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Article

Introducing the fit-criteria assessment
plot – A visualisation tool to assist
class enumeration in group-based
trajectory modelling

Sven L Klijn,1 Matty P Weijenberg,2 Paul Lemmens,3

Piet A van den Brandt4 and Valéria Lima Passos1

Abstract

Background and objective: Group-based trajectory modelling is a model-based clustering technique applied for the
identification of latent patterns of temporal changes. Despite its manifold applications in clinical and health sciences,

potential problems of the model selection procedure are often overlooked. The choice of the number of latent

trajectories (class-enumeration), for instance, is to a large degree based on statistical criteria that are not fail-safe.

Moreover, the process as a whole is not transparent. To facilitate class enumeration, we introduce a graphical summary

display of several fit and model adequacy criteria, the fit-criteria assessment plot. Methods: An R-code that accepts

universal data input is presented. The programme condenses relevant group-based trajectory modelling output

information of model fit indices in automated graphical displays. Examples based on real and simulated data are

provided to illustrate, assess and validate fit-criteria assessment plot’s utility. Results: Fit-criteria assessment plot
provides an overview of fit criteria on a single page, placing users in an informed position to make a decision. Fit-

criteria assessment plot does not automatically select the most appropriate model but eases the model assessment

procedure. Conclusions: Fit-criteria assessment plot is an exploratory, visualisation tool that can be employed to assist

decisions in the initial and decisive phase of group-based trajectory modelling analysis. Considering group-based

trajectory modelling’s widespread resonance in medical and epidemiological sciences, a more comprehensive, easily

interpretable and transparent display of the iterative process of class enumeration may foster group-based trajectory

modelling’s adequate use.
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1 Introduction

Group-based trajectory modelling (GBTM) is a semi-parametric, model-based clustering technique that is mostly

applied for the identification of latent groups of individuals following a similar progression of an outcome over

time.1,2 GBTM analysis can be run with a SAS macro ‘proc Traj’, developed by Jones and Nagin3,4 , which can be

downloaded from http://www.andrew.cmu.edu/user/bjones/. A version in Stata is also available.5

GBTM’s cradle was in criminology, where theory-driven research has given much attention to the origins and

development of crime and delinquency over a lifelong period.6–11 Recently, GBTM has gained impetus for analysis
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of longitudinal data in clinical and health sciences.12,13 Its popularity is especially noteworthy in life-course

epidemiology.14–20 Medical and health scientists, especially epidemiologists, often require developmental

approaches to unravel the role of potential determinants, such as early life, life time (e.g. genetic) and

environmental exposures in relation to individual paths of health and disease.14,17,21

GBTM’s expansion is driven by many of its appealing features. Most conspicuously, it is a practical procedure

for recognition and visualisation of different patterns of temporal change in a characteristic. Contrary to ex ante

classifications, the user of GBTM does not presume the existence of a priori defined classes. Subgroups of

individuals sharing a similar developmental course emerge from the data. The distinct longitudinal paths are

referred to as latent trajectories (also known as latent classes, groups or strata). GBTM is, hence, suited for the

task of uncovering unobserved heterogeneity in a population, i.e. data variability that is not attributable to any

known factor. GBTM has been used for multiple purposes in clinical sciences. Most of these analyses aim at

identification and characterisation of patients showing regular and irregular patterns in outcomes in a longitudinal

design.22,23 Modelling medication adherence24,25 or modelling heterogeneity of treatment effect/response over

time26,27 are some examples. The information obtained by a GBTM analysis has been used to improve

patients’ profiling,28–30 risk stratification,19,31,32 patients’ management33,34 and prognosis.35–40

Despite widespread enthusiasm and rising number of adherents, a closer inspection of the specialised literature

reveals that controversies around GBTM abound.41–49 Such state of affairs is partly attributable to the fact that

empirical and statistical properties of GBTM are not yet fully known. The existing literature on factors affecting

mixture models performance is scant.50–56 As Erosheva properly notes, ‘although the applied literature on GMMi

and GBTM is rich, publications in the statistical literature are relatively rare’.60

Most debates around the merits and demerits of GBTM tend to unfold within specialised circles and are often

limited to social/psychopathological and criminological journals. Practitioners from other fields of expertise,

especially newcomers, remain oblivious to these disputes. As a result, while publications of empirical studies

based on GBTM are burgeoning, so do the inadequacies in some of its applications. For example, often the

probabilistic nature of subjects’ assignment to their respective latent trajectories (the uncertainty of cluster

membership) is disregarded in the process of validating the trajectories.61 Another moot point, which is neither

properly recognised nor dealt with, is how the number of latent classes, k, is determined, a procedure often referred

to as class enumeration or choosing the dimensionality of the model.

Class enumeration is a decisive stage of GBTM, representing the first step in lengthy and iterative analytical

process. Several formal criteria of model fit and adequacy are available, some of which are part of proc traj’s

standard output. These criteria, however, are known to be fallible. Moreover, they are presented in a fragmented

manner making it difficult for researchers to weigh the different sorts of information, especially when comparing

several models.

To facilitate class enumeration in GBTM, this paper introduces a graphical summary display of several fit and

model adequacy criteria, the fit-criteria assessment plot (F-CAP). F-CAP is a visualisation tool that assists

researchers in decisions on the number of latent classes in the initial phase of a GBTM analysis. To

demonstrate, assess and validate F-CAP’s utility, examples are provided based on real data from criminological

and health/epidemiological sciences studies as well as simulated data.

2 The model

GBTM, also known as latent class growth model is a form of finite mixture model that identifies homogenous

subgroups of a population sharing similar patterns of change of an outcome over time. Extensive details about the

model can be found elsewhere2,3 and a short introductory tutorial how to use the proc traj is presented by Andruff

et al.62 The general model is given by

P Yið Þ ¼
Xk

j

pjP
j Yið Þ ð1Þ

where P(Yi) is the unconditional probability of an outcome (Y) of individual i. Group membership is denoted by j,

while k is the total number of latent groups or trajectories to be identified from the data. �j represents the estimated

proportion of the sample belonging to group j and Pj(Yi) is the probability of observing the outcome of individual

i, conditional upon membership of group j. Model parameters estimates are maximum likelihood based.

Conditional on group membership the repeated measures of a subject are assumed to be independent.

Moreover, between-subjects variability within every latent trajectory is assumed to be zero (no random
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coefficients within a trajectory, contrary to GMM). Both assumptions are rigid but reduce the complexity of the

model considerably.

The link between time and the outcome variable is determined by the type of data: for continuous outcomes,

the link function is the censored normal; for count data, the zero-inflated Poisson and for dichotomous

outcomes, the binary logit distribution. For a continuous outcome, the equation determining the shape and

level of the trajectory j of the latent variable y�it is given by

y�it ¼ b
j
0 þ b

j
1Timeit þ b

j
2Time2it þ b

j
3Time3it þ eit ð2Þ

where the regression coefficients determine the trajectories’ starting levels (intercepts) and temporal shape (here

cubic polynomial regression coefficients, but proc traj can estimate coefficients up to the fifth order). Each

trajectory will have its own intercept and polynomial parameters that are generally expected to be

quantitatively and qualitatively distinct from those of the other trajectories. For the error term, the usual

assumption holds eit � N 0, �ð Þ:

For the zero-inflated Poisson link function, the model assumes that

lnðk
j
itÞ ¼ b

j
0 þ b

j
1Timeit þ b

j
2Time2it þ b

j
3Time3it ð3Þ

where lnðk
j
itÞ is the natural logarithm of expected numbers of occurrences of an event for subject i at time t,

conditional on trajectory j. As for the logit model, also conditional on j, if yit is a binary response of subject i at

time t, the probability of the outcome of interest is given by

p
j
tðyitÞ ¼

eb
j

0
þb

j

1
Timeitþb

j

2
Time2itþb

j

3
Time3it

1þ eb
j

0
þb

j

1
Timeitþb

j

2
Time2itþb

j

3
Time3it

ð4Þ

3 Model selection

The existence of goodness-of-fit and model adequacy indices, used to guide the choice of the number of latent

classes, is a prominent advantage of model-based clustering compared to its heuristic counterparts, such as k-

means clustering. However, these criteria are not foolproof, having their own share of unresolved issues. Their

functioning has been shown to be influenced by sample size, e.g. a large N may lead to over-extraction of latent

trajectories, by the magnitude of underlying data heterogeneity (within and between cluster variability), by the

degree of clusters’ separation, the number of time points and by violations of model assumptions, to cite a

few.41,51,55,63,64

To make matters worse, the criteria may not coincide in their respective selection of k. These shortcomings are

reinforced by the lengthy and iterative model fitting procedure. Though some information-based indices are

default elements of a proc traj output, others need to be computed by hand, for every fitted model before

reaching a decision. At the end, the user is left with bits and pieces of indices that need to be properly

organised, compared and evaluated with respect to the theoretical meaningfulness of the selected model before

proceeding to the next phase of the analysis, which is usually the model validation.

On a whole, although proc traj is easy to use, the model specification itself is, at its best, cumbersome and, at its

worst, obscure. In practice, GBTM-based research articles either omit fit indices or only present the Bayesian

information criterion (BIC) for a limited number of models. Other indices are seldom reported. The reader is left

unable to evaluate the appropriateness of the selected model and has to give the author the benefit of the doubt.

Considering GBTM’s widespread use in clinical sciences, a more comprehensive, easily interpretable and

transparent display of the iterative process of class enumeration is welcome.

3.1 Overview of common criteria for class enumeration

Several criteria are available for the selection of k. The first three are Akaike’s information criterion (AIC), the

likelihood (L) of the model, and the frequently used, and often favoured, BIC

BIC ¼ log Lð Þ � 0:5 p logðNÞ ð5Þ

where L is the model’s (maximised) likelihood, N is the sample size and p is the number of parameters in the model.
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Both the AIC (the same expression as in equation (5), without N) and BIC penalise for the amount of

parameters used in the model, though the BIC does so more severely by additionally taking the sample size

into account.

Nagin also recommends four other criteria of model adequacy based on the posterior probability of

assignment.2 These are the average posterior probability of assignment (APPA), odds of correct classification

(OCC), mismatch between estimated and assigned group probabilities, and standard deviation of group

membership probabilities (SD-GMP). A final criterion is the percentage of individuals estimated to be assigned

to the smallest group, thus the smallest �j. For this, a cut-off point of 1% is often applied. This threshold, however,

may be adjusted to the sample size, with smaller samples requiring a larger minimum percentage as to warrant

sufficient number of members in the smallest latent class.

The APPA for a group is the mean of the PPA of individuals assigned to this group. A threshold of 0.70 is

considered an acceptable limit.2

The OCC compares the odds of correctly classifying subjects into group j based on the maximum probability

classification rule (APPA for class j), correcting for the OCC based on random assignment. Per group (j), OCC is

defined as

OCCj ¼
APPAj=ð1� APPAjÞ

p̂j=ð1� p̂jÞ
ð6Þ

Note that in the denominator, the odds of the probability of assignment to j take the estimated population

proportion �̂j as the probability of correct classification. If this is, for instance, 0.25, then chance would already

classify 25% of the subjects to j correctly. Higher OCCs indicate a better fitting model and an OCC above 5.0 for

all groups shows good assignment accuracy.2 For models with only one group, the equation fails and the OCC is

infinite. In these cases, the OCC is arbitrarily set to 999.0, to convey a good fit.

The mismatch is the difference between the estimated group probability �̂j and the real proportion of the sample

assigned to group (Pj¼Nj /N). In cases of a perfectly fitting model, the mismatch (�̂j – Pj) score is zero.

The SD-GMP calculates the standard deviation of assignment probability per group, based on the individuals

assigned to that group. This measure can be expected to have lower values, when models have more groups. Lower

SD-GMP scores indicate a better fitting model.

3.2 Analysis strategy

Nagin recommends a two-step procedure for model selection.2 Firstly, the number of latent trajectories, k, is

selected based on fit indices. Subsequently, the order of the polynomials describing the level and shape of the latent

trajectories is determined.

Whether the stipulation of k is done first, holding the order of polynomials constant, or whether both class

enumeration and the tests of the regression coefficients are conducted simultaneously can be left to the researchers’

own consideration.

From recent research articles that used GBTM (http://www.pubfacts.com/search/Group-basedþ trajectory

þmodeling), the following analysis strategy emerged as a common operational procedure:

1. Model Specification:

. First, Settle for a starting polynomial order (the same for all ks) and maximum number of trajectories k.

These calls are partly arbitrary, partly theory driven, depending also on the nature of the data (a large

number of time points allows for a higher order of polynomials to be explored, whereas large sample sizes

give the researcher the freedom to play around with a larger number of clusters). Keeping the order of

polynomials constant, run several models for different ‘ks’;

. Second, among all models, select the one yielding the best BIC, with corroboration by the supportive roles

of APPA (above 0.7), and the 1% rule for �̂j. The indices themselves are seldom provided in publications;

. Third, keep the selected k constant, conduct significance tests of polynomials terms keeping a watch on the

BIC;

2. Model validation:

Lastly, in the overwhelmingly vast majority of papers, a classify–analyseii strategy follows, either for

latent classes profiling (latent classes’ comparisons based, e.g. on ANCOVA/ANOVA), or for predictive

validity in terms of the association between trajectories and a distal outcome (e.g. logistic regression
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for dichotomous outcome). At this stage, a prominent feature of GBTM, which is the uncertainty of cluster

membership, is taken out of the equation. A closer discussion on model validation is beyond the scope of the

present work.

4 Introducing the F-CAP

Coherent to this analysis of plan, F-CAP is introduced as an assisting and exploratory tool for the selection of

number of latent classes, k (associated R-code, Excel template for the F-CAP as well as the instructions manual can

be obtained from the corresponding author or found in the supplementary material (available at: http://

smm.sagepub.com/)). Though our analyses were conducted with the SAS proc traj, the R-code accepts universal

data input with model fit indices.

4.1 Data sources

The first data (The Montreal Study) were used to introduce GBTM in the seminal work of Nagin and Jones. The

second data stem from a cohort study conducted in the Netherlands. For the simulation, the outcome variable and

random effects (when applicable) were generated from a multivariate normal distribution for each latent cluster

separately and then merged. Proc traj based on the censored normal distribution was run for all examples.

4.2 The F-CAP

The F-CAP combines eight goodness-of-fit and model-adequacy criteria in compact graphs for several user-

stipulated varying ks.

The basic idea behind the F-CAP is that the user can see how indices change by increasing the number of

latent trajectories. The visual display of their behaviour in such condensed form provides an insightful

perspective. Different criteria can be assessed side by side to reach a well-informed decision. Moreover, it

fosters transparency in the process both for the user and the critical appraiser. The downside of the F-CAP

is that a visual inspection of the indices’ behaviour provides little information about whether the undergone

changes, by varying k, are substantive or not. For example, does the magnitude of the BIC change favour one

model over the other adjacent? The use of the Bayes factor has been recommended for models’ comparisons.

This is, however, no constituent element of the F-CAP. Moreover, by using model selection indices to decide

among competing models, one is disregarding the impact, often disproportionate, that a few cases may have on

model ranking.55

5 Results

EachF-CAP is composedof four sub-plots (b to e inFigures 1 and2).TheAIC,BICandLof themodels are displayed in

sub-plot (b). The next sub-plots display the APPA, mismatch and SD (c), OCC (d) and at last pj(e). For some criteria

(APPA,OCC,mismatch andSD), two lines are displayed. The first one is themeanvalue of all groups for that criterion.

The second value is denoted by either a plus or aminus sign. This indicates that the given value is that of the groupwith,

respectively, the highest or lowest score for that criterion. The complementary information of the worst-case scenario is

a reassurance that for all selected classes, model fit and adequacy indices are kept within the acceptable boundaries. In

the F-CAPS for the real data, the vertical green bar indicates the final selection of k.

Due to space constraints, all F-CAP subplots have been compressed and are displayed for the Montreal

longitudinal and Leefstijl en Gezondheid Onderzoek – Lifestyle and Health Research (LEGO) studies. For the

simulated data, only the information-based criteria graph is given. Excel files of all original F-CAPs can be

found in the supplementary material (available at: http://smm.sagepub.com/).

5.1 F-CAP – Montreal longitudinal study

In the Montreal longitudinal study,1 behavioural attributes of 1000 boys were annually rated by their teachers at

ages 6 and 10–15 years. Three externalising behavioural problems were quantified (physical aggression, opposition

and hyperactivity).
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5.1.1 Dataset

For the present purpose, only the data on the opposition scores (scale range 0–10) of 138 subjects were analysed

with GBTM.

The best fit model had k¼ 3, with cubic trajectories, as selected by the authors. The plot with individual

trajectories and their 95% confidence band is presented below (Figure 1(a)). The coloured lines represent the

average change of the outcome longitudinally, as estimated by the model, whereas the dotted lines were the

(a)

(b) (c)

(d) (e)

Figure 1. (a) Average oppositions scores of the final trajectories: estimated values (coloured lines) with corresponding 95%

confidence intervals (shaded areas) versus observed values (interrupted lines). Estimated groups’ proportions are given in %. (b) to (e)

AIC, BIC and L (b); APPA, mismatch and SD (c); OCC (d) and percentage of individuals estimated to be assigned to the smallest group

(e). Ten models of opposition scores were fit (x-axis). Shaded vertical bar indicates the selected k (here k¼ 3).
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(a)

(b) (c)

(d) (e)

Figure 2. (a) Average frequencies of drinking wine per week of the final trajectories: estimated values (coloured lines) with

corresponding 95% confidence intervals (shaded areas) versus observed values (interrupted lines). Estimated groups’ proportions are

given in %. (b) to (e) AIC, BIC and L (b); APPA, mismatch and SD (c); OCC (d) and percentage of individuals estimated to be assigned

to the smallest group (e). Twenty models for frequency of drinking wine per week were fit (x-axis). Shaded vertical bar indicates the

selected k (here k¼ 6).
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observed values. The 95% confidence limits of the estimated trajectories are given by the shaded areas. Estimated

latent classes’ proportions (in %) are also displayed.

5.1.2 F-CAP results

For the display of the F-CAPs, models with k¼ 1–10 were fitted. The results presented in Figure 1(b) to (e)

exemplify a relatively unambiguous case scenario of class enumeration. Note the elbow behaviour of the BIC curve

when k¼ 3 (green shaded column), after which not only BIC but also other criteria deteriorate. The choice of k

was thus relatively straightforward.

5.2 F-CAP – The LEGO study

LEGO was a prospective cohort study conducted in the Netherlands analysing the relation between alcohol and

cardiovascular disease. It started in 1996 and ran for five years. Several studies have already made use of the

LEGO data before65–68 but the analysis with GBTM is unprecedented.

5.2.1 Dataset

For the current purpose, only the outcome frequency of drinking wine per week (averaged and log transformed) is

considered. Alcohol consumption of 2382 individuals (1211 men; 1171 women) with a mean age of 55.5 years was

obtained.

Given the large sample size, k was varied between 1 and 20. The model was selected for which k¼ 6, with cubic

polynomial. The final trajectories plot is displayed in Figure 2a.

5.2.2 F-CAP results

Contrary to the previous case, the BIC (2b) keeps improving with larger k, showing an asymptotic behaviour

common for large sample sizes. Such steady improvement is a well-known problem of this criterion.60 OCC (2d)

behaves similarly with no clear elbow-bend discernible, whereas APPA (2c) and the groups’ proportion (2e) would

favour a k< 7. The final call fell for k¼ 6. This decision was a trade-off between parsimony, interpretability of the

model, the distinctiveness of the trajectories, and, not least, the recommended limits for APPA, OCC and �j as

indicated by the horizontal lines on the figures above.

5.3 F-CAP – Simulated data

For the simulation, six case scenarios were considered, depicting varying degrees of latent class separation. The

model’s assumption of uncorrelated repeated measures was violated by introducing random effects of different

magnitudes. The true number of latent trajectories (k¼ 4), the sample size (N¼ 600), the mixture proportions

(p¼ 0.25 each class) and the polynomial fixed effects capturing the average trajectories trends (stable, linearly

increasing, quadratic and cubic) were kept constant. Error variances and random effects variances were changed

but kept homogeneous among latent classes.

Results of the simulation are presented in Figures 3 and 4. The partial F-CAPs (BIC) are accompanied by the

spaghetti plot of a random sample together with the estimated trajectories plot for the model, whose k yielded the

best BIC. In case model parameters were not estimable for the selected k, a smaller one was used for the

trajectories plot.

Figure 3(a) and (b) displays cases of well-separated classes. Class recovery was unequivocal in the data without

random effects. Within-class variability was due to (independent) errors only with either small or large error

variances (Figure 3(a) and (b), respectively). Class recovery was less clear in the case depicted in Figure 3(c)

(random intercept added). An inspection of the trajectory plot suggests over-extraction. The overall picture of

temporal pattern, compared to the previous case is not changed. Additional trajectories seemed to have been

formed by partitioning of those identified with the smaller k. Despite the plateauing of the BIC function in Figure

3(c) (and Figure 4(a)), an elbow bend is discernible in the vicinities of k¼ 4. This stands in contrast to the cases in

Figure 4(b) and (c) (with random intercept and random slope) where the BIC curves are smoother. These exemplify a

more challenging class recovery. As visible in the spaghetti plots, class separation is less evident due to larger

between-subjects variability within classes. The trajectories plot in Figure 4(a) resembles that of Figure 3(c), with

close, parallel trajectories, indicating that over-extraction may be at play.

The difference between Figure 4(b) and (c) is the presence of a strong correlation between random effects

(Figure 4(c)). Although too many classes were also recovered in these examples, the distinct trajectories’ shapes
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beg the question whether these classes can be interpreted in a meaningful way. In clinical and epidemiological

settings, the link of extreme onset values (large or small intercepts) to steeper trajectories’ slopes warrants a closer

look when validating the model.

6 Discussion

The current state of knowledge regarding class enumeration is yet equivocal. The consensus is, and remains that

several indices should be used, keeping track simultaneously of practicalities and of the theoretical plausibility of

the model. Model-based clustering is, therefore, not to be handled lightly. As Ialongo properly put it, analysing

data with latent trajectories model is a daunting endeavour, as ‘a scientifically strong case for the existence of

trajectories needs to be built’.69 GBTM requires from researchers to go the extra length of providing a sound

motivation for its application and validating the identified clusters.

A newcomer to GBTM should refrain from following a mechanistic, tool-box analysis plan for model selection.

Recipe-like model-selection procedures preclude users from recognising underlying problems or difficulties they

may encounter, perpetuating poor understanding or sloppy applications. The lengthy, theory substantiated model

selection can be neither circumvented, nor shortened by focusing on statistical criteria only. Encompassing

graphical displays like F-CAP are meant to assist in the course of action, not to replace it. It should be noted

that, after settling for the number of latent trajectories, users still have to determine the order of the trajectories’

polynomials in the standard operating procedure, i.e. stepwise elimination of non-significant polynomial higher

orders, one model at a time. Moreover, the criteria displayed in the F-CAP are not exhaustive. Others, like

entropy-based statistics and the bootstrapping likelihood ratio (BLR) tests have been used. However,

simulation has shown that the information-based BIC, despite shortcomings, fares comparatively well in

recovering the true number of latent classes. Because BIC is computationally less intensive than the BLR test,

it is recommended for this initial stage of model exploration.63

(a)

(b)

(c)

Figure 3. (a) to (c) Spaghetti plot of a random sample of simulated data (left column), F-CAP of information-based criteria for

models with up to 10 latent classes (middle column) and estimated trajectories plot the k with the best BIC (right column). Parameters

for data generation are specified.
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Amidst disputes, the plea for a cautionary use has been put forward by both enthusiasts and critics of finite

mixture models.69,70 Given GBTM’s momentum, a cautionary tone may be an insufficient strategy to halt the

expansion of a plug-and-chug approach for model selection. More than only caution, practitioners need enabling

tools. In this sense, the F-CAP may play an eye-opening role, allowing them to recognise more easily what is going

on with the data. As an automated visual graph, F-CAP provides an overview of fit criteria on a single page. It is

important to emphasise that the F-CAPs do not automatically select the most appropriate model but considerably

ease the model assessment procedure. For instance, in the Montreal data, the final decision was rather

straightforward and all criteria reinforced each other. For the LEGO data the overall picture was less clear-cut.

The indices were in disagreement and information based criteria were inconclusive. Both situations were mirrored

in the illustrative simulations. Though tentative, the findings confirmed that the behaviours of fit indices in the F-

CAPs were different between the plain versus ambiguous class-recovery scenarios. In the latter case, over-

extraction emerged as a problem. Theoretical input and subsequent class validation is therefore of paramount

importance, an issue not addressed here. In this respect, it should be underlined that, despite validation, latent

trajectories should not be reified, i.e. considered to be real entities. Warnings notwithstanding, the ‘fallacy of

reification’ is widespread among GBTM users. Hence, a new reminder is warranted. The observed latent groups

are statistical, and to a certain extent also heuristic classifications, and as such inherently moot. To counteract the

reification fallacy, the developmental trajectories have been lately referred to as ‘latent strata’ or alternatively

‘distinctive features in the data’ (Nagin DS 2015, personal communication).

Lastly, the available R-code was written to run unadjusted models with proc traj. The procedure, however,

allows for adjustment to time-fixed and varying covariates and to model joint trajectories.

The topic of model selection in GBTM is far from being settled. Class enumeration is not the only aspect not yet

fully grasped. In this sense, a cautionary attitude is never misplaced, nor is creating means that enhance the

researchers’ awareness and promote a more reflective involvement in the modelling process. Currently, such

GBTM tools are yet scarce, but some auxiliary spin-offs have been put forward. Elsensohn et al.,71 for

instance, suggested graphical methods to assess the residuals distributional assumption for GBTM, which, if

(a)

(b)

(c)

Figure 4. (a) to (c) Spaghetti plot of a random sample of simulated data (left column), F-CAP of information-based criteria for

models with up to 10 latent classes (middle column) and estimated trajectories plot for the k with the best BIC (right column).

Parameters for data generation are specified.
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violated, may have a substantial impact on the final model. Shah et al.72 came up with an entropy discrimination

index to assess the quality of group assignments. While we await a final resolution regarding GBTM’s disputes

(which may never come), such aiding tools are bound to foster its more judicious application.
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Notes

i. GMM stands for growth mixture model, another finite mixture approach, the importance of which is equally

increasing.57–59

ii. Classify–analyze strategy: The widespread approach of first establishing the presence of latent classes via a finite mixture

procedure, classifying individuals into these classes, based on the maximum posterior probability, and treating class

membership as known in a subsequent analysis (i.e. deterministic instead of probabilistic).
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