites? An analogous experiment in which the number of questions 
was reduced produced the results shown in Table 5: 

 
 Before prerequisites

(60 questions) 
After Prerequisites

(40 questions) 
After Prerequisites 

(50 questions) 
Correct 89.29 91.39 93.49 

Incorrect 1.43 4.05 3.41 
Not-diagnosed 9.29 3.02 3.10 

Table 5. Results with reduced test lengths 

Results show that using only 40 questions there are more correctly diagnosed 
concepts, but the number of incorrectly diagnosed concepts has also increased in a 
very similar proportion. However, after 50 questions the percentage of correctly 
classified concepts increases in a bigger proportion than the incorrectly classified. So 
the answer in this case depends on a compromise between the reduction of the test 
length and the number of incorrectly diagnosed concepts that we are willing to admit, 
but in any case the results show that the number of questions can be reduced 
significantly with a similar performance of the diagnosis algorithm. 

4. Conclusions and Future Work 

The work presented in this paper builds upon our previous research on the field of 
Bayesian student modeling, in which an integrated generic student model based BNs 
was developed. To put this model into practice within the MEDEA architecture, we 
needed to find a way of adding prerequisite relationships to our model without 
increasing the knowledge engineering effort required (i.e, finding formulas for 
simplifying parameter specification), which were provided by the use of modified 
AND/OR gates and formulas to represent prerequisite relationships. An informal first 
experiment was conducted to test the validity of the approach, using an existing toy 
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example (about a prerequisite structure for finding the least common multiple) to 
show that the use of the defined BN allows emulating human’s way of reasoning in 
this context. A second experiment with simulated students was then performed to see 
how the use of prerequisite relationships could improve the accuracy and efficiency of 
the diagnosis process, yielding satisfactory results.  
Future lines of research include: a) improvements in the model, like for example the 
development of models that allow for defining different degrees of strength for 
prerequisite relationships (some ideas have already been presented in [2]), or the 
combination of this new model with adaptive item selection criteria and b) uses of the 
model, which opens up a broad research field within the MEDEA project, in which 
different ways of using the information contained in the layers of the knowledge 
student model will be explored. 
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