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Abstract

Targeted opinion word extraction (TOWE) is

a sub-task of aspect based sentiment analy-

sis (ABSA) which aims to find the opinion

words for a given aspect-term in a sentence.

Despite their success for TOWE, the current

deep learning models fail to exploit the syntac-

tic information of the sentences that have been

proved to be useful for TOWE in the prior re-

search. In this work, we propose to incorporate

the syntactic structures of the sentences into

the deep learning models for TOWE, leverag-

ing the syntax-based opinion possibility scores

and the syntactic connections between the

words. We also introduce a novel regulariza-

tion technique to improve the performance of

the deep learning models based on the rep-

resentation distinctions between the words in

TOWE. The proposed model is extensively an-

alyzed and achieves the state-of-the-art perfor-

mance on four benchmark datasets.

1 Introduction

Targeted Opinion Word Extraction (TOWE) is an

important task in aspect based sentiment analysis

(ABSA) of sentiment analysis (SA). Given a target

word (also called aspect term) in the input sen-

tence, the goal of TOWE is to identify the words

in the sentence (called the target-oriented opinion

words) that help to express the attitude of the au-

thor toward the aspect represented by the target

word. For instance, as a running example, in the

sentence “All warranties honored by XYZ (what I

thought was a reputable company) are disappoint-

ing.”, “disappointing” is the opinion word for the

target word “warranties” while the opinion words

for the target word “company” would involve “rep-

utable”. Among others, TOWE finds its applica-

tions in target-oriented sentiment analysis (Tang

et al., 2016; Xue and Li, 2018; Veyseh et al., 2020)

and opinion summarization (Wu et al., 2020).
∗Equal contribution.

disappointing

warranties

All honored

XYZ

by

are thought

what I company

was a reputable

Figure 1: The dependency tree of the example sentence.

The early approach for TOWE has involved the

rule-based and lexicon-based methods (Hu and Liu,

2004; Zhuang et al., 2006) while the recent work

has focused on deep learning models for this prob-

lem (Fan et al., 2019; Wu et al., 2020). One of

the insights from the rule-based methods is that

the syntactic structures (i.e., the parsing trees) of

the sentences can provide useful information to im-

prove the performance for TOWE (Zhuang et al.,

2006). However, these syntactic structures have not

been exploited in the current deep learning mod-

els for TOWE (Fan et al., 2019; Wu et al., 2020).

Consequently, in this work, we seek to fill in this

gap by extracting useful knowledge from the syn-

tactic structures to help the deep learning models

learn better representations for TOWE. In partic-

ular, based on the dependency parsing trees, we

envision two major syntactic information that can

be complementarily beneficial for the deep learning

models for TOWE, i.e., the syntax-based opinion

possibility scores and syntactic word connections

for representation learning. First, for the syntax-

based possibility scores, our intuition is that the

closer words to the target word in the dependency

tree of the input sentence tend to have better chance

for being the opinion words for the target in TOWE.

For instance, in our running example, the opin-

ion word “disappointing” is sequentially far from

its target word “warranties”. However, in the de-
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pendency tree shown in Figure 1, “disappointing”

is directly connected to “warranties”, promoting

the distance between “disappointing” and “war-

ranties” (i.e., the length of the connecting path) in

the dependency tree as an useful feature for TOWE.

Consequently, in this work, we propose to use the

distances between the words and the target word in

the dependency trees to obtain a score to represent

how likely a word is an opinion word for TOWE

(called syntax-based possibility scores). These pos-

sibility scores would then be introduced into the

deep learning models to improve the representation

learning for TOWE.

In order to achieve such possibility score incor-

poration, we propose to employ the representation

vectors for the words in the deep learning models to

compute a model-based possibility score for each

word in the sentence. The model-based possibility

scores also aim to quantify the likelihood of being

an opinion word for each word in the sentence;

however, they are based on the internal representa-

tion learning mechanism of the deep learning mod-

els for TOWE. To this end, we propose to inject

the information from the syntax-based possibility

scores into the models for TOWE by enforcing the

similarity/consistency between the syntax-based

and model-based possibility scores for the words

in the sentence. The rationale is to leverage the

possibility score consistency to guide the represen-

tation learning process of the deep learning models

(using the extracted syntactic information) to gen-

erate more effective representations for TOWE. In

this work, we employ the Ordered-Neuron Long

Short-Term Memory Networks (ON-LSTM) (Shen

et al., 2019) to obtain the model-based possibility

scores for the words in the sentences for TOWE.

ON-LSTM introduces two additional gates into

the original Long Short-Term Memory Network

(LSTM) cells that facilitate the computation of the

model-based possibility scores via the numbers of

active neurons in the hidden vectors for each word.

For the second type of syntactic information in

this work, the main motivation is to further im-

prove the representation vector computation for

each word by leveraging the dependency connec-

tions between the words to infer the effective con-

text words for each word in the sentence. In partic-

ular, motivated by our running example, we argue

that the effective context words for the represen-

tation vector of a current word in TOWE involve

the neighboring words of the current word and the

target word in the dependency tree. For instance,

consider the running example with “warranties” as

the target word and “reputable” as the word we

need to compute the representation vector. On the

one hand, it is important to include the informa-

tion of the neighboring words of “reputable” (i.e.,

“company”) in the representation so the models can

know the context for the current word (e.g., which

object “reputable” is modifying). On the other

hand, the information about the target word (i.e.,

“warranties” and possibly its neighboring words)

should also be encoded in the representation vec-

tor for “reputable” so the models can be aware

of the context of the target word and make appro-

priate comparison in the representation to decide

the label (i.e., non-opinion word) for “reputable”

in this case. Note that this syntactic connection

mechanism allows the models to de-emphasize the

context information of “I” in the representation for

“reputable” to improve the representation quality.

Consequently, in this work, we propose to formu-

late these intuitions into an importance score matrix

whose cells quantify the contextual importance that

a word would contribute to the representation vec-

tor of another word, given a target word for TOWE.

These importance scores will be conditioned on

the distances between the target word and the other

words in the dependency tree. Afterward, the score

matrix will be consumed by a Graph Convolutional

Neural Network (GCN) model (Kipf and Welling,

2017) to produce the final representation vectors

for opinion word prediction.

Finally, in order to further improve the induced

representation vectors for TOWE, we introduce a

novel inductive bias that seeks to explicitly dis-

tinguish the representation vectors of the target-

oriented opinion words and those for the other

words in the sentence. We conduct extensive exper-

iments to demonstrate the benefits of the proposed

model, leading to the state-of-the-art performance

for TOWE in several benchmark datasets.

2 Related Work

Comparing to the related tasks, TOWE has been

relatively less explored in the literature. In particu-

lar, the most related task of TOWE is opinion word

extraction (OWE) that aims to locate the terms

used to express attitude in the sentences (Htay and

Lynn, 2013; Shamshurin, 2012). A key difference

between OWE and TOWE is that OWE does not

require the opinion words to tie to any target words
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in the sentence while the opinion words in TOWE

should be explicitly paired with a given target word.

Another related task for TOWE is opinion target

extraction (OTE) that attempts to identify the target

words in the sentences (Qiu et al., 2011; Liu et al.,

2015; Poria et al., 2016; Yin et al., 2016; Xu et al.,

2018). Note that some previous works have also

attempted to jointly predict the target and opinion

words (Qiu et al., 2011; Liu et al., 2013; Wang et al.,

2016, 2017; Li and Lam, 2017); however, the target

words are still not paired with their corresponding

opinion words in these studies.

As mentioned in the introduction, among a few

previous work on TOWE, the main approaches

include the rule-based methods (i.e., based on

word distances or syntactic patterns) (Zhuang et al.,

2006; Hu and Liu, 2004) and the recent deep learn-

ing models (Fan et al., 2019; Wu et al., 2020). Our

model is different from the previous deep learning

models as we exploit the syntactic information (i.e.,

dependency trees) for TOWE with deep learning.

3 Model

The TOWE problem can be formulated as a se-

quence labeling task. Formally, given a sentence

W of N words: W = w1, w2, . . . , wN with wt

as the target word (1 ≤ t ≤ N ), the goal is to

assign a label li to each word wi so the label se-

quence L = l1, l2, ..., lN for W can capture the

target-oriented opinion words for wt. Following the

previous work (Fan et al., 2019), we use the BIO

tagging schema to encode the label li for TOWE

(i.e., li ∈ {B, I,O} for being at the Beginning,

Inside or Outside of the opinion words respec-

tively). Our model for TOWE consists of four com-

ponents that would be described in the following:

(i) Sentence Encoding, (ii) Syntax-Model Consis-

tency, (iii) Graph Convolutional Neural Networks,

and (iv) Representation Regularization.

3.1 Sentence Encoding

In order to represent the input sentence W , we

encode each word wi into a real-valued vector xi
based on the concatenation of the two following

vectors: (1) the hidden vector of the first word-

piece of wi from the last layer of the BERTbase

model (Devlin et al., 2019), and (2) the position

embedding for wi. For this vector, we first compute

the relative distance di from wi to the target word

wt (i.e., ri = i − t). Afterward, we retrieve the

position embedding for wi by looking up ri in a po-

sition embedding table (initialized randomly). The

position embeddings are fine-tuned during train-

ing in this work. The resulting vector sequence

X = x1, x2, . . . , xN for W will be then sent to the

next computation step.

3.2 Syntax-Model Consistency

As presented in the introduction, the goal of this

component is to employ the dependency tree of

W to obtain the syntax-based opinion possibility

scores for the words. These scores would be used to

guide the representation learning of the models via

the consistency with the model-based possibility

scores. In particular, as we consider the closer

words to the target word wt in the dependency tree

of W as being more likely to be the target-oriented

opinion words, we first compute the distance d
syn
i

between each word wi to the target word wt in the

dependency tree (i.e., the number of words along

the shortest path between wi and wt). Afterward,

we obtain the syntax-based possibility score s
syn
i

for wi based on: s
syn
i =

exp(−d
syn
i )

∑
j=1..N exp(−d

syn
j )

.

In order to implement the possibility score con-

sistency, our deep learning model needs to produce

s
syn
1 , s

syn
2 , . . . , s

syn
N as the model-based possibil-

ity scores the words w1, w2, . . . , wN in W respec-

tively. While the model-based score computation

would be explained later, given the model-based

scores, the syntax-model consistency for possibil-

ity scores would be enforced by introducing the KL

divergence Lconst between the syntax-based and

model-based scores into the overall loss function

to minimize:

LKL = −
∑

i

s
model
i

smodel
i

s
syn
i

(1)

As mentioned in the introduction, in this work,

we propose to obtain the model-based possibility

scores for TOWE using the Ordered-Neuron Long

Short-Term Memory Networks (ON-LSTM) (Shen

et al., 2019). ON-LSTM is an extension of the pop-

ular Long Short-Term Memory Networks (LSTM)

that have been used extensively in Natural Lan-

guage Processing (NLP). Concretely, given the vec-

tor sequence X = x1, x2, . . . , xN as the input, a

LSTM layer would produce a sequence of hidden

vectors H = h1, h2, . . . , hN via:

fi = σ(Wfxi + Ufhi−1 + bf )

ii = σ(Wixi + Uihi−1 + bi)

oi = σ(Woxi + Uohi−1 + bo)

ĉi = tanh(Wcxi + Uchi−1 + bc)

ci = fi ◦ ci−1 + ii ◦ ĉi, hi = oi ◦ tanh(ci)

(2)
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in which h0 is set to zero vector, ◦ is the element-

wise multiplication, and ft, it and ot are called the

forget, input, and output gates respectively.

A major problem with the LSTM cell is that

all the dimensions/neurons of the hidden vectors

(for the gates) are equally important as these neu-

rons are active/used for all the step/word i in W .

In other words, the words in W have the same

permission to access to all the available neurons

in the hidden vectors of the gates in LSTM. This

might not be desirable as given a NLP task, the

words in a sentence might have different levels

of contextual contribution/information for solving

the task. It thus suggests a mechanism where the

words in the sentences have different access to the

neurons in the hidden vectors depending on their in-

formativeness. To this end, ON-LSTM introduces

two additional gates f̄i and īi (the master forget

and input gates) into the original LSTM mecha-

nism using the cummax activation function (i.e.,

cumax(x) = cumsum(softmax(x)))1:

f̂i = cummax(Wf̂xi + Uf̂hi−1 + bf̂ )

îi = 1− cummax(Wîxi + Uîht−1 + bî)

f̄i = f̂i ◦ (fi îi + 1− îi), īi = îi ◦ (itf̂i + 1− f̂i)

ci = f̄i ◦ ci−1 + īi ◦ ĉi

(3)

The benefit of cummax is to introduce a hierar-

chy over the neurons in the hidden vectors of the

master gates so the higher-ranking neurons would

be active for more words in the sentence and vice

verse (i.e., the activity of the neurons is limited

to only a portion of the words in the sentence in

this case). In particular, as cummax applies the

softmax function on the input vector whose out-

puts are aggregated over the dimensions, the result

of cummax(x) represents the expectation of a bi-

nary vector of the form (0, . . . , 0, 1, . . . , 1) (i.e.,

two consecutive segments of 0’s and 1’s). The 1’s

segment in this binary vector determines the neu-

rons/dimensions activated for the current step/word

wi, thus enabling the different access of the words

to the neurons. In ON-LSTM, a word is consid-

ered as more informative or important for the task

if it has more active neurons (or a larger size for

its 1’s segment) in the master gates’ hidden vec-

tors than the other words in the sentence. As such,

ON-LSTM introduces a mechanism to estimate an

informativeness score s
imp
i for each word wi in

the sentence based on the number of active neu-

1cumsum(u1, u2, . . . , un) = (u′

1, u
′

2, . . . , u
′

n) where
u′

i =
∑

j=1..i
uj .

rons in the master gates. Following (Shen et al.,

2019), we approximate s
imp
i via the sum of the

weights of the neurons in the master forget gates,

i.e., s
imp
i = 1−

∑
j=1..D f̂ij . Here, D is the num-

ber of dimensions/neurons in the hidden vectors of

the ON-LSTM gates and f̂ij is the weight of the

j-th dimension for the master forget gate f̂i at wi.

An important property of the target-oriented

opinion words in our TOWE problem is that they

tend to be more informative than the other words

in the sentence (i.e., for understanding the senti-

ment of the target words). To this end, we pro-

pose to compute the model-based opinion possibil-

ity scores smodel
i for wi based on the informative-

ness scores s
imp
i from ON-LSTM via: smodel

i =
exp(simp

i )
∑

j=1..N exp(simp
j )

. Consequently, by promoting

the syntax-model consistency as in Equation 1,

we expect that the syntactic information from the

syntax-based possibility scores can directly inter-

fere with the internal computation/structure of the

ON-LSTM cell (via the neurons of the master

gates) to potentially produce better representation

vectors for TOWE. For convenience, we also use

H = h1, h2, . . . , hN to denote the hidden vectors

returned by running ON-LSTM over the input se-

quence vector X in the following.

3.3 Graph Convolutional Networks

This component seeks to extract effective context

words to further improve the representation vectors

H for the words in W based on the dependency

connections between the words for TOWE. As dis-

cussed in the introduction, given the current word

wi ∈ W , there are two groups of important context

words in W that should be explicitly encoded in

the representation vector for wi to enable effective

opinion word prediction: (i) the neighboring words

of wi, and (ii) the neighboring words of the target

word wt in the dependency tree (i.e., these words

should receive higher weights than the others in the

representation computation for wi). Consequently,

in order to capture such important context words

for all the words in the sentence for TOWE, we

propose to obtain two importance score matrices

of size N × N for which the scores at cells (i, j)
are expected to weight the importance of the con-

textual information from wj with respect to the

representation vector computation for wi in W . In

particular, one score matrix would be used to cap-

ture the syntactic neighboring words of the current

words (i.e., wi) while the other score matrix would
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be reserved for the neighboring words of the target

word wt. These two matrices would then be com-

bined and consumed by a GCN model (Kipf and

Welling, 2017) for representation learning.

Specifically, for the syntactic neighbors of the

current words, following the previous GCN models

for NLP (Marcheggiani and Titov, 2017; Nguyen

and Grishman, 2018; Veyseh et al., 2019), we

directly use the adjacency binary matrix Ad =
{adi,j}i,j=1..N of the dependency tree for W as the

importance score matrix for this group of words.

Note that adi,j is only set to 1 if wi is directly con-

nected to wj in the dependency tree or i = j in

this case. In the next step for the neighboring

words of the target word wt, as we expect the closer

words to the target word wt to have larger contri-

butions for the representation vectors of the words

in W for TOWE, we propose to use the syntac-

tic distances (to the target word) d
syn
i and d

syn
j of

wi and wj as the features to learn the importance

score matrix At = {ati,j}i,j=1..N for the words

in this case. In particular, ati,j would be computed

by: ati,j = σ(FF ([dsyni , d
syn
j , d

syn
i +d

syn
j , |dsyni −

d
syn
j |, dsyni ∗ dsynj ])) where FF is a feed-forward

network to convert a vector input with five dimen-

sions into a scalar score and σ is the sigmoid func-

tion. Given the importance score matrices Ad and

At, we seek to integrate them into a single impor-

tance score matrix A to simultaneously capture the

two groups of important context words for repre-

sentation learning in TOWE via the weighted sum:

A = γAd + (1 − γ)At = {ai,j}i,j=1..N where γ

is a trade-off parameter2.

In the next step for this component, we run a

GCN model over the ON-LSTM hidden vectors H

to learn more abstract representation vectors for

the words in W . This step will leverage A as the

adjacency matrix to enrich the representation vec-

tor for each word wi with the information from its

effective context words (i.e., the syntactic neigh-

boring words of wi and wt), potentially improving

the opinion word prediction for wi. In particular,

the GCN model in this work involves several lay-

ers (i.e., G layers in our case). The representation

vector h̄ki for the word wi at the k-the layer of the

2Note that we tried to directly learn A from the
available information from Ad and At (i.e., ai,j =
σ(FF ([ad

i,j , d
syn
i , d

syn
j , d

syn
i + d

syn
j , |dsyni − d

syn
j |, dsyni ∗

d
syn
j ]))). However, the performance of this model was worse

than the linear combination of Ad and At in our experiments.

GCN model would be computed by:

h̄
k
i = ReLU

(

Σj=1..Nai,j(Wkh̄
k−1

j + bk)
∑

j=1..N
ai,j

)

(4)

where Wk and bk are the weight matrix and bias for

the k-th GCN layer. The input vector h0i for GCN

is set to the hidden vector hi from ON-LSTM (i.e.,

h0i = hi) for all i in this case. For convenience,

we denote h̄i as the hidden vector for wi in the last

layer of GCN (i.e., h̄i = h̄Gi for all 1 ≤ i ≤ N ).

We also write h̄1, h̄2, . . . , h̄N = GCN(H,A) to

indicate that h̄1, h̄2, . . . , h̄N are the hidden vectors

in the last layer of the GCN model run over the

input H and the adjacency matrix A for simplicity.

Finally, given the syntax-enriched representation

vectors hi from ON-LSTM and h̄i from the last

layer of GCN, we form the vector Vi = [hi, h̄i]
to serve as the feature to perform opinion word

prediction for wi. In particular, Vi would be sent

to a two-layer feed-forward network with the soft-

max function in the end to produce a probability

distribution P (.|W, t, i) over the possible opinion

labels for wi (i.e., B, I, and O). The negative log-

likelihood function Lpred would then be used as

the objective function to train the overall model:

Lpred = −
∑N

i=1 P (li|W, t, i).

3.4 Representation Regularization

There are three groups of words in the input sen-

tence W for our TOWE problem, i.e., the target

word wt, the target-oriented opinion words (i.e., the

words we want to identify) (called W opinion), and

the other words (called W other). After the input

sentence W has been processed by several abstrac-

tion layers (i.e., ON-LSTM and GCN), we expect

that the resulting representation vectors for the tar-

get word and the target-oriented opinion words

would capture the sentiment polarity information

for the target word while the representation vec-

tors for the other words might encode some other

context information in W . We thus argue that the

representation vector for the target word should be

more similar to the representations for the words in

W opinion (in term of the sentiment polarity) than

those for W other. To this end, we introduce an

explicit loss term to encourage such representation

distinction between these groups of words to po-

tentially promote better representation vectors for

TOWE. In particular, let Rtar, Ropn, and Roth be

some representation vectors for the target word wt,

the target-oriented opinion words (i.e., W opinion),
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and the other words (i.e., W other) in W . The loss

term for the representation distinction based on

our intuition (i.e., to encourage Rtar to be more

similar to Ropn than Roth) can be captured via the

following triplet loss for minimization:

Lreg = 1−cosine(Rtar
, R

opn)+cosine(Rtar
, R

oth) (5)

In this work, the representation vector for the

target word is simply taken from last GCN layer,

i.e., Rtar = h̄t. However, as W opinion and W other

might involve sets of words, we need to aggregate

the representation vectors for the individual words

in these sets to produce the single representation

vectors Ropn and Roth. The simple and popular

aggregation method in this case involves perform-

ing the max-pooling operation over the represen-

tation vectors (i.e., from GCN) for the individual

words in each set (i.e., our baseline). However, this

approach ignores the structures/orders of the in-

dividual words in W opinion and W other, and fails

to recognize the target word for better customized

representation for regularization. To this end, we

propose to preserve the syntactic structures among

the words in W opinion and W other in the repre-

sentation computation for regularization for these

sets. This is done by generating the target-oriented

pruned trees from the original dependency tree for

W that are customized for the words in W opinion

and W other. These pruned trees would then be con-

sumed by the GCN model in the previous section

to produce the representation vectors for W opinion

and W other in this part. In particular, we ob-

tain the pruned tree for the target-oriented opinion

words W opinion by forming the adjacency matrix

Aopinion = {aopinioni,j }i,j=1..N where a
opinion
i,j =

ai,j if both wi and wj belong to some shortest de-

pendency paths between wt and some words in

W opinion, and 0 otherwise. This helps to maintain

the syntactic structures of the words in W opinion

and also introduce the target word wt as the cen-

ter of the pruned tree for representation learn-

ing. We apply the similar procedure to obtain

the adjacency matrix Aother = {aotheri,j }i,j=1..N

for the pruned tree for W other. Given the two ad-

jacency matrices for the pruned trees, the GCN

model in the previous section is run over the

ON-LSTM vectors H , resulting in two sequences

of hidden vectors for W opinion and W other,

i.e., h′1, h
′

2, . . . , h
′

N = GCN(H,Aopinion) and

h′′1, h
′′

2, . . . , h
′′

N = GCN(H,Aother). Afterward,

we compute the representation vectors Ropn and

Roth for the sets W opinion and W other by retriev-

ing the hidden vectors for the target word returned

by the GCN model with the corresponding adja-

cency matrices, i.e., Ropn = h′t and Roth = h′′t .

Note that the application of GCN over the pruned

trees and the ON-LSTM vectors makes Ropn and

Roth more comparable with Rtar in our case. This

completes the description for the representation reg-

ularizer in this work. The overall loss function in

this work would be: L = Lpred + αLKL + βLreg

where α and β are the trade-off parameters.

4 Experiments

4.1 Datasets & Parameters

We use four benchmark datasets presented in (Fan

et al., 2019) to evaluate the effectiveness of the

proposed TOWE model. These datasets contain

reviews for restaurants (i.e., the datasets 14res,

15res and 16res) and laptops, (i.e., the dataset

14lap). They are created from the widely used

ABSA datasets from the SemEval challenges (i.e.,

SemEval 2014 Task 4 (14res and 14lap), SemEval

2015 Task 12 (15res) and SemEval 2016 Task 5

(16res)). Each example in these datasets involves a

target word in a sentence where the opinion words

have been manually annotated.

As none of the datasets provides the develop-

ment data, for each dataset, we sample 20% of the

training instances for the development sets. Note

that we use the same samples for the development

data as in (Fan et al., 2019) to achieve a fair com-

parison. We use the 14res development set for

hyper-parameter fine-tuning, leading to the follow-

ing values for the proposed model (used for all the

datasets): 30 dimensions for the position embed-

dings, 200 dimensions for the layers of the feed-

forward networks and GCN (with G = 2 layers),

300 hidden units for one layer of ON-LSTM, 0.2

for γ in A, and 0.1 for the parameters α and β.

4.2 Comparing to the State of the Art

We compare the TOWE model in this work (called

ONG for ON-LSTM and GCN) with the recent

models in (Fan et al., 2019; Wu et al., 2020) and

their baselines. More specifically, the following

baselines are considered in our experiments:

1. Rule-based: These baselines employ prede-

fined patterns to extract the opinion-target pairs that

could be either dependency-based (Zhuang et al.,

2006) or distance-based (Hu and Liu, 2004).
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14res 14lap 15res 16res

Model P R F1 P R F1 P R F1 P R F1

Distance-rule (2004) 58.39 43.59 49.92 50.13 33.86 40.42 54.12 39.96 45.97 61.90 44.57 51.83

Dependency-rule (2006) 64.57 52.72 58.04 45.09 31.57 37.14 65.49 48.88 55.98 76.03 56.19 64.62

LSTM (2015) 52.64 65.47 58.34 55.71 57.53 56.52 57.27 60.69 58.93 62.46 68.72 65.33

BiLSTM (2015) 58.34 61.73 59.95 64.52 61.45 62.71 60.46 63.65 62.00 68.68 70.51 69.57

Pipeline (2019) 77.72 62.33 69.18 72.58 56.97 63.83 74.75 60.65 66.97 81.46 67.81 74.01

TC-BiLSTM (2019) 67.65 67.67 67.61 62.45 60.14 61.21 66.06 60.16 62.94 73.46 72.88 73.10

IOG (2019) 82.85 77.38 80.02 73.24 69.63 71.35 76.06 70.71 73.25 82.25 78.51 81.69

LOTN (Wu et al., 2020) 84.00 80.52 82.21 77.08 67.62 72.02 76.61 70.29 73.29 86.57 80.89 83.62

ONG (Ours) 83.23 81.46 82.33 73.87 77.78 75.77 76.63 81.14 78.81 87.72 84.38 86.01

Table 1: Test set performance (i.e., Precision (P), Recall (R) and F1 scores) of the models.

2. Sequence-based Deep Learning: These ap-

proaches apply some deep learning model over

the input sentences following the sequential or-

der of the words to predict the opinion words (i.e.,

LSTM/BiLSTM (Liu et al., 2015), TC-BiLSTM

(Fan et al., 2019) and IOG (Fan et al., 2019)).

3. Pipeline with Deep Learning: This method

utilizes a recurrent neural network to predict the

opinion words. The distance-based rules are then

introduced to select the target-oriented opinion

words (i.e., Pipeline) (Fan et al., 2019).

4. Multitask Learning: These methods seek to

jointly solve TOWE and another related task (i.e.,

sentiment classification). In particular, the LOTN

model in (Wu et al., 2020) uses a pre-trained SA

model to obtain an auxiliary label for each word in

the sentence using distance-based rules. A bidirec-

tional LSTM model is then trained to make predic-

tion for both TOWE and the auxiliary labels3.

Table 1 shows the performance of the models on

the test sets of the four datasets. It is clear from the

table that the proposed ONG model outperforms

all the other baseline methods in this work. The

performance gap between ONG and the other mod-

els are large and significant (with p < 0.01) over

all the four benchmark datasets (except for LOTN

on 14res), clearly testifying to the effectiveness

of the proposed model for TOWE. Among differ-

ent factors, we attribute this better performance of

ONG to the use of syntactic information (i.e., the

dependency trees) to guide the representation learn-

ing of the models (i.e., with ON-LSTM and GCN)

that is not considered in the previous deep learning

models for TOWE.

3Note that (Peng et al., 2020) also proposes a related model
for TOWE based on multitask deep learning. However, the
models in this work actually predict general opinion words
that are not necessary tied to any target word. As we focus
on target-oriented opinion words, the models in (Peng et al.,
2020) are not comparable with us.

4.3 Model Analysis and Ablation Study

There are three main components in the proposed

ONG model, including the ON-LSTM component,

the GCN component and the representation regular-

ization component. This section studies different

variations and ablated versions of such components

to highlight their importance for ONG.

ON-LSTM: First, we evaluate the following

variations for the ON-LSTM component: (i) ONG

- KL: this model is similar to ONG, except that the

syntax-model consistency loss based on KL LKL is

not included in the overall loss function, (ii) ONG

- ON-LSTM: this model completely removes the

ON-LSTM component in ONG (so the KL-based

syntax-model consistency loss is not used and the

input vector sequence X is directly sent to the GCN

model), and (iii) ONG wLSTM: this model re-

places the ON-LSTM model with the traditional

LSTM model in ONG (so the syntax-model con-

sistency loss is also not employed in this case as

LSTM does not support the neuron hierarchy for

model-based possibility scores). The performance

for these models on the test sets (i.e., F1 scores)

are presented in Table 2.

Model 14res 14lap 15res 16res

ONG 82.33 75.77 78.81 86.01

ONG - KL 80.91 73.34 76.21 83.78

ONG - ON-LSTM 78.99 70.28 71.39 81.13

ONG wLSTM 81.03 73.98 74.43 82.81

Table 2: Performance of the ON-LSTM’s variations.

As we can see from the table, the syntax-model

consistency loss with KL divergence is important

for ONG as removing it would significantly hurt

the model’s performance on different datasets. The

model also becomes significantly worse when the

ON-LSTM component is eliminated or replaced by

the LSTM model. These evidences altogether con-

firm the benefits of the ON-LSTM model with the
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syntax-model consistency proposed in this work.

GCN Structures: There are two types of im-

portance score matrices in the GCN model, i.e.,

the adjacency binary matrices Ad for the syntac-

tic neighbors of the current words and At for the

syntactic neighbors of the target word. This part

evaluates the effectiveness of these score matrices

by removing each of them from the GCN model,

leading to the two ablated models ONG - Ad and

ONG - At for evaluation. Table 3 provides the per-

formance on the test sets for these models (i.e., F1

scores). It is clear from the table that the absence

of any importance score matrices (i.e., Ad or At)

would decrease the performance over all the four

datasets and both matrices are necessary for ONG

to achieve its highest performance.

Model 14res 14lap 15res 16res

ONG 82.33 75.77 78.81 86.01

ONG - Ad 80.98 73.05 75.51 83.72

ONG - At 81.23 74.18 76.32 85.20

Table 3: Ablation study on the GCN structures.

GCN and Representation Regularization: As

the representation regularization component re-

lies on the GCN model to obtain the represen-

tation vectors, we jointly perform analysis for

the GCN and representation regularization com-

ponents in this part. In particular, we consider

the following variations for these two components:

(i) ONG - REG: this model is similar to ONG

except that the representation regularization loss

Lreg is not applied in the overall loss function,

(ii) ONG REG wMP-GCN: this is also similar to

ONG; however, it does not apply the GCN model

to compute the representation vectors Ropn and

Roth for regularization. Instead, it uses the sim-

ple max-pooling operation over the GCN-produced

vectors h̄1, h̄2, . . . , h̄N of the target-oriented words

W opinion and the other words W other for Ropn and

Roth: Ropn = max pool(h̄i|wi ∈ W opinion) and

Roth = max pool(h̄i|wi ∈ W other), (iii) ONG -

GCN: this model eliminates the GCN model from

ONG, but still applies the representation regulariza-

tion over the representation vectors obtained from

the ON-LSTM hidden vectors. In particular, the

ON-LSTM hidden vectors H = h1, h2, . . . , hN
would be employed for both opinion word pre-

diction (i.e., V = [hi] only) and the computa-

tion of Rtarget, Ropn and Roth for representation

regularization with max-pooling (i.e., Rtarget =
ht, Ropn = max pool(hi|wi ∈ W opinion) and

Roth = max pool(hi|wi ∈ W other)) in this case,

and (iv) ONG - GCN - REG: this model com-

pletely excludes both the GCN and the represen-

tation regularization models from ONG (so the

ON-LSTM hidden vectors H = h1, h2, . . . , hN
are used directly for opinion word prediction (i.e.,

V = [hi] as in ONG - GCN) and the regularization

loss Lreg is not included in the overall loss func-

tion). Table 4 shows the performance of the models

on the test datasets (i.e., F1 scores).

Model 14res 14lap 15res 16res

ONG 82.33 75.77 78.81 86.01

ONG - REG 80.88 73.89 75.92 84.03

ONG REG wMP-GCN 80.72 72.44 74.28 84.29

ONG - GCN 81.01 70.88 72.98 82.58

ONG - GCN - REG 79.23 71.04 72.53 82.13

Table 4: Performance of the variations of the GCN and

representation regularization components.

There are several important observations from

this table. First, as ONG - REG is significantly

worse than the full model ONG over different

datasets, it demonstrates the benefits of the repre-

sentation regularization component in this work.

Second, the better performance of ONG over

ONG REG wMP-GCN (also over all the four

datasets) highlights the advantages of the GCN-

based representation vectors Ropn and Roth over

the max-pooled vectors for representation regular-

ization. We attribute this to the ability of ONG to

exploit the syntactic structures among the words in

W opinion and W other for regularization in this case.

Finally, we also see that the GCN model is crucial

for the operation of the proposed model as remov-

ing it significantly degrades ONG’s performance

(whether the representation regularization is used

(i.e., in ONG - GCN) or not (i.e., in ONG - GCN

- REG). The performance become the worst when

both the GCN and the regularization components

are eliminated in ONG, eventually confirming the

effectiveness of our model for TOWE in this work.

Regularization Analysis: This section aims

to further investigate the effect of the depen-

dency structures Ropn and Roth (i.e., among the

words in W opinion and W other) to gain a better

insight into their importance for the representa-

tion regularization in this work. Concretely, we

again compare the performance of the full pro-

posed model ONG (with the graph-based rep-

resentations for Ropn and Roth) and the base-

line model ONG REG wMP-GCN (with the di-

rect max-pooling over the word representations,
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14res 14lap

Distance ONG ONG REG ONG ONG REG

wMP-GCN wMP-GCN

1 83.22 79.94 76.91 75.21

2 83.18 78.43 75.03 73.12

3 81.56 75.41 74.21 70.69

>3 80.97 73.77 73.92 66.23

15res 16res

Distance ONG ONG REG ONG ONG REG

wMP-GCN wMP-GCN

1 79.92 74.29 86.52 83.33

2 78.04 73.33 87.31 83.27

3 77.71 70.91 84.77 78.63

>3 76.98 68.88 84.05 77.13

Table 5: The performance (i.e., F1 scores) of ONG

and ONG REG wMP-GCN on the four data folds of

the development sets for 14res, 14lap, 15res, and 16res.

The data folds are based on the target-opinion distances

of the examples (called Distance in this table).

i.e., Ropn = max pool(h̄i|wi ∈ W opinion) and

Roth = max pool(h̄i|wi ∈ W other)). However,

in this analysis, we further divide the sentences in

the development sets into four folds and observe

the models’ performance on those fold. As such,

for each sentence, we rely on the longest distance

between the target word and some target-oriented

opinion word in W opinion in the dependency tree

to perform this data split (called the target-opinion

distance). In particular, the four data folds for the

development sets (of each dataset) correspond to

the sentences with the target-opinion distances of 1,

2, 3 or greater than 3. Intuitively, the higher target-

opinion distances amount to more complicated

dependency structures among the target-oriented

opinion word in W opinion (as more words are in-

volved in the structures). The four data folds are

thus ordered in the increasing complexity levels of

the dependency structures in W opinion.

Table 5 presents the performance of the mod-

els on the four data folds for the development

sets of the datasets in this work. First, it is

clear from the table that ONG significantly out-

performs the baseline model ONG REG wMP-

GCN over all the datasets and structure complexity

levels of W opinion. Second, we see that as the

structure complexity (i.e., the target-opinion dis-

tance) increases, the performance of both ONG

and ONG REG wMP-GCN decreases, demonstrat-

ing the more challenges presented by the sen-

tences with more complicated dependency struc-

tures in W opinion for TOWE. However, compar-

ing ONG and ONG REG wMP-GCN, we find

that ONG’s performance decreases slower than

those for ONG REG wMP-GCN when the target-

opinion distance increases (for all the four datasets

considered in this work). This implies that the

complicated dependency structures in W opinion

have more detrimental effect on the model’s per-

formance for ONG REG wMP-GCN than those

for ONG, leading to the larger performance gaps

between ONG and ONG REG wMP-GCN. Over-

all, these evidences suggest that the sentences with

complicated dependency structures for the words

in W opinion are more challenging for the TOWE

models and modeling such dependency structures

to compute the representation vectors Ropn and

Roth for regularization (as in ONG) can help the

models to better perform on these cases.

5 Conclusion

We propose a novel deep learning model for TOWE

that seeks to incorporate the syntactic structures of

the sentences into the model computation. Two

types of syntactic information are introduced in

this work, i.e., the syntax-based possibility scores

for words (integrated with the ON-LSTM model)

and the syntactic connections between the words

(applied with the GCN model with novel adjacency

matrices). We also present a novel inductive bias to

improve the model, leveraging the representation

distinction between the words in TOWE. Compre-

hensive analysis is done to demonstrate the effec-

tiveness of the proposed model over four datasets.
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