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Abstract—Synchronous interleaved boost converters (SIBCs)
result in lower ripple currents and bidirectional power flow.
The boost topology has a non-minimum phase characteristic,
producing instability problems when a large bandwidth is re-
quired. Linear controllers inherently limit the boost controller
bandwidth, resulting in a slow response. In this paper, state-
trajectory control of the SIBC based on boundary control is
proposed to provide an outstanding dynamic response during
start-up and sudden load changes, close to the physical limit of
the system. The proposed controller and derivation provides a
rigorous framework that deals with four switching states, and
three state equations, resulting in a simple control law with
very fast dynamic response. The normalized trajectories for the
SIBC are determined in the geometric domain along with the
control law. The exact trajectories are used for fast transients, and
approximate trajectories are employed for constant frequency in
steady-state. Simulation and experimental results are provided
to validate the proposed procedures.

I. INTRODUCTION

The basic boost topology has a non-minimum phase char-

acteristic, producing instability problems [1] when a large

bandwidth is required. Linear controllers inherently limit the

boost controller bandwidth [2], resulting in a slow response

as shown in Fig. 1. In order to overcome these issues, non-

linear techniques, such as sliding mode [3]–[5] and boundary

control [6]–[9] have been proposed. Boundary control provides

an outstanding dynamic response during start-up and sudden

load changes [6], [9]. Since the dynamic response is close to

the theoretical optimum, steady state can be achieved with

very few switching actions [7], [9]. These fast dynamics

may enable the use of film capacitors instead of electrolytic

capacitors, which would significantly increase the reliability

of the system [10]. Boundary control uses the trajectories of

the state variables in the phase-plane (geometric) to obtain

a control law [11], [12]. The previous literature review [6]–

[8], [11]–[14] indicates that there is an abundance of articles

on boundary control for the regular boost converter, but no

studies on boundary control of the interleaved boost converter.

Boundary control of the SIBC results in increased complexity,

with an additional state equation necessitated by the additional

storage element, and it is addressed in this work. Additionally,

as shown in Fig. 1, the number of switching states is doubled

(four switching states of SIBC versus two switching states
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Fig. 1. Conceptual procedure and results of the proposed boundary control
for the SIBC.

of simple boost converters). The proposed controller and

derivation provides a rigorous framework that deals with the

additional states and equations, resulting in a simple control

law with very fast dynamic response, which is conceptually

depicted in Fig. 1. The normalized trajectories for the SIBC

are determined in the geometric domain along with the control

law. The exact trajectories are used for fast transients, and ap-

proximate trajectories are employed for constant frequency in

steady-state. Simulation and experimental results are provided

to validate the proposals.

II. NORMALIZED STATE TRAJECTORIES

Fig. 2 shows the bidirectional SIBC; each inductor has an

inductance of 2L, so the total parallel inductance is L. The

load is a constant current source IO and the input voltage

VI is considered constant (capital letters will denote constant

magnitudes). There are four different switching states in the

SIBC, with the switches S1 and S2 being 1/0 when on/off.

The lower switches are complementary to the upper ones. The

equations of the boost converter depend on the switching state

of the power devices S1 and S2 according to:

C
dvc
dt

= S̄1iL1 + S̄2iL2 − IO (1a)
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Fig. 2. Synchronous Interleaved boost converter (SIBC).

2L
diL1

dt
= VI − S̄1vc (1b)

2L
diL2

dt
= VI − S̄2vc (1c)

with vc the output voltage, C the output capacitor ca-

pacitance, and finally iL1 and iL2 the currents through the

different inductors. In order to derive a simple control law, it

is convenient to define the total current iL = iL1 + iL2 and

the current difference ∆iL = iL1 − iL2. It is also convenient

to normalize the voltage, current, and time, with Vb = Vrated

the output rated voltage, Ib = Vref

√

C/L and Tb =
√
LC

respectively [13]. With this normalization CN = LN = 1,

which allows for simpler formulas and lower computations

for the control law implementation. For the switching states

S1 = S2, the following equations result:

dvcN
dtN

= iLN − ION

diLN

dtN
= VIN − vcN

2
d∆iLN

dtN
= 0







for S1 = S2 = 0 (2)

dvcN
dtN

= −ION

diLN

dtN
= VIN

2
d∆iLN

dtN
= 0







for S1 = S2 = 1 (3)

The subscript N denotes normalized variables. The selected

normalization presents another interesting property, namely

that the trajectories for S1 = S2 = 0 are circles, with their

centres at (ION , VIN ), rotating with unity angular speed, see

Fig. 3:

S1 = S2 = 0 :

(iLN − ION )2 + (vcN − VIN )2

= (ILBN − ION )2 + (VcBN − VIN )2 (4)

with ILNB , ∆ILNB and VcBN the initial values. The

trajectories for S1 = S2 = 1 are straight lines, see Fig. 3,

[13]:
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Fig. 3. Trajectories for the different switching states.
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Fig. 4. Trajectories for the different switching states including ∆iLN .

S1 = S2 = 1 :

(iLN − ILNB) = −VIN/ION (VcN − VcBN )2 (5)

It is clear that, for these cases, the SIBC behaves as a simple

boost converter. Moreover, the current difference ∆iL does

not change for this switching states S1 = S2, see (2)-(3). For

S1 6= S2, the following equations result:

dvcN
dtN

=
1

2
(iLN −∆iLN )− ION

diLN

dtN
= VIN − vON

2

2
d∆iLN

dt
= vcN







for S1 = 1, S2 = 0 (6)

dvcN
dtN

=
1

2
(iLN +∆iLN )− ION

diLN

dtN
= VIN − vcN

2

2
d∆iLN

dt
= −vcN







for S1 = 0, S2 = 1 (7)



The second equation in (6) and (7) shows that the behavior

of iLN , increasing or decreasing, depends on whether VIN is

higher or lower than vcN /2. The third equation in (6) and (7)

shows that ∆iLN varies when these switching states S1 6= S2

are applied. By eliminating iLN and ∆iLN in the first equation

of the previous sets, it results that:

2
d2vcN
dt2N

+ vcN = VIN

diLN

dtN
= VIN − vcN

2

2
d∆iLN

dt
= vcN







for S1 = 1, S2 = 0 (8)

2
d2vcN
dt2N

+ vcN = VIN

diLN

dtN
= VIN − vcN

2

2
d∆iLN

dt
= −vcN







for S1 = 0, S2 = 1 (9)

Therefore, according to (8) and (9), the switching states

S1 6= S2 produce the same effect for iLN , but the opposite

for ∆iLN . Moreover, the trajectories in the phase plane of

vcN and iLN for S1 6= S2 will be the same, see Fig. 3,

provided that the initial values are the same. In the normalized

domain, the phase plane trajectories of these equations result

in a circle rotating at a constant speed for iLN1 and a straight

line for iLN2. The values for iLN and ∆iLN result from the

combination of iL1 and iL2, but the trajectory equations do

not result in simple geometrical forms, see Fig. 3. The three

dimensional trajectories for the different switching states are

shown in Fig. 4. It can be seen that, unlike the trajectories for

S1 6= S2, the trajectories for states S1 = S2 are in a plane, as

∆iLN does not vary.

III. STEADY STATE BEHAVIOR

For transients, the switching states S1 = S2 should be

used and the interleaved converter will behave like a standard

boost. At steady state, the SIBC alternates the switching states

S1 6= S2 to minimize the current ripple, and this is the

same as selecting the most propitious switching sequence. In

order to make the previous equations analytically tractable

at steady state, it is considered that vcN ≈ VON [11] with

VON the average value of the output voltage. This is the

same as assuming a proper voltage regulation [11] with the

currents being straight lines. With vcN ≈ VON , the trajectory

for S1 = S2 = 0 is a parabola approximating the circle (4)

according to [12]:

S1 = S2 = 0 :

vcN = vBN − i2LN − i2BN

2(VON − VIN )
+ ION

iLN − iBN

VON − VIN

(10)

For S1 = 1, S2 = 0, the trajectory is also a parabola by

approximating the complex curve resulting from solving (8)-

(9):

S1 = 1, S2 = 0 : vCN = vCNB

+
(iLN − iLNB)VON (∆iLNB − iLN + 2ION )

(2VIN − VON )2

− VIN (iLN − iLNB)(2∆iLNB − iLN − iLNB + 4ION )

(2VIN − VON )2

(11)

The solution for S1 = 0, S2 = 1 is the same as the solution

for (11) but with the opposite sign for ∆iLNB . Moreover,

∆iLN increases linearly with slope VON/2 for S1 = 1, S2 = 0
and decreases for S1 = 0, S2 = 1,

∆iLN = ∆iLN (0)± VON tN
2

for S1 = 1/0, S2 = 0/1 (12)

For VIN < VON/2, the sequences S1 6= S2 result in

decreased iLN , see Fig. 5, just as occurs with S1 = S2 = 0.

Hence, the switching states used in this case are S1 6= S2

to decrease iLN and S1 = S2 = 1 to increase it. The state

S1 = S2 = 0 will not be used during the steady state. The

points B and A of maximum and minimum current correspond

to the final and initial application of S1 = S2 = 1 respectively,

see Fig. 5. The trajectories for VIN > VON/2 are too close

to be discerned in a practical implementation, and will not be

considered.

To calculate the relation between point B (ILNB , VcNB) in

the phase plane with minimum current and the average point

(ILN , VON ), see Fig. 5, three conditions must be met, namely,

the power must be conserved, and the average current and

voltage must be calculated [15]:

VINILN = VONION (13)

ILN =
1

Tsw








∫ TB→A

0

iLNdt

︸ ︷︷ ︸

B→A(S1=1,S2=0)

+

∫ TA→B

0

iLNdt

︸ ︷︷ ︸

A→B(S1=1,S2=1)








(14)

VON =
1

Tsw








∫ TB→A

0

vcNdt

︸ ︷︷ ︸

B→A(S1=1,S2=0)

+

∫ TA→B

0

vcNdt

︸ ︷︷ ︸

A→B(S1=1,S2=1)








(15)

with TB→A the time corresponding to descending current,

see Fig. 5, from B to A. Finally, TswN is the switching period.

Therefore, for B → A, the solutions for the equations S1 6= S2

(6)-(7) must be used and for A → B, the solution for equation

S1 = S2 = 1 equation (3) must be used. Additionally, it is

necessary to use the condition of periodicity iLN (TswN ) =
iLNB [15]. Finally, in steady state the average value of ∆iLNB

must be null. Because the switching states S1 6= S2 = 1 are

applied alternately, the following constraint must be fulfilled:



(16)0 =
1

2Tsw








∫ TB→A

0

∆iLNdt

︸ ︷︷ ︸

B→A(S1=1,S2=0)

+

∫ TB→A

0

∆iLNdt

︸ ︷︷ ︸

B→A(S1=0,S2=1)








After some algebraic operations, the relation between the

average values and the values at the extreme point B is:

(17)

VcNB = VON +
IONTswN (2VIN − VON )

2VON

+
TswN

2VIN
3 (VIN − VON )

3VON
3

(18)ILNB =
IONVON

VIN

− TswNVIN (2VIN − VON )

2VON

The maximum ∆iLNB corresponding to the points B and

A is:

∆iLNmax = ±TswNVIN

2
(19)

IV. CONTROL LAW DERIVATION

Boundary control uses the solution of the previous equa-

tions to establish an appropriate control law to achieve an

outstanding dynamic response. For large transients, with vCN

far from the reference VON , the boost converter should react as

quickly as possible. This is achieved by using the switching

states S1 = S2 as a simple boost converter. The switching

surface is determined by the circle (4) and the straight line

(5) intersecting at the point B, the coordinates of which are

calculated in (17)-(18), see Fig. 6. Therefore, the first control

law is:

vcN < vcNL or vcN > vcNH :

if (vcN , iLN ) ∈ L then S1 = S2 = 1

else S1 = S2 = 0 (20)

Note again that, during these switching actions, ∆iLN

remains constant. Finally, when the trajectory is near the ripple

area in the state plane, see the shaded area s in Fig. 6, the

switching state S1 = S2 = 0 is replaced by the sequence

S1 6= S2 alternating after S1 = S2 = 1 to make the average

∆iLN null:

vcN > vcNL and vcN < vcNH :

if (iLN , vcN ) ∈ S then S1 = S2 = 1

else alternate S1 = 0/1, S2 = 1/0 (21)

In order to prevent chatter, a hysteresis band is needed for

vcNL and vcNH . It can be seen that, despite the additional

state in the equations of the SIBC, the control law is simple

to implement.
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Fig. 5. Trajectories near the operating point for VIN < vcN/2.
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V. SIMULATION AND EXPERIMENTAL RESULTS

Table I contains the parameters for the simulations and

the experiments, based on a converter operating at moderate

switching frequency. Figs. 7 and 8 show the simulation results

for a full-load step, achieving very fast transient even in the

presence of low switching frequency. The switching devices

are modeled ideally. The ESR of the passive elements, and

the quantization effects of the ADCs, are considered. Fig. 7

shows the signals in the time domain, and Fig. 8 shows the

phase plane for iLN and vcN . The actions of the boundary

control allow for a very fast transient with very low dip in the

output voltage even when using small film capacitors. It can

also be seen that, after the transient, the interleaving switch-

ing sequence resumes with very close to constant switching

frequency during steady state.

Figs. 9 and 10 show the experimental results for the same

previous full-load step. All the calculations of the simple con-

trol law are performed using a low cost DSP (TMS320F28335

by Texas Instruments), which was programmed using C. Fig.

9 shows the signals in the time domain, and Fig. 10 the phase

plane for vCN and iLN . It can be seen that the experimental

results are very similar to the previous simulation results, and



TABLE I
PARAMETERS FOR THE SIMULATIONS AND EXPERIMENTS

Parameter Value

Rated power Pn 60W
Output voltage VO 25V
Input voltage VI 10V
Switching frequency fsw 3 kHz
Sampling frequency fs 300 kHz
Inductor inductance L 0.508mH
Inductor resistance RL 36mΩ

Capacitor capacitance C 141 µF
Capacitor resistance RC 9.7mΩ
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Fig. 7. Simulation results for the full load step: time domains signals vCN ,
iLN , iL1N , iL2N and load current iON .
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show a very fast response. The bandwidth limitation of the

sensors and the full losses of the passive elements have a

smoothing effect on the control magnitudes. This leads to

fewer switching actions after the load step comparing to the

simulations. It also leads to small variations in the switch-

ing actions during steady state with approximately constant

switching frequency.

VI. CONCLUSION

This paper has introduced the boundary control of the

synchronous interleaved boost inverter. This control strategy

v
cN i

LN

i
L1N

i
L2N

i
ON

full load step

Fig. 9. Experimental results for the full load step: time domains signals vCN ,
iLN , iL1N , iL2N .

v
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Fig. 10. Experimental results for the full load step: phase plane for vCN and
iLN .

enables the non-minimum phase problems of the boost con-

verter to be overcome, and it is able to cope with the presence

of additional switches and passive elements in the interleaved

converter. The derived control law is simple and is based on the

rigorous analysis of the exact trajectories during transients, and

approximate trajectories during steady state. The simulations

and experiments, which are fully consistent with the theoretical

derivations, validate the proposals and result in very fast

transients for full-load step variations.
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