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Abstract—This paper introduces a cloud broker service
(STRATOS) which facilitates the deployment and runtime man-
agement of cloud application topologies using cloud elements/ser-
vices sourced on the fly from multiple providers, based on re-
quirements specified in higher level objectives. Its implementation
and use is evaluated in a set of experiments.
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I. INTRODUCTION

In the evolving cloud ecosystem, it is difficult to determine

from which provider(s) a particular cloud resource should be

acquired. At present, providers describe their offerings ac-

cording to a self-defined methodology. For example, Amazon

uses what they refer to as Computation Units and number of

cores to express the CPU capabilities of its various compute

offerings while Rackspace defines CPU as a proportion of

the physical host machine. The result is the absence of

standardized comparisons among otherwise comparable of-

ferings, which makes deciding on a provider at design time

challenging. Once a provider is chosen, a second decision

regarding which of their offerings is appropriate must be made.

One solution is to decide on a provider automatically at

runtime, instead of making a manual decision at design time.

The advantages of delaying the decision include flexibility,

portability, and removing the expectation that the software

architect be equipped to make the decision. runtime decision

making is a natural fit for adaptive systems. For example,

at the Adaptive Systems Research Lab, we are constructing

a business-driven, cloud management framework that uses

models at runtime to determine resource needs and provision

them automatically in accordance with requirements and in

alignment with business objectives. Presently, we are able to

deploy an application environment to a public cloud (e.g.,

EC2). Associated with this application are a set of models

which are used to implement the elasticity policy of its

application server tier [1]. The complementary question of

from where to source resources is addressed in this paper.

A resource acquisition decision (RAD) problem1 involves

the selection of n resources from a set of m providers

such that the deployer’s set of constraints, requirements, and

preferences (collectively, the deployer’s objectives) are met (or

best approximated). In order to automate resource acquisition

decisions (RADs), a broker service layer is envisioned between

adjacent layers of the three layered (i.e., IaaS, PaaS and

SaaS) cloud architecture [2]. This broker is used to aggregate

1Although we use the term acquisition, our solution also addresses adap-
tively releasing resources.

knowledge about various services offered by all providers

from the subordinate architectural layer and provide a unified

interface / API.

Ideally this architecture will allow higher-level specification

of objectives that can be evaluated in a standardized, cross-

provider manner. A consortium, led by Carnegie Mellon and

CA, has developed the Service Measurement Index (SMI) as

a possible approach to facilitate the comparison of cloud-

based business services2. The SMI framework is a hierarchical

partitioning of a service’s description into seven categories

(i.e., accountability, agility, assurance, financial, performance,

security and privacy and usability) with each category being

further refined to a set of attributes [3]. An attribute is then

expressed as a set of key performance indicators (KPIs) which

specify the requisite data to be acquired for every measure /

metric [3].

In this paper we introduce an initial version of our broker

service layer, the cloud broker service STRATOS3 which

represents an initial step toward the automated cross-cloud re-

source provisioning and intercloud platform envisioned by [4].

While abstraction layers to IaaS already exist, their focus is on

delaying choosing a cloud provider from design/develop time

to deployment time, with the ability to change the decision

with limited development effort. We automate the decision

entirely, and move the decision point from deployment time

to runtime. STRATOS allows the application deployer to

specify what is important to them in terms of KPIs so that

when a request for resource acquisition is made it is able

to consider the request against all providers’ offerings and

select the acquisition that is best aligned with the objectives.

Some experiments are presented that demonstrate how cross-

cloud distribution of an application can decrease the cost of the

topology and create one that is better fitted to the deployer’s

objectives. We conclude with a discussion exploring the design

issues and challenges.

II. DESIGNING A CLOUD BROKER SERVICE

We will use the following scenario as a running example

throughout this paper. An application provider intends to

deploy a stateless, multi-tiered application environment to the

cloud; there are two cloud providers, PA and PB . There

are two situations where a RAD problem is encountered:

(i) Initialization of the application environment topology and

(ii) at runtime whenever a change in resource allocation is

2http://beta-www.cloudcommons.com/web/cc/about-smi
3The stratosphere is the second major layer of Earth’s atmosphere, directly

above the troposphere where almost all clouds exist.
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Fig. 1: High-level architectural view of the cloud management

framework. The Application Manager is not shown.

determined by the elasticity policy of the application server

tier. After the initial deployment, the decision to add or remove

resources is made by a Cloud Manager. There is an Applica-
tion Manager which controls the runtime management of the

application according to models (i.e., layered queueing model,

linear models, policy rules, etc.). The latter two components

are described in more detail in [5] but will be introduced

briefly here. The Broker is responsible for solving the RAD

problem; it must also connect (automatically) with the set of

selected providers to be used and acquire/release the collection

of resources.

Consider the architecture presented in Figure 1. A topology

document, referred to as a topology descriptor file (TDF), is

used to define the application topology to be deployed on

the cloud (§II-A). The deployer specifies all the details of

its application environment in this document4. Details include

structural concerns (e.g., numbers of tiers in the application,

numbers of nodes in each tier, etc.), monitoring directives

(e.g., which metrics to monitor and how often), management

directives (e.g., a set of models to control the elasticity policy

of the application server tier at runtime), and the deployer’s

objectives.

Upon receiving the topology document, the Cloud Manager

contacts the Broker to instantiate the topology. The Broker

performs the initial RAD calculation, namely the most efficient
allocation of resources across the two providers. Efficient is

an intentionally non-specific term: it determines, based on the

specifications in the TDF, whether the entire topology should

be built on PA (or PB) or whether it should be partially

sourced from both (and in what precise ratio). Further, it

selects the specific configuration of nodes (i.e., CPU, RAM,

disk) from the set of all available configurations offered

by each provider. These configurations and their properties

are obtained from a third-party API (e.g. CloudHarmony or

CloudyMetrics [6]). The chosen nodes are instantiated through

a translation layer (which allows the Broker to communicate

with either provider and the instances created by each). The

4As the broker is further developed, we hope to reduce the amount of infor-
mation that must be specified manually in favor of automatic determination.

CloudManager and Broker make use of monitoring informa-

tion, the former to make ongoing elasticity decisions (via the

Application Manager) and the latter to assist in the decision

process.

The current implementation requires that the deployer create

accounts with each provider and include that information

at deployment time. The deployer must also specify which

images the broker should use for the required nodes; the broker

can deploy and configure these images based on the TDF. The

broker maps the provider-specific images to a set of abstract

identifiers used in the TDF. To add a new provider to the

broker, the deployer provides account details and a mapping

from the provider-specific image identifiers to the abstract

image identifiers5.

The remainder of this section discusses the broker solution

in more detail: specifying the problem in a TDF, specifying

higher-level objectives, deciding on what resources to acquire

and acquiring those resources and making them available.

A. Topology

A topology represents a managed application environment.

An application is composed of a set of clusters and a cluster

is composed of a set of nodes. A node is a representation of a

virtual machine instance characterized by various factors such

as hardware specification (CPU, RAM, disk) as well as more

abstract things such as performance, security, etc. Nodes in the

same cluster have identical function, for instance one cluster

may contain web servers while another contains database

servers. Containers can be deployed to nodes. A container

represents software that provides a place for services to run

(e.g. Tomcat). A service is then deployed into a container

(e.g. web service deployed in Tomcat). The TDF describes

this structure in XML.

Figure 2 shows a small snippet of the TDF. Lines 3-19

describe a simplified topology (with some clusters omitted), in-

cluding a web host with a Tomcat container and two services:

Simple Application and SNMP. The application is connected

to a MySQL cluster and Tomcat is connected to a Load

Balancing cluster. The node is expected to generate 500GB

of outgoing bandwidth. Lines 22-32 describe the broker input:

configuration small described by three properties (CPU, RAM,

disk), and the objective function definition pointing to the class

that implements the function.

B. Defining Objectives

The objectives represent the constraints, requirements, and

preferences established by the deployer. They are specified as

objective functions; the broker model allows for any imple-

mentation of an objective function.

In order for any comparison to be performed, a set of

measurable indicators must be defined. It is also important that

these measurements can be normalized in order to compare

various providers, as most use self-defined descriptors to de-

scribe their offerings. The Service Measurement Index (SMI)

5The current implementation also requires manual addition of available
configurations for the new provider.
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1 <c o n f i g u r a t i o n>
2 <t o p o l o g y name=”Awesome Cloud ” i d =” t o p o l o g y 1 ”>
3 <c l u s t e r name=”Web C l u s t e r ” i d =” Clus ter Web 1 ”>
4 <node name=”Web Host ” i d =” ” t y p e =” worker ” c o n f i g =”

s m a l l ”
5 img=” img−e f 3 8 f a 8 6 ” p u b l i c I P =” ” p r i v a t e I P =” ” r e g i o n =

” us−e a s t−1d ” band−i n =” ” band−o u t =” 500 ”>
6 <c o n t a i n e r name=” Tomcat 6 ” i d =” ”>
7 <s e r v i c e name=” S i m p l e A p p l i c a t i o n ” i d =” tom1 ” />
8 <s e r v i c e name=”SNMP” i d =”snmp” />
9 </ c o n t a i n e r>

10 </ node>
11 </ c l u s t e r>
12 <!−− a d d i t i o n a l c l u s t e r s o m i t t e d −−>
13 <d e p e n d e n c i e s>
14 <!−− Connect Simple App t o MySql −−>
15 <dependency from=” tom1 ” t o =” mysql1 ” />
16 <!−− Connect Load B a l a n c e r t o Tomcat −−>
17 <dependency from=” b a l 1 ” t o =” tom1 ” />
18 </ d e p e n d e n c i e s>
19 </ t o p o l o g y>
20

21 <b r o k e r>
22 <c o n f i g u r a t i o n s>
23 <c o n f i g name=” s m a l l ” i d =” s m a l l ”>
24 <p r o p e r t y name=” d i s k ” v a l u e =” 160 ” u n i t =”GB” />
25 <p r o p e r t y name=” cpu ” v a l u e =” 2 ” u n i t =” u n i t s ” />
26 <p r o p e r t y name=” ram ” v a l u e =” 4 ” u n i t =”GB” />
27 </ c o n f i g>
28 </ c o n f i g u r a t i o n s>
29

30 <o b j e c t i v e name=” c o s t ”
31 c l a s s =” s t r a t o . b r o k e r . o b j e c t i v e s . C o s t O b j e c t i v e ” />
32 </ b r o k e r>
33 </ c o n f i g u r a t i o n>

Fig. 2: Selected Topology Description File content.

offers one promising approach to business service comparison;

however, mappings from higher-level characteristics to lower-

level measures (KPIs) are not well defined. Garg [7] attempts

to define a basic set of metrics to be used for cloud services

comparison. Similarly, Zachos et al. [8] provide an alternative

set of metrics. In this work we use KPIs defined in their work

and extend this set when necessary.

The experiments are focused on two particular objectives:

cost and avoiding lock-in. Lock-in is measured using the

balance of the topology across the providers; as an objec-

tive, avoiding lock-in represents the desire to have an entire

application running with a single provider.

Cost is a more complex objective, as there are many factors

involved in calculating cost: instance type, length of time,

hourly price, spot versus on-demand, bandwidth, storage, and

more. To demonstrate the flexibility of the cost objective, we

conduct experiments that include only the hourly price, as

well as experiments that consider the bandwidth cost. Since

bandwidth outside the cloud provider’s data center incurs

charges, the objective to minimize bandwidth cost is in direct

conflict with the objective of avoiding lock-in; the broker

achieves a balance of these opposing objectives.

Assuming on-demand instances, the hourly prices are pub-

lished and change rarely, and are therefore easily calculated.

The cost of bandwidth involves three factors: (i) providers’

pricing models, (ii) application’s communication patterns and

(iii) distribution of nodes over providers. Although pricing

models vary (some providers charge a consistent price, while

others offer volume discounts), once known the cost is easily

calculated.

The expected communication patterns of the application

are specified in the TDF6. The expectations/approximations

are updated at runtime based on measured communication

patterns. Both approximating and measuring requires consid-

eration of several factors:

1) How much data do the end users receive from the

application?

2) Is the data distributed equally among the nodes?

3) Do the nodes within a cluster exchange data (e.g.

database synchronization)?

4) What volume of information is transmitted among the

clusters (e.g. between application nodes and database

node)?

The nodes can be distributed over the providers in various

combinations; each distribution has bandwidth cost implica-

tions. If the application is deployed to a single provider,

the bandwidth cost is based primarily on Factor #17. If the

topology is distributed over multiple providers, then the cost

depends on which communication within the topology crosses

the boundaries of a provider. If a three-tier web application

were deployed with a load balancer and a database on one

provider and all application servers on the other provider, each

request would cause data to cross the provider boundaries at

least five times (client to balancer, balancer to app server, app

server to database, database to app server, app server to client).

In our experiments we consider a simple architecture with

clearly defined communication paths (load balancer ↔ web
server ↔ database), assume equal traffic to all nodes and

between all clusters, and no intra-cluster data exchange. Es-

timation of communication costs for applications that rely on

internal communication that is difficult to predict, such as

Hadoop, represents a harder problem.

C. RAD Problem: Selecting Resources

The broker requires two pieces of information from the

deployer to solve any particular RAD problem: desired config-
uration and a set of objectives. A configuration, ci, is described

by a list of properties (p1, · · · , pn), where each property pi

is a triple (name, value, unit). An objective, on the other

hand, represents a utility function calculated for a topology,

with a configuration being a variable, e.g. cost of the topology

can be viewed as an objective to be minimized. The goal of

the broker is to optimize the set of objectives (as specified

by the deployer in their TDF). By default we use a weighted

sum of these objectives; however, in general the method of

optimization can be chosen by the deployer.

The selection process occurs in two steps: (i) identification

of feasible configurations and (ii) optimization of objectives.

The broker selects the set of all configurations that satisfy

the objectives specified in the desired configuration named in

6We plan to add heuristics that will provide estimates based on the
application type in case these values are not provided by the deployer.

7Communication within a data center is generally not charged or an order
of magnitude less expensive than communication that leaves the data center.
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the TDF (e.g., small, large). This selection defines a space

in which we will optimize objectives. Next, as a result of

the multi-criteria optimization process, a set of equivalent

configurations is selected. From this set one is selected and the

appropriate instance is acquired from the provider (the current

implementation chooses randomly). In the situation where

there are no suitable configurations fitting the objectives, the

broker makes an attempt to relax objectives by finding the

closest configuration in each direction (property). Next, the

optimization step is performed over the resultant set of relaxed

results.

The RAD problem can be formulated as a multi-criteria

optimization problem [9] as follows. A decision space Ω is

a set of all offered configurations ci. Let cd denote a desired

configuration that is defined by the deployer. The subset of Ω
denoted as χ is a feasible set and is defined as

χ = {ci ∈ Ω|∀pa∈ci∀pb∈cd
a = b ⇒ pb ≤ pa} (1)

The objective function denoted as Oi(T, ci), where T is a

topology, is a criteria in the optimization problem. Then the

RAD problem can be stated mathematically as:

minci∈χ(O1, · · · , Om) (2)

To solve this formulated problem, various optimization tech-

niques can be used [9]. Such optimization is performed for

each node added to the topology. Let N be a set of nodes to

be added, then we perform optimization for each node using

weighted sum to solve the optimization problem which gives

us the following formula:

∀n∈N

⎛
⎝minci∈χ

⎛
⎝

m∑
j=1

Oj(T, ci) ∗ wj

⎞
⎠

⎞
⎠ (3)

where wj is a weight assigned by the deployer to the objective

Oj . In this work we use two objective functions to represent

the objectives described in §II-B, cost and lock-in. The cost

function is the price of a particular configuration normalized

using the maximum price among all offered configurations

(the factors involved in calculating the cost vary; as long as the

same approach is used for all configurations it is unimportant).

Lock-in is defined as follows:

L(T, ci) =
P∑

j=1

|lj − nj | (4)

where P is a number of providers, lj is a desired percentage

of nodes that should be acquired from provider j and nj is

actual percentage of nodes acquired from this provider. For

our two provider scenario, the deployer may want to distribute

their acquired nodes equally among the two providers setting

l1 = l2 = 0.5. The broker when acquiring nodes will then try

to minimize L and keep the topology balanced.

TABLE I: Configurations of instances offered by Amazon

Id CPU RAM
[GB]

Disk
[GB]

Price
[$ per h] Platform

m1.small 1 1.7 160 0.085 32bit

m1.large 4 7.5 850 0.340 64bit

m1.xlarge 8 15.0 1690 0.680 64bit

TABLE II: Configurations of instances offered by Rackspace

Id CPU∗ RAM
[GB]

Disk
[GB]

Price
[$ per h] Platform

256MB 1.6% 0.25 10 0.015 64-bit

512MB 3.1% 0.5 20 0.030 64-bit

1,024MB 6.3% 1.0 40 0.060 64-bit

2,048MB 12.5% 2.0 80 0.120 64-bit

4,096MB 25% 4.0 160 0.240 64-bit

8,192MB 50% 8.0 320 0.480 64-bit

15,872MB 100% 15.5 620 0.960 64-bit

30,720MB 8 cores 30.0 1200 1.800 64-bit

* Each has four virtual cores, with % of the total core available.

D. Acquisition

To support multiple cloud providers we use δ-cloud 8. It

provides a service that exposes a standard RESTful API to

developers, translating calls to its server to the appropriate

API calls of the cloud provider. Provider support is supplied

by drivers, which allows new providers to be added to our

broker easily.

III. EXPERIMENTS

We implemented the broker using Java, and tested brokering

decisions for a simple stateless web application deployed on

a standard three-tiered environment consisting of an Apache

load balancer, Tomcat application server cluster and MySQL

database backend. The experiments are based on the scenario

introduced in Section II, using Amazon EC2 and Rackspace

as the two cloud services providers. We considered only the

Linux configurations shown in Tables I and II and used the

bandwidth prices shown in Table III.

A. Experiment One: Cost optimization

This experiment demonstrates that STRATOS is able to op-

timize for the single objective of cost. The TDF describes two

preferred configurations, small and large, by their respective

8http://deltacloud.apache.org/

TABLE III: Cost of the Data Transfer
Threshold Amazon∗ [$/GB] Rackspace [$/GB]
First 1 GB / month 0.000

0.18
Up to 10 TB / month 0.120
Next 40 TB / month 0.090
Next 100 TB / month 0.070
Next 350 TB / month 0.050
Inter-availability zone 0.01 N/A

∗cost of transfer grater than 524TB/month is individually priced
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TABLE IV: Desired configurations used in the experiment

and the closest configurations offered by Amazon (EC2) and

Rackspace (RS) (hardware properties)
Configuration (CPU, RAM, Disk) EC2 RS
small (1,1,160) m1.small 4,096MB (5)
large (6,4,160) m1.xlarge 4,096MB (5)

TABLE V: Cost of the topology ($ per hour) built on Amazon

(EC2) and Rackspace (RS) exclusively and cross-cloud using

broker (B)
Configuration EC2 RS B
small 0.085 0.24 0.085
large 0.68 0.24 0.24
total∗ 0.935 0.96 0.495

∗total = 3 ∗ small + large

hardware requirements as shown in Table IV. The load bal-

ancer and web server nodes require small configuration while

the database node requires a large configuration. The broker

tries to match these desired configurations while satisfying the

objectives.

Cost is calculated as the normalized sum of per-hour fees for

each instance (the simple cost); the Amazon/Rackspace prices

are normalized using a method described in [10]. The cost

objective was minimized and the resources acquired; Table V

show fees paid by a deployer deploying the same topology to

Amazon EC2 or Rackspace exclusively and distributing it as

directed by the broker; cost savings of up to 48% are realized

when using the broker.

B. Experiment Two: Lock-in and cost

In this experiment we optimize two objectives: cost opti-

mization (the same objective used in previous experiment) and

lock-in minimization which aims to distribute acquired nodes

among available providers. In this experiment we distribute

nodes equally; however it is possible to change the settings

and choose preferred providers if desired. As a result of this

additional objective all nodes were distributed over the two

providers equally. Specifically, the load balancer was deployed

on an EC2 m1.small node, the web servers were deployed

one on each provider and the database server was deployed

to Rackspace. When adding an additional web server node at

runtime it was deployed to EC2 because the topology must

remain balanced and configuration m1.small is less expensive

than the corresponding configuration (4GB) from Rackspace.

The cost of the topology (per hour) in this case is higher than

when optimizing based on cost only ($0.64) but the desired

property of splitting services among providers is met.

C. Experiment Three: Online Provisioning

In this experiment we allow the policy engine component

(of the Application Manager) to make decisions in response

to workload. The decision to add a node or remove a node is

taken based on performance metrics, which in this implemen-

tation was the mean response time over the application server

(a) Throughput

(b) Number of servers

(c) Response Time

Fig. 3: Adding and removing nodes at runtime.

cluster. We use a combination of two constantly increasing

workloads: the first starts by generating 200 users and adds

10 users per iteration (every 3 minutes) and after seven

iterations decreases number of users the same way. The second

workload, that runs from from 5th minute to 20th minute and

30th to 45th min of the test, is used to generate spikes in the

workload adding an additional 500 users and then another 10

per iteration. Users send mixed select and insert requests with

randomized think time between consecutive calls. The decision

where to provision is made by the broker based on the specified

objectives, for this experiment including the simple cost and

lock-in.

We ran two series of experiments. In the first series we

used only hardware properties to select a configuration. In

this case one of our workloads was capable of producing

70% CPU utilization on the EC2 instance with m1.small

configuration, while the corresponding instance on Rackspace

handled similar workload utilizing about 15% of the CPU.

We hypothesize that it is the result of a difference in the

number of cores (m1.small has one core while Rackspace

4GB instance has 4 cores) and the potential to use more

CPU time when available. The difficulty of directly comparing

even two providers strengthens the argument for a better

way of expressing requirements and capabilities (e.g. through

benchmarking).

In the second series we have used a WEB benchmark

acquired from Cloud Harmony9 to compare configurations in

the selection process. Configurations used in this experiment

are shown in Table VI. It allowed us to acquire instances that

have comparable power and more predictable behaviour.

Figure 3 shows the results of the second series of this

experiment in the form of a graph of the throughput, the

number of application servers deployed on each provider

9http://cloudharmony.com/benchmarks
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TABLE VI: Desired configurations used in the experiment

and the closest configurations offered by Amazon (EC2) and

Rackspace (RS) (benchmark results)
Configuration WEB Bench. EC2 RS
small 25 m1.small 1024MB (3)
large 82 —∗ 2,048MB (4)

∗ The largest considered configuration from Amazon EC2 (m1.xlarge) re-
ceived 66 points in the benchmark which does not satisfy the requirement

and the response time. In this experiment, objectives are

maintained when adding the nodes10. STRATOS maintains the

balance of the topology by adding nodes from both providers;

however, when the topology is balanced it prefers a less

expensive provider.

D. Experiment Four: Including Bandwidth Cost

In this experiment we include bandwidth charges (Table III)

in the cost function calculation11. Although the EC2 costs

decrease the more bandwidth you use (after the first 1GB), our

application does not approach the 10TB threshold to receive

reduced pricing, so the two cost models are the same in

practice (though with differing prices).

We did some initial benchmarking of the application to

create an initial cost approximation, based on the factors

described in §II-B. We assume 20KB per request per tier

(application and database tiers), 1000 requests per hour, evenly

balanced among all nodes. The estimate is 15GB per month

from the database server, another 15GB from the application

which is replicated by the load balancer for another 15GB.

These totals include 1GB of monitoring data.

Using the same weights as in experiment three (lock-in

and cost are equally important), the addition of bandwidth

to the cost calculations did not affect the broker’s decisions

substantively. The bandwidth cost is low and does not substan-

tially skew the total cost, and lock-in is considered important.

However, as the weight associated with the cost is increased,

a single provider (in this configuration Amazon EC2) is

preferred and more instances are deployed to the Amazon EC2

cloud.

E. Startup Time as an Objective

In the course of our experiments, we found that different

providers had different startup times due to the different vir-

tualization technology in place. We conducted an experiment

to systematically assess the startup time of Rackspace and

Amazon EC2. We started 10 instances of each configuration

(one at a time), using δ-cloud to access both providers so the

overhead introduced by this additional layer is present in all

cases. We polled every 30s to see if the instance was active (the

interval was chosen based on our observations and is a trade-

off between prompt notification and respecting rate limits).

The results are shown in Figure 4: the startup time of the

10Nodes are removed in the order they have been added
11We exclude the price of inter-availability zone bandwidth as it is substan-

tially lower in cost than outgoing bandwidth.

Fig. 4: Startup time of various sizes of instances on both

Amazon EC2 and Rackspace.

Amazon EC2 instances is an order of magnitude lower than

Rackspace instances.

In experiments 1-4, we configured the Application Manager

to make decisions earlier to accommodate longer startup times.

This is an imperfect solution, as it results in over-provisioning

when using Amazon instances. A next step is to include

provisioning time in the online decision-making process; for

instance, the broker could decide to acquire instances that

will start up faster to respond to rapidly changing conditions,

but have more freedom to choose among providers when

responding to a gradual trend or predicted load.

IV. RELATED WORK

The term intercloud refers to the notion of a cloud of

clouds [4]. STRATOS has been designed as an initial step

toward this ideal. While there exist many cloud service

providers on the market (e.g., Amazon Elastic Compute Cloud,

Rackspace, Microsoft Windows Azure, Google AppEngine,

Eucalyptus, or GoGrid12), none offers a common platform for

cooperative cross-cloud usage.

The broker service is a component of an adaptive manage-

ment system. Such systems [11]–[14] have previously focused

solely on automating the provisioning of resources from (and

releasing them to) a single cloud provider. Further, in many

cases, the acquired resources are assumed to be homogeneous

in nature. STRATOS removes this assumption of acquired

resource homogeneity and represents an initial attempt at

facilitating automated cross-cloud resource provisioning and

hence, the realization of an actual intercloud platform.

The RAD problem has been described in [15] in the

context of migration of the enterprise into the cloud. They

provide limited support for building a topology using a static

approach and do not consider the evolution of the topology

over time. Their approach requires significant knowledge of

the application.

Han et al. [16] describe a recommendation system (RS) for

cloud computing. This approach is most suitable for design-

time decisions as it is used statically to provide a ranking of

available cloud providers. We employ runtime online decision

making.

12Respectively, http://aws.amazon.com/ec2/, http://www.rackspace.com/
cloud/, http://www.windowsazure.com/en-us/, http://code.google.com/
appengine/, http://www.eucalyptus.com/, http://www.gogrid.com/.
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The need for interoperability and intercloud protocols has

been advanced by [17], while [18] presented work on a

vision of a utility-oriented federation of cloud computing

environments. While both are interesting, neither present an

implementation nor experimental results. Projects like δ-cloud,

whose ultimate goal is to provide unified access to multiple

clouds, offer a unified API which can be viewed as a produc-

tive first step toward the realization of the intercloud vision.

They do not provide any mechanisms to automate the resource

acquisition process and offer advice only.

Service measurement problem has been explored exten-

sively in the context of web services and QoS [19]–[21].

Aggarwal et al. [19] consider measurement specifically in the

context of web service composition. Measurement of cloud

services is a fairly new area of research. Significant work

on systemizing measurement and comparison methods for

cloud services is offered by the SMI project described in

the introduction and in §II-B. SMI is proposed as a tool

for decision makers and managers and as such represents

a business point of view rather than a technical one and

proposes multiple soft criteria that are hard to measure. Garg

[7] attempts to define a basic set of metrics to be used for

cloud services comparison. Similarly, Zachos et al. [8] provide

an alternative set of metrics.

There have also been attempts to measure cloud service

performance [22]–[24]. In all cases services offered by Ama-

zon EC2 have been compared with services offered by other

providers: Rackspace [22] and GoGrid [24]. In this work we

use KPIs and metrics proposed in the earlier work, but we do

not use hardware properties to normalize as done in [7]. The

idea of using benchmarks to normalize configurations is new

and has not been found in the literature.

Armbrust et al. [25] point to several obstacles and oppor-

tunities in cloud computing. They consider availability as one

of the top obstacles and analyze high-availability mechanisms

used by chosen providers. While considering the opportunity

to use multiple providers, they do not refer to any particular

solution allowing for such cross-cloud provisioning to be

performed.

The Aeolus project13 is an open project built on top of

δ-cloud that offers an interface and tools for cross-cloud

acquisition and instance management; however, it “lets a

[deployer] make an informed choice of which of the available

clouds to use” while STRATOS makes that decision for the

deployer.

V. DISCUSSION

To reach our goal of automatic cross-cloud resource acqui-

sition, we must address several challenges. In this section, we

outline the main research challenges going forward, each of

which we are actively developing.

a) Service measurement and comparison: Measurement

methods and metrics are important aspects of cross-cloud

13http://www.aeolusproject.org/

acquisition since they facilitate comparison. Service measure-

ment is a vital part of this research. We intend to explore

in much greater detail the notions of categories, attributes

and KPIs of the SMI including the various relationships and

dependencies among them. In our experiments we have shown

that there is a need for characteristics expressing more abstract

and complex metrics than hardware specification (e.g., CPU,

RAM and disk). The deployer needs to be able to express

their requirements in terms of expected performance rather

than hardware specification. Even such simple measure like

benchmark result gives better results than hardware specifica-

tion. Such characteristics will improve the optimization and

allow the broker to find better configurations that may result

in more homogeneous clusters that are easier to model. There

is also work required in other areas of service measurement

such as security, accessibility etc. Those properties are harder

to measure hence they are also harder to compare.

b) Decision making and optimization: Both multi-

criteria optimization and requirements relaxation are necessary

for the function of the broker. The efficiency of the entire

solution depends upon the efficiency of the decision making

process. Moreover, as a result of optimization we may receive

a set of equivalent (in terms of satisfaction of requirements

and objectives’ values) configurations. This set can be further

refined to optimize the cost-benefit ratio and provide superior

solutions.14

c) Automated application-driven acquisition: It aims to

minimize the human factor and include mechanisms for ap-

plications to acquire resources on-demand without interven-

tion. The decision on which configuration to acquire and

from whom is dependent on the deployed application. Such

application-driven deployment can be done either by using

templates based on the application type (e.g. hadoop, e-

commerce, etc) or as a result of just-in-time benchmarking
(JITB) – a process in which the system runs benchmarks for

a specific application and based on the results a decision

is taken. The later approach requires effective deployment,

benchmarking and assessment methods. At this point of time

the deployment process can be fairly easily automated, yet

JITB and assessment remain an unexplored area. JITB in this

context is not standard procedure used to assess hardware

or virtual instance performance, but rather an approach to

asses the performance of such instance running a specific

application.

d) Issues of model design: The modelling issues need

to be explored. We elected to utilize both an Application

Manager and a Broker in order to separate the decision making

logic into two steps. The first step in the process, handled by

the application manager, determines the number of resources

required at any point in time while the second step, addressed

by STRATOS determines from where to procure these re-

sources. This separation may be incorrect and needs to be

14Selected configurations are equivalent but not equal, especially when a
subset of available properties is considered. In such situations the broker
can refine the optimized set based on, for example, remaining properties and
heuristics.
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explored further. Specifically, what is the impact on adding and

removing non-homogeneous resources (i.e, resources sourced

from multiple providers) on the correctness of the models

guiding the elasticity policy of the various application tiers? It

is unclear at present how negative this de-coupling is in terms

of the trade off benefit of ease of understanding; however,

much work remains to be done with regards to exploring this

design choice.

VI. CONCLUSION AND FUTURE WORK

This paper introduces STRATOS, a broker service to fa-

cilitate cross-cloud, application topology platform construc-

tion and runtime modification in accordance with deployer’s

objectives. STRATOS represents an initial step toward de-

veloping a broker service to facilitate the use of cross-

provider cloud offerings. RAD problems were introduced and

mapped to a multi-criteria optimization problem. A prototype

of STRATOS was described as a component element of a

larger autonomic management framework and experiments

were presented demonstrating STRATOS’s ability to facilitate

cross-cloud resource acquisition in accordance with deploy-

ment directives. The importance of mechanisms to compare

and normalize offerings from multiple providers was also

emphasized by this work.

Our future work includes testing STRATOS in more com-

plex settings that include consideration of various SMI at-

tributes (e.g., QoS characteristics). We also intend to test

STRATOS with different objectives such as availability and/or

latency. Eventually, we would like to eliminate the need for

configuration specifications and move toward an application-

driven resource acquisition process. This requires the defini-

tion of template configurations for different application types

and mechanisms to select these template based on JITB.

Interesting part of the CMO that we want to explore in

the future is identification of KPIs. Work in this area is

partially done and has to be continued. Moreover, in the wider

context of intercloud management system, the verification of

the approach is required. It will be especially interesting to

see if broker’s decisions fit into deployer’s expectation and

how JITB and CMO can help us to understand the decision

process.
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