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Abstract

We propose a novel finite element formulation that significantly reduces the number of

degrees of freedom necessary to obtain reasonably accurate approximations of the

low-frequency component of the deformation in boundary-value problems. In contrast

to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie

algebra—the logarithmic space—of the deformation function. We construct a

deformation function based on an interpolation of transformations at the nodes of the

finite element. In the case of the geometrically exact planar Bernoulli beam element

presented in this work, these transformation functions at the nodes are given as

rotations. However, due to an intrinsic coupling between rotational and translational

components of the deformation function, the formulation provides for a good

approximation of the deflection of the beam, as well as of the resultant forces and

moments. As both the translational and the rotational components of the deformation

function are defined on the logarithmic space, we propose to refer to the novel

approach as the “Logarithmic finite element method”, or “LogFE” method.

Keywords: Logarithmic finite element method, Geometrically exact beam, Finite

rotations, Large deformations, Lie group theory, Bernoulli kinematics

Background

Wepropose a novel finite element formulation, the Logarithmic finite element, or “LogFE”

method, that significantly reduces the number of degrees of freedom necessary to obtain

accurate approximations of boundary-value problems. The LogFE method focuses on the

low-frequency part of a deformation andminimizes spurious high-frequency components

in the solution.

In order to keep the exposition as simple as possible, we restrict the model presented

in this paper to the case of a planar Bernoulli beam, i.e. a beam endowed with Bernoulli

kinematics embedded in the Euclidean plane. In addition, we limit the degrees of freedom

to coefficients related to rotations and dilatations at the nodes of the element. While

we restrict the numerical examples to the evaluation of a beam consisting of one single

element only,we explicitly show that degrees of freedomrelated to adjacent finite elements

can be linked together by linear maps, based on geometrically meaningful continuity
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conditions. Hence, the construction of a global finite element system based on the beam

elements presented in this work is possible.

Following the approach outlined in [24] and [25], we intend to present a formulation

that includes, in addition to rotations and dilatations, the translations at the nodes of the

configuration in a future publication.

Interpolating on the logarithmic space

Geometrically exact beam formulations generally include both translations and rotations

as kinematic variables, following the continuum mechanics model of the elastica devel-

oped by Cosserat and Cosserat [9]. In most of the literature, the interpolation of the kine-

matic variables at the integration points is performed separately for the translational and

the rotational variables. Well-known deficiencies of many of these formulations, such as

lack of geometric invariance, path dependence and poor accuracy in coarse meshes, have

been traced back to the characteristics of the various methods proposed for the interpola-

tion of the rotational variables by Jelenić andCrisfield [14] andRomero [22], amongothers.

Themodelling of beams endowedwith Bernoulli kinematics within this setting presents

particular challenges, especiallymembrane locking, as rotations and translations, although

interpolated separately, must jointly satisfy the Bernoulli condition along the neutral axis.

Similar difficulties characterize finite element formulations based on Lagrange functions

for the axial andHermitean functions for the transversal displacements [3,20]. As a result,

the characteristics of existing finite element formulations for geometrically exact Bernoulli

beams remain inferior to those available for kinematics that include shear deformations

[17]. Armero and Valverde provide an account of the historical development of geomet-

rically exact beam formulations, including a brief description of different methods that

aim to eliminate or reduce the effects of the drawbacks associated with the classical beam

formulations [3].

To preserve the orthogonality of the interpolated directors, a number of existing geo-

metrically exactmodels, such as [11,14,27], identify the kinematic variables with elements

of a Lie group, the special orthogonal group SO(3). (In the work of Ericksen and Trues-

dell, the use of the Lie group and its associated Lie algebra is implied by the differential

equation given on page 306.)

In a different approach, Armero and Valverde interpolate the director frame associated

with the neutral axis of the underlying geometry of a Bernoulli beam by using its angle in

the plane case [3], and in the general linear groupGL (3,R) for the three-dimensional case

[4]. In the latter case, orthogonality is achieved by applying a projection operator to the

resulting interpolated set of vectors that preserves the direction of the vector tangent to the

neutral axis, effectively resulting in an interpolation on the special orthogonal group. As

the shape functions are defined not on the global coordinate system, but with regard to the

local coordinate systems induced by the director frame, membrane locking is minimized

due to an appropriate coupling of axial and transversal displacements. Meier, Popp and

Wall extend this approach from the linear domain to large deformations, introducing an

orthogonal interpolation method based on the torsion of the neutral axis [17].

Betsch and Steinmann enforce the orthogonality of the director frame at the nodes by

introducing Lagrange multipliers, thus restricting the function space of the weak form of

the equations of motion [6]. The effects of a non-orthogonal interpolation of the director

frame can be addressed by reformulating the weak form of the equations of motions in

skew coordinates, thereby obtaining a geometrically invariant formulation [12].
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Although the concept of the Lie group and the Lie algebra is central to themethodwe are

proposing in the present work, we do not interpolate the kinematic variables themselves in

a Lie group or in its associated Lie algebra. Instead, we aim to identify, in a function space

generated by polynomial shape functions on the logarithmic space, i.e. the space of the

Lie algebra, a deformation function that, in the case of the Bernoulli beam, transforms the

neutral axis of the given initial configuration so as to obtain an equilibrium configuration.

Choosing appropriate shape functions, both with regard to their scalar part and to

their respective vector in the Lie algebra of the deformation function, is of crucial impor-

tance for the performance of the proposed method. In particular, although we do not

allow translations at the nodes in the present work, the vectors associated with the

shape functions are not restricted to either the rotational/dilatational or the transla-

tional part of the Lie algebra associated with group of planar similarity transforma-

tions, sim(2,R) = (gl (1,R) ⊕ so(2)) ⊕Id t(2,R). (In this formula, Id identifies the func-

tion ϕ : g → End(n) defining the commutator of the semidirect sum of two Lie

algebras, g and n, gi ∈ g, ni ∈ n,
[

(g1, n1), (g2, n2)
]

:= (g1, n1)(g2, n2) − (g2, n2)(g1, n1),

with (g, n)(g ′, n′) := (gg ′,ϕg (n
′)) [14, p. 84–85] [17, p. 38–40]. For matrix Lie algebras, we

assume that g(n) = gn is given by the matrix product). Instead, the vectors span across

the entire Lie algebra sim(2,R), inducing a strong coupling of rotational and translational

kinematic variables, which results from the multiplicative group operation given as a

semidirect product.

Accessible introductions to Lie group theory can be found in [13] and [17]. [2] develops

formulations for the description of large rotations fromelementary calculations, leading to

a geometricallymotivated approach to the theory of Lie groups andLie algebras. Anumber

of more advanced topics in Lie group theory, including the construction of semidirect

products, are discussed in [26] and [16].

Interplay of rotations and translations

Due to the specific problems related to the interpolation on the group of rotations, which

are not present with regard to translations, many geometrically exact formulations for

finite beam elements rely on a complete separation of the rotations from the translations,

e.g. [14,23,27]. This uncoupling has the obvious advantage of isolating the shape functions

related to the rotations from spurious effects of the approximation of the translational

part of the deformation. However, it also results in a larger number of degrees of freedom,

opening up dimensions of the deformation space which are largely irrelevant in order

to achieve a reasonably close approximation of the exact deformation, especially when

focusing on its low-frequency component.

In contrast to the approach referred to above, which effectively is based on linear inter-

polations on the Lie algebra so (3) ⊕ t (3,R), the direct sum of the Lie algebras associated

with the Lie groups of rotations SO(3) and of translations T (3,R) ≃ R3 in three dimen-

sions, Sonneville, Cardona and Brüls offer a geometrically exact formulation based on the

Lie algebra associated with the semidirect product of translations and rotations, i.e. the

Lie algebra se(3) associated with the special Euclidean group SE(3) := SO(3) ⋉Id T (3,R),

the semidirect product of rotations and translations in three dimensions [28]. By iden-

tifying the local material frames, i.e. the positions and orientations of the cross-sections

of the beam along the neutral axis, with elements of the Lie group SE(3), and linearly

interpolating on the associated Lie algebra, the formulation allows for a coupling of the
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translational and rotational components of the deformation. An earlier formulation that

implicitly uses an interpolation of the neutral axis of a beam as well as of the orientation

of its cross-section on a the Lie algebra se(3), instead of polynomial shape functions, has

been presented by Borri and Bottasso [7]. Selig and Ding explicitly introduce Lie groups

and Lie algebras in their exposition of a screw-theoretic formulation for a planar beam

[26]. The formulations proposed in these works are ultimately based on concepts from

screw theory [5,15], also referred to as motor calculus [30,31].

To the knowledge of the authors, existing formulations for geometrically exact beam

models, whether based on the Lie algebra so(n) ⊕ t(n,R), or on the Lie algebra se(n), for

n = 2 or n = 3, rely on a strictly linear interpolation between the degrees of freedom

given at the respective nodes (in the logarithmic space) and thus do not make use of

internal degrees of freedomassociatedwith additional shape functions, such as polynomial

shape functions of higher order, that may be constructed on the Lie algebra. As a result,

the image of the neutral axis of a beam element is located on an arc or a section of a

helix with curvature and torsion depending exclusively on the nodal degrees of freedom.

In particular, the curvature and the torsion remain constant along the neutral axis on

each beam element for both the formulation based on the special orthogonal group [22,

p. 125] as well as for the formulation based on the special Euclidean group [28, p. 460].

Due to the relatively low computational complexity of a single element, this restriction

can often be compensated for by a finer discretization of the beam model. For example,

Sonneville, Cardona, and Brüls [28] achieve good convergence characteristics and small

approximation errors for a standard test case based on a bent Cantilever beam subjected

to a fixed load.

However, in order to reduce the number of nodal degrees of freedom, as well as the

overall number of internal and nodal degrees of freedom in the approximation algorithm,

it is necessary to overcome the restriction given by a constant curvature along the neutral

axis of a single beam element. In addition, by reducing the degrees of freedom, it is possible

to focus on the degrees of freedom associated with the low-frequency component of the

deformation while minimizing the spurious high-frequency effects. In a multigrid setting,

this has the advantage of being able to separate the low-frequency component of the

deformation, which is being approximated on the coarse grid, and the high-frequency

part which may be approximated by a high-frequency smoothing algorithm on the fine

grid.

In the various formulations referred to above, torsionand sheardeformations result from

the interpolation of translations related to nodal translational degrees of freedom. As the

formulation of the planar Bernoulli beam element presented in this work does not include

translational degrees of freedom, there is no specificmechanism thatwould provide for the

optimization of shear deformations and shear stresses. The introduction of explicit shear

deformations by including shear-related degrees of freedom at the nodes would greatly

complicate the functions linking the degrees of freedom to the respective functionals of

the interpolant on the border of the finite element, as shear deformations and rotations

do not commute. In order to keep the subsequent exposition, which intends to highlight

the basic properties of the Logarithmic finite element method, as simple as possible, we

do not include degrees of freedom related to translations or shear deformations at this

point. The deformation space resulting from restricting the formulation to rotational

and dilatational degrees of freedom, in turn, is clearly better suited to the modelling of
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Bernoulli kinematics rather than Timoshenko kinematics. In particular, if the orientation

of the cross-section would be taken directly from the deformation function, rather than

implicitly calculated from the orientation of the neutral axis, the formulation would imply

the absence of shear deformation at the nodes, also for Timoshenko kinematics, a clearly

non-physical result.

The deformation function

In contrast to [11,14,27], the formulation presented in this paper is based on finding a

deformation function acting on the given initial configuration that realizes an equilibrium

configuration of the system. It is thus the deformation function that results from a function

that maps elements of the parametrization of the beam to elements of the Lie group.

Thus, both the initial configuration and the current configuration are fully defined by the

positions of the points along the neutral axis of the beam, with rotations obtained from

the derivative of the neutral axis. As a result, in order to identify individual points on the

interpolant with elements of a Lie group, one would necessarily need to take the location

of the neutral axis in a neighborhood of the respective points into account.

While the interpolant of the resulting finite element contains both a rotational and a

translational component, the degrees of freedom at the nodes—in the simplified variant

that we describe in this work—only include rotations and dilatations (i.e. radial displace-

ments with respect to a given center). Dilatational and rotational degrees of freedom

determine the local dilatation and rotation in a neighborhood of the associated node,

respectively, while the position of the node itself remains unchanged. The translational

component on the interior of the interpolant thus arises from the impact of rotations and

dilatations associated with different nodes belonging to the same finite element, as well

as their interaction.

In general, the deformation functions obtained with the formulation proposed in the

present work will result in current configurations that are not characterized by a constant

curvature within the single finite elements, even when restricting the shape functions on

the Lie algebra to linear interpolations.

Essential characteristics

The essential characteristics of the LogFE method, which distinguish it from the differ-

ent approaches referenced above, can thus be summarized as follows: In the proposed

formulation, the degrees of freedom, together with the shape functions, determine a

multiplicative deformation function that is defined on the Lie group of planar similarity

transformations Sim(2,R). Associating the scalar part of the shape functions with vectors

that span across the rotational and translational subalgebras of its associated Lie algebra

induces a strong coupling of translational and rotational variables of the configuration. In

addition, it allows for the introduction of polynomial shape functions of higher order on

the logarithmic space.

Given an appropriate choice of shape functions, an additively separable linear corre-

spondence between certain field values (obtained as functionals of the interpolant on the

border of a finite element) and the function parameters of the interpolant on a given finite

element can be achieved. This allows for the formulation of continuity conditions between

finite elements, so that a global finite element system can be set up, following the standard

procedure. LogFE elements endowed with Lagrange-type or augmented Lagrange-type
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shape functions can be linked by rotational values, both with each other as well as with

other finite elements that accommodate continuity conditions based on rotations. Ele-

ments endowed with Hermite-type shape functions may also be linked to other finite

elements through common values of curvature and of the derivative of the strain at a

common node. Similarly, boundary conditions may be incorporated into the set-up of a

global finite element system.

Multigrid methods

Multigrid methods rely on the interplay of a smoothing algorithm on the fine grid and a

general solver on the coarse grid. To obtain good convergence characteristics, the coarse

grid algorithm must operate on the low-frequency part of the approximation error. At

the same time, its influence on the high frequencies must be minimized. Employing a

coarse grid correction that supplies, together with an approximation of the degrees of

freedom, an interpolant characterized by a small high-frequency component minimized

two potential difficulties that may arise in multigrid-based calculations: it can prevent the

emergence of situations in which effects related to the high-frequency component of the

deformation obstruct the approximation on the coarse grid, and it minimizes the risk that

changes in the approximation of the high-frequency component induced by the coarse

grid correction degrade the convergence characteristics of the algorithm applied on the

fine grid. For a discussion of the impact of the order of the prolongation function being

used to transfer the coarse grid correction to the fine grid, see [19], as well as the literature

referred to in that publication.

We envisage multigrid methods as a major application of the LogFE formulation. How-

ever, we have chosen not to present a complete multigrid formulation in the present

paper. The model satisfies the conditions necessary for its incorporation in a multi-

grid formulation as a coarse grid solver, as it focuses on the low-frequency compo-

nent of the deformation and allows for a straightforward calculation of the values of the

degrees of freedom on the fine grid from the interpolant on the coarse grid. We therefore

leave the practical implementation of the LogFE model in a multigrid context to future

research.

Outline of the paper

The outline of the remaining sections is as follows: “Methods” section describes the

application of the LogFE method for planar beams endowed with Bernoulli kinemat-

ics. “Kinematics” section describes the kinematic assumptions of the model. It provides

somemathematical background on the theory of Lie groups and Lie algebras. “Continuity

conditions” section presents the field values—given as functionals of the interpolant—that

may be used as continuity conditions, and establishes a linear correspondence between

these values and the parameters of the interpolant. In “Consistency with the linear beam

theory” section, the model, in the limit of infinitesimal deformations, is related to the

linear theory of the Bernoulli beam. The following part of the paper, “Quasi-static equi-

librium” section, presents the equilibrium condition and formulates the evaluation of the

non-linear kinematics at the element level. “Results and discussion” section examines the

results obtained by the LogFE method for different boundary conditions, load character-

istics and load intensities. “Conclusion” section summarizes the results and relates them

to the basic characteristics of the model.
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Some aspects more closely related to the implementation of the method have been

included in the appendices. Appendix 1 outlines how LogFE element formulations

adjusted for given boundary conditions can be constructed. Appendix 2 presents a sharp

upper bound for the absolute value of the error of an approximate solution for the deriv-

ative of the matrix exponential.

Methods

Kinematics

The basic concepts of the LogFE model can be used to develop formulations for different

classes of finite elements. However, in order to keep the exposition as simple as possi-

ble, and in order to focus on the essential aspects of the model, we restrict the following

description of the LogFE model to the example of large deformations of a prismatic beam

in the Euclidean plane with rectangular cross-section, endowed with Bernoulli kinemat-

ics. In addition, we limit the degrees of freedom to coefficients related to rotations and

dilatations at the nodes of the element. The beam is assumed to consist of a homoge-

neous, isotropic material. The beammodel can be classified as a geometrically exact beam

formulation for finite rotations.

The deformation function

The continuous body B, which is composed of the particles X of the beam, is given

as a domain in a topological space (see Fig. 1). After placing the particles of the beam

in the reference configuration, we discretize the beam into finite elements and endow

the elements with a parametrization, such that set of particles of the beam along the

codimension of the parameterization (i.e. thewidth) can be unambiguously identifiedwith

a tuple of parameterizing variables (ξ , η) ∈ R2. The variable ξ determines the location of

the cross-section containing a given material point of the beam along the neutral axis. As

a result of assuming Bernoulli kinematics, the position and orientation of the points in a

Fig. 1 Configurations of a beam in the Euclidean plane
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given cross-section of the beam are fully determined by the location and the orientation

of the neutral axis.

The location of a material point in the reference configuration is given by X = κref (X),

with κref mapping the domain B continuously into the Euclidean plane, which we will,

after choosing an arbitrary origin, identify with the complex plane. This identification

serves two purposes: it simplifies the notation, and it immediately clarifies, by the use

of complex numbers instead of matrices representing linear maps on R2, that, within

this work, all linear maps operating on R2 are restricted to the commutative subgroup

GL (1,R)×SO(2) ≃ GL (1,C) of the general linear groupGL (2,R) given by the dilatations

and rotations. In particular, the deformation function gξ (see Fig. 1), as a function of the

degrees of freedom, assumes values that can be represented by matrices with complex

entries.

We discretize the beam as a single finite element. The parameterization, a Lipschitz

continuous embedding, maps into the reference configuration according to the function

χref : [0, l] ×
[

− 1
2h,

1
2h
]

→ C, (ξ , η) �→ ξ + iη, (1)

in which l and h denote the length and the height of the beam, respectively.

In order to express both rotations and translations as a single, multiplicative operation,

we will use the concept of homogeneous coordinates. By placing a vector space V into a

larger constructV ×{1}, we can express the translation of a vector inV as amultiplication

of an element of V × {1} by a matrix. Given v0, v ∈ V , R ∈ GL (V ), we have

Rv0 + v ≃

(

Rv0

1

)

+

(

v

1

)

=

(

R v0

0 1

)(

v

1

)

. (2)

Expressing both linear maps and translations in this way also allows us to describe the

logarithm of the function v0 �→ Rv0 + v, as the logarithm of the matrix

(

R v

0 1

)

. The

logarithm plays an essential role in the theory of Lie groups and Lie algebras, on which the

LogFEmethod is based. It is given as the (generallymulti-valued) inverse of the exponential

function, which is defined as exp(•) :=
∑∞

k=0
1
k !

•k . In this definition, the symbol “•” may

denote a scalar, a matrix, or a function. In the case of a function, taking the kth power is

defined as consecutively applying the function for a total of k times.

We therefore embed both the initial configuration, x0, and the current configuration,

x, into the homogenized Euclidean plane E2 × {1}, which we identify with C × {1}. Fig-
ure 2 illustrates the map from the parametrization space into the space of the initial

configuration.

Fig. 2 Parameterization of a two-dimensional beam element. The coordinate axes are related to the

canonical coordinate system in the Euclidean plane by the relations x = Re (x0) and z = −Im (x0)
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The motion of the body from the initial configuration to the current configuration

is given by a continuous map g(ξ ) which depends on the parameter ξ and acts on the

initial configuration, i.e. on

(

x0
1

)

= ϕ0(X) = ϕ0 (χref (ξ , η)). A point x in the current

configuration is given by
(

x

1

)

= gξ

(

x0

1

)

= gξ (ϕ0(X)) = gξ (ϕ0 (χref(ξ , η))) . (3)

For points of the neutral axis, we have η ≡ 0, thus their position in the current configu-

ration only depends on the parameter ξ . The map g(ξ ) depends on the parameterization

variable ξ , but acts on the space of the initial configuration, i.e. on C × {1}.

Lie groups and Lie algebras

All functions g(ξ ) are given in the form exp (Z̄ (ξ )) and act on elements of C × {1}. Z̄(ξ ) is
an element of a Lie algebra and is therefore endowed with specific properties. We recall

some basic results from the theory of Lie groups and Lie algebras, which are relevant for

the subsequent formulation of the model.

Members of a set form a group, denotedG, if there exists an associative binary operation

G × G → G, there exists a neutral element e ∈ G with regard to this operation, and for

every element g ∈ G there is an inverse element g ′ such that g ′g = e.

The values of the function g(ξ ) are elements of the subgroup
{(

a b

0 1

) ∣
∣
∣
∣
∣
a ∈ C \ {0}, b ∈ C

}

(4)

of the 2 × 2 matrices over the complex numbers. They form a group with regard to

the multiplication, which we will also denote G. The identity map, denoted Id, is the

neutral element of G. While this group can be embedded in the general linear group

GL (2,C), as shown inEq. (4), amore concise description characterizes this Lie groupof the

values g(ξ ) as the group of complex similarity transformations Sim(1,C) = GL (1,C) ⋉Id

T (1,C), which is isomorphic to the group of planar similarity transformations Sim(2,R) =
(GL (1,R) × SO(2)) ⋉Id T (2,R), with the group action defined as (s, R, t) ◦

(

s′, R′, t ′
)

=
(

ss′, RR′, sRt ′ + t
)

, SO(2) being the special planar orthogonal group. With regard to these

operations, s is a scaling parameter,R is a rotationmatrix, and t is a translation vector. The

action of this Lie groupon a vector in the Euclidean space is definedby
(

s, R, t
)

◦x = sRx+t,

with x ∈ R2. For the isomorphic complex Lie group, the group operation is given as

(a, b)◦
(

a′, b′) =
(

aa′, ab′ + b
)

, and the action on a vector space as (a, b)◦ z = az+b, with

z ∈ C. As these group operations indicate, calculations on a Lie group generally do not

involve multiplications of complete matrices, although many Lie groups, including those

referred to in this work, can be embedded in the general linear group, thus facilitating the

understanding of the group action and the action of the group on a vector space.

Each element of the group can be obtained by taking the exponential of an element Z̄(ξ ).

Furthermore, exp
(

tZ̄(ξ )
)

∈ G for all t ∈ R. Therefore, G is a Lie group, and the set of

elements Z̄(ξ ) forms the Lie algebra of G, denoted g.

As a Lie algebra, g is a vector space together with the adjoint map, a skew-symmetric

function ad : g × g → g, given as (X, Y ) �→ [X, Y ], X, Y ∈ g, with [X, Y ] := XY − YX

for matrix Lie algebras, i.e. for Lie algebras that are subalgebras of a Lie algebra gl (n,R)

associated with a general linear group GL (n,R), n ∈ N. The term [X, Y ] is also called the
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commutator of the Lie algebra. The specific Lie algebra that will be used in the remainder

of the text, g := sim(1,C) = gl (1,C) ⋉Id t(1,C), can be represented by the matrices
{(

a b

0 0

) ∣
∣
∣
∣
∣
a ∈ C, b ∈ C

}

. (5)

In particular, it contains the elements ZI,r given in Table 1. As will be described below

in more detail, each element is associated with one or more shape functions. The index

I designates the node associated with the shape functions constructed from the element

ZI,r , while r, which can assume the values 1 or 2, denotes the type of the deformation. The

case r = 1 indicates that the shape function characterizes a dilatation with the position

of the node I as its fixed point, while r = 2 indicates a rotation around the position of the

node I . By the term “dilatation”, we refer to a radial displacement of the material points

with regard to a given center, the fixed point of the deformation. A dilatation thus induces

volumetric strain in the body.

Each of the elements ZI,r generate a subalgebra of g. We also note that ZI,1 and ZI,2

are independent vectors of g, understood as a vector space. For λI,1, λI,2 ∈ R, the element

exp (Z̄I ) ∈ G, with Z̄I = λI,1ZI,1+λI,2ZI,2, represents the action of simultaneously rotating

and dilatating the initial configuration, with the position xI0 of the node I as the invariant

point. The exponential of a linear combination of the elementsZI,r represents amixture of

their respective actions on the initial configuration whose invariant point generally does

not coincide with the position of either node.

A parameterized curve on the Lie algebra, seen as a vector space, can be given by

γ (ξ ) :=
∑

1≤I≤nel
1≤r≤2

λI,r(ξ )ZI,r , (6)

with γ (ξ ) ∈ g. In this equation, nel denotes the number of nodes per element. For each

location ξ , the curve γ (ξ ) determines the map exp
(

γ (ξ )
)

∈ G, that will be applied to the

material points of the initial configuration associated with ξ . In particular, as every node

I is associated with a specific value ξI of the parameterization variable, γ (ξ ) provides an

interpolation of the transformation applied to the respective nodes.

Shape functions

In the following, wewill construct the shape functions for a finite beam element consisting

of two nodes, i.e. nel = 2. Both nodes are located on the neutral axis. The coordinates of

Table 1 Elements of the Lie algebra g and the associated Lie group G

ElementZI,r ∈ g Element exp
(

ZI,r

)

∈ G Action of exp
(

ZI,r

)

Z1,1 :=

(

1 −x
1
0

0 0

)

exp
(

Z1,1

)

=

(

e (1 − e)x1
0

0 1

)

Dilatation centered on the position of node 1

Z1,2 :=

(

i −ix1
0

0 0

)

exp
(

Z1,2

)

=

(

ei (1 − ei)x1
0

0 1

)

Rotation around the position of node 1

Z2,1 :=

(

1 −x
2
0

0 0

)

exp
(

Z2,1

)

=

(

e (1 − e)x2
0

0 1

)

Dilatation centered on the position of node 2

Z2,2 :=

(

i −ix2
0

0 0

)

exp
(

Z2,2

)

=

(

ei (1 − ei)x2
0

0 1

)

Rotation around the position of node 2
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the locations of the node with index I are given as (ξI , 0). We define the function g(ξ ) in

Eq. (3) as

gξ := exp
(

Z̄ (ξ )
)

= exp

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

1≤I≤nel
1≤r≤2

0≤q≤nq−1

uI,r,q

NI,r,q(ξ )
︷ ︸︸ ︷

pI,r,q(ψI (ξ ))ZI,r
︸ ︷︷ ︸

NI,r,q(ξ )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (7)

In this equation, r denotes the index of the respective element of the Lie algebra, and nq

denotes the number of polynomial functions pI,r,q that are being used to construct the

shape functions NI,r,q(ξ ) related to an element ZI,r of the the Lie algebra g, such that, for

a given node I , ZI,r are linearly independent. NI,r,q(ξ ) may be understood as the scalar

part of the shape function, determining the “intensity” of the deformation, while its basic

characteristics (dilatation/rotation, invariant point) are given by ZI,r . The term ZI,r in Eq.

(7) is generally not present in conventional finite elementmodels, inwhich shape functions

are understood as translations defined by the scalar value N (ξ ) and a basis vector ei, and

are defined separately for each dimension in the vector space of the configuration. In

such formulations, a coordinate-based description if often used, thus dropping the basis

vector ei. In the context of the beam model described, we have nel = 2, r ∈ {1, 2}, and
nq ≥ 1.ψI (ξ ) are the barycentric coordinates constructed on the interval
 = [ξ1, ξ2] and

associated with the node I . The function Z̄(ξ ) thus is Lipschitz continuous, differentiable

and bounded on 
.

Continuity conditions

All numerical calculations in this work are restricted to dilatations and rotations at the

nodes. It is, however, natural to ask whether the model can, in principle, be extended to a

formulation including translations, and whether it is possible, based on that formulation,

to perform numerical simulations not just for a single finite element, but for a complete

finite element system, by applying standard procedures of the finite element on the global

level. In order to be able to answer these questions in the affirmative, we show

(1) that the formulation presented here is indeed a special case of an extended formula-

tion that includes translations, and

(2) that the extended formulation, given suitable shape functions, results, in a sufficiently

large domain of the space of the degrees of freedom, in a completely additively sepa-

rable linear isomorphism (i.e., a one-to-one correspondence with possibly different

proportionality factors) between the degrees of freedom and certain functionals of

the interpolant which can be used as continuity conditions. This condition corre-

sponds to the third criterion for finite elements as given by Ciarlet in [8, p. 78–9].

Preliminary considerations

In addition to the Lie group G, we are considering the Lie group G̃, and show that the

application of G̃, together with a suitable set of embeddings and projections, results in the

same deformation function as the application of the Lie algebra G with the embeddings

and projections used above. We identify the Euclidean plane with the complex numbers

and consider the embeddings
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i1 : C → C × {1}, (x0) �→ (x0, 1) and (8a)

i2 : C → C
3, x0 �→

(

x0, x
1
0 , x

2
0

)

. (8b)

We also define the projections

pr1 : C × {1} → C, (x, 1) �→ x and (9a)

pr2 : C
3 → C,

(

x, x1, x2
)

�→ x. (9b)

Table 2 shows the generators of the Lie algebra g̃, as well as their exponentials, which are

elements of the Lie group G̃.

We note that the Lie algebra g̃ can be extended to a larger Lie algebra s := g̃ ⊕Id t(3,C),

which includes translations. Table 3 shows the bases of the vector space of the Lie algebra

t(3,C) = t1 ⊕ t2 ⊕ t3 and their respective exponentials.

For matrix Lie algebras, the multiplication is given by the canonical matrix multipli-

cation, and the commutator [X, Y ] is defined as [X, Y ] := XY − YX . A Lie algebra g is

called abelian if its commutator vanishes identically, i.e. if [X, Y ] = 0 for all X, Y ∈ g.

If a Lie algebra g is abelian, then the elements of its associated Lie group commute, i.e.

for X, Y ∈ g, we have eXeY = eY eX and therefore eXeY = eX+Y . We note that the Lie

algebra g̃ has the abelian subalgebras g̃1 and g̃2, giving rise to their respective commutative

Lie groups G1 and G2, and that the Lie algebras s1 := g̃1 ⊕Id t1 and s2 := g̃2 ⊕Id t2 are

abelian and constitute subalgebras of the Lie algebra s. Neither of the Lie algebras g̃ and

s, however, is abelian.

Table 2 Elements of the Lie algebra g̃ and the associated Lie group G̃

Element Z̃I,r ∈ g̃ Element exp
(

Z̃I,r

)

∈ G̃ Subalgebra in g̃

Z̃1,r :=

⎛

⎜
⎝

z1,r −z1,r 0

0 0 0

0 0 0

⎞

⎟
⎠ exp

(

Z̃1,r

)

=

⎛

⎜
⎝

exp
(

z1,r
)

1 − exp
(

z1,r
)

0

0 1 0

0 0 1

⎞

⎟
⎠ g̃1 = 〈Z̃1,r〉, r ∈ {1, 2}

Z̃2,r :=

⎛

⎜
⎝

z2,r 0 −z2,r

0 0 0

0 0 0

⎞

⎟
⎠ exp

(

Z̃2,r

)

=

⎛

⎜
⎝

exp
(

z2,r
)

0 1 − exp
(

z2,r
)

0 1 0

0 0 1

⎞

⎟
⎠ g̃2 = 〈Z̃2,r〉, r ∈ {1, 2}

zI,r assumes the following values: z1,1 = z2,1 = 1, z1,2 = z2,2 = i

Table 3 Elements of the Lie algebra t and the associated Lie group T

ElementTI,r ∈ t (3,C) Element exp
(

TI,r

)

∈ T (3,C) Subalgebra in t(3,C)

T1,r :=

⎛

⎜
⎝

t1,r

t1,r

0

⎞

⎟
⎠ exp

(

T1,r

)

=

⎛

⎜
⎝

t1,r

t1,r

0

⎞

⎟
⎠ t1 = 〈T1,r〉, r ∈ {1, 2}

T2,r :=

⎛

⎜
⎝

t2,r

0

t2,r

⎞

⎟
⎠ exp

(

T2,r

)

=

⎛

⎜
⎝

t2,r

0

t2,r

⎞

⎟
⎠ t2 = 〈T2,r〉, r ∈ {1, 2}

T3,r :=

⎛

⎜
⎝

t3,r

0

0

⎞

⎟
⎠ exp

(

T3,r

)

=

⎛

⎜
⎝

t3,r

0

0

⎞

⎟
⎠ t3 = 〈T3,r〉, r ∈ {1, 2}

tI,r assumes the values tI,1 = 1, tI,2 = i for all I ∈ {1, 2, 3}. Note that, for translational lie groups, the representation of the

elements of the Lie algebra and their exponentials in the Lie group as column vectors is identical
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Thus, at the border of a finite element, the deformation function assumes values belong-

ing to commutative subgroups of the Lie group G̃, while its values in the interior of a finite

element generally do not commute. It is this property, arising from the specific embedding

of the two abelian subalgebras into a larger Lie algebra, in which the interpolation takes

place, that results in a strong coupling of rotational and translational components of the

deformation function in the interior of a finite element, while preserving the separability

of the components on its borders.

In future work, we intend to demonstrate that most of the steps in the subsequent

calculations can be readily applied to deformation functions based on the larger Lie algebra

s, which includes the translational Lie algebra t(3,C). In order to keep the calculations as

simple as possible, however, we restrict the following exposition to the case of rotations

and dilations, i.e. to a deformation function based on the Lie algebra g̃. In this context, we

note that our current research on a model involving translations has shown that in order

to obtain good approximations of solutions involving large, simultaneous translations

and rotations, the application of a co-rotational approach is necessary. The restricted

model presented in the subsequent exposition, however, can be formulated without that

additional layer of complexity.

For a given value of ξ , the deformation function gξ is an element of theLie groupG. Given

the values NI,r,q(ξ ) of the shape functions at the position ξ and the degrees of freedom

uI,r,q , which may be assembled into a vector of d.o.f. u ∈ U ≃ R4nq , the deformation

function results from the application of the map

ψ1 : U → C1(R, g), u �→ ϕ1 : R → g, ξ �→
∑

1≤I≤nel
1≤r≤2

0≤q≤nq−1

uI,r,qNI,r,q(ξ )ZI,r , (10)

followed by subsequent exponentiation. Similarly, a deformation function g̃ξ results from

the map

ψ2 : U → C1(R, g̃), u �→ ϕ2 : R → g̃, ξ �→
∑

1≤I≤nel
1≤r≤2

0≤q≤nq−1

uI,r,qNI,r,q(ξ )Z̃I,r , (11)

and subsequent exponentiation. By elementary calculations, it can be shown that, for

identical shape functions NI,r,q(ξ ) and initial configuration x0(ξ , η), the results of the

action of gξ := exp (ψ1(u)(ξ )) and g̃ξ := exp (ψ2(u)(ξ )) on the respective embeddings i1

resp. i2 of the initial configuration result in the same current configuration [25]. That is,

we have

x(ξ , η) ≡ pr1◦exp (ψ1(u)(ξ ))
︸ ︷︷ ︸

=gξ

◦ i1◦x0(ξ , η) ≡ pr2◦exp (ψ2(u)(ξ ))
︸ ︷︷ ︸

=g̃ξ

◦ i2◦x0(ξ , η) (12)

for every x0 and every u. The calculations are available from the authors upon request.

The Logarithmic finite element method does not depend on the application of the

isoparametric concept. Therefore, the functionals on which the construction of the global

finite element system is based are taken from the deformation function rather than from

the interpolant of the current configuration, andwedonot restrict the initial configuration
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other than by the condition that it be an immersion of the parametrization space into the

physical space. Without loss of generality, we assume, in the remainder of this section,

that the first node of the beam element is located at the origin, i.e. x0(0, 0) = 0.

Conditions related to the first derivative of the deformation function

Due to the underlying Bernoulli kinematics, the orientation of the cross-section depends

solely on the orientation of the neutral axis of the beam. We also note that, as a result

of the application of constitutive equations for beams with invariant cross-sections, the

dilatational component of the deformation of the cross-section implied by the construc-

tion of the deformation function does not enter into the evaluation of the internal energy.

The derivative of the current configuration x with regard to the parameterization variable

of the neutral axis, ξ , is given by

∂x

∂ξ
(ξ , η) = pr2 ◦

∂ exp (ψ2(u))

∂ξ
(ξ ) ◦ i2 ◦ x0(ξ , η)

+ pr2 ◦ exp (ψ2(u)(ξ )) ◦ i2 ◦
∂x0

∂ξ
(ξ , η), (13)

Given an appropriate choice of shape functions NI,r,q(ξ ), this equation can be reduced

to a much simpler expression. In particular, we will impose the following restrictions on

the basis functions:

NI,r,q(0) �= 0 for nodes and indices (I, q) = (1, 0) , (14a)

NI,r,q(0) = 0 for all nodes I and indices q, except for (I, q) = (1, 0) , (14b)

∂NI,r,q

∂ξ
(0) = 0 for node I = 2. (14c)

With regard to the derivative of the exponential of a matrix-valued function, we note that

for a differentiable function X(t) : R → h, whose codomain is the Lie algebra h, we have

∂eX(t)

∂t
(t∗) = eX(t

∗)
∞
∑

k=0

(−1)k

(k + 1)!
adX(t∗)

k ∂X

∂t
(t∗). (15)

This equation results from transforming the fractional expression involving the exponen-

tial of the adjoint map given in [13, p. 71],

∂eX(t)

∂t
(t∗) = eX(t

∗)
(
(

adX(t∗)
−1

(

I − exp
(

−adX(t∗)
))
)
(

∂X

∂t
(t∗)

))

, (16)

into a power series. In this equation, we use the adjoint operator ad, which, for X, Y ∈ h,

is given by

ad : h → GL (h), X �→ adX : h → h, Y �→ [X, Y ] , (17)

where [X, Y ] is the commutator as defined above. Furthermore, adX
k denotes the repeated

application of adX . Thus, if X and Y are elements of a Lie algebra h, the power series in

(15), as well as the sum of any subset of its summands, evaluates to an element of h. In

particular, if h is an abelian Lie algebra, then Eq. (15) simplifies to

∂eX(t)

∂t
(t∗) = eX(t

∗) ∂X

∂t
(t∗). (18)

Given the restrictions in (14), we observe thatψ2(u)(0) ∈ g̃1,
∂ψ2(u)

∂ξ
(0) ∈ g̃1, and therefore,

as g̃1 is abelian,
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∂ exp (ψ2(u))

∂ξ
(0) = exp (ψ2(u)(0))

∂ψ2(u)

∂ξ
(0). (19)

As x0(0, 0) = 0 and x10 = 0, for ξ = 0, the first summand in Eq. (13) is of the form

pr2 ◦

⎛

⎜
⎝

z −z 0

0 0 0

0 0 0

⎞

⎟
⎠

⎛

⎜
⎝

0

0

x20

⎞

⎟
⎠ , (20)

with z ∈ C, and thus vanishes. Given the restriction (14b), the remaining terms in Eq. (13)

simplify to

∂x

∂ξ
(0, 0) = exp

⎛

⎝

∑

1≤r≤2

u1,r,0N1,r,0(0)z1,r

⎞

⎠ ◦
∂x0

∂ξ
(0, 0), (21)

With xξ = ∂x
∂ξ
, x0ξ

= ∂x0
∂ξ

, themain branch of the logarithm of the directional derivative of

the deformation function, Log ◦ ∂xξ

∂x0ξ
(0, 0) =

∑

1≤r≤2 u1,r,0N1,r,0(0)z1,r , a (nonlinear) func-

tional of the deformation function, is an element of the Lie algebra g1 and, asN1,r,0(0) �= 0

for r ∈ {1, 2} due to condition (14a), depends linearly on the degrees of freedom u1,r,0,

r ∈ {1, 2} in a neighborhood U of the origin. We note that U is a strip of width 2π in the

space of the degrees of freedomU , due to the ambiguous nature of the logarithm function.

Thus, inU , there is a one-to-one relationship between the parameters u1,r,0 in the defor-

mation function of a single finite element and the respective functional of the deformation

function at the border of the finite element. Therefore, by defining continuity conditions

based on these functionals, the respective parameters can be linked together at the global

level and thus serve as global degrees of freedom of a finite element system composed of

LogFE-based finite elements, as well as other compatible finite elements.

Conditions related to the second derivative of the deformation function

If one intends tousenot only thefirst derivative of the current configurationw.r.t. the para-

meterization of the neutral axis, but also its second derivative, then additional restrictions

must be imposed on the shape functions. We impose the following additions restrictions

on the shape functions:

∂NI,r,q

∂ξ
(0) �= 0 for nodes and indices (I, q) = (1, 1) , (22a)

∂NI,r,q

∂ξ
(0) = 0 for all nodes I and indices q, except for (I, q) = (1, 1) , (22b)

∂2NI,r,q

∂ξ2
(0) = 0 for node I = 2. (22c)

The second derivative of the current configuration w.r.t. the parameterization of the

neutral axis is given by

∂2x

∂ξ2
(ξ , η) = pr2 ◦

∂2 exp(ψ2(u))

∂ξ2
(ξ ) ◦ i2 ◦ x0(ξ , η)

+ 2pr2 ◦
∂ exp(ψ2(u))

∂ξ
(ξ ) ◦ i2 ◦

∂x0(ξ , η)

∂ξ

+ pr2 ◦ exp(ψ2(u)(ξ )) ◦ i2 ◦
∂2x0

∂ξ2
(ξ , η), (23)
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With restriction (22c), we have ∂2ψ2(u)
∂ξ2

(0) ∈ g̃1 and thus,
∂2 exp(ψ2(u))

∂ξ2
(0) ∈ g̃1. As for the

first derivative, the first summand in Eq. (23) vanishes for ξ = 0, i.e. pr2 ◦ ∂2 exp(ψ2(u))

∂ξ2
(0) ◦

i2 ◦ x0(0, 0) = 0. With restriction (22b), we obtain

∂2x

∂ξ2
(0, 0) = 2pr2 ◦

∂ exp (ψ2(u))

∂ξ
(0) ◦ i2 ◦

∂x0

∂ξ
(0, 0)

+ pr2 ◦ exp (ψ2(u))(0) ◦ i2 ◦
∂2x0

∂ξ2
(0, 0)

= pr2 ◦ exp (ψ2(u)(0))

(

2
∂ψ2(u)

∂ξ
(0) ◦ i2 ◦

∂x0

∂ξ
(0, 0) + i2 ◦

∂2x0

∂ξ2
(0, 0)

)

=
∂xξ

∂x0ξ

(0, 0)

⎛

⎝2
∑

1≤r≤2

(

u1,r,1
∂N1,r,1

∂ξ
(0)z1,r

)
∂x0

∂ξ
(0, 0) +

∂2x0

∂ξ2
(0, 0)

⎞

⎠ .

(24)

Based on the well-known definitions of the (geometric) curvature κ of the current config-

uration and κ0 of the initial configuration, we define the “material curvature” κmat of the

current configuration and κmat
0 of the initial configuration of the neutral axis, as

κmat :=
|∂ξx|
|∂ξX|

κ =
|∂ξx × ∂2ξ x|
|∂ξx|2|∂ξX|

, κmat
0 :=

|∂ξx0|
|∂ξX|

κ0 =
|∂ξx0 × ∂2ξ x0|
|∂ξx0|2|∂ξX|

. (25)

We denote s := ∂xξ

∂x0ξ
(0, 0) ∈ C. Then, by inserting the derivatives from Eqs. (13) and (24),

followed by elementary calculations, we obtain

κmat(0, 0) =
|s|2

(

2Im
(∑

1≤r≤2

(

u1,r,1∂ξN1,r,1(0)z1,r
))

|∂ξx0(0, 0)|2 + |∂ξx0(0, 0) × ∂2ξ x0(0, 0)|
)

|s|2|∂ξx0(0, 0)|2|∂ξX(0, 0)|

= 2
u1,1,1∂ξN1,1,1(0)

|∂ξX(0, 0)|
+ κmat

0 . (26)

Therefore, the change in the material curvature of the current configuration relative to

the initial configuration is a linear function in the degree of freedom u1,1,1, and condition

(22a) ensures that this function is non-trivial. Obviously, caremust be taken to ensure that

different finite elements, which may not have the same parameterization with regard to

their material points, are linked through appropriately formulated continuity conditions

w.r.t. their material curvature.

We define the “material derivative of strain” ε̇mat of the current configuration and ε̇mat
0

of the initial configuration of the neutral axis, as

ε̇mat =

〈

∂ξx, ∂
2
ξ x
〉

|∂ξx|2|∂ξX|
, ε̇mat

0 =

〈

∂ξx0, ∂
2
ξ x0

〉

|∂ξx0|2|∂ξX|
. (27)

An elementary calculation similar to that performed in Eq. (26) yields

ε̇mat(0, 0) = 2
u1,0,1∂ξN1,0,1(0)

|∂ξX(0, 0)|
+ ε̇mat

0 (0, 0). (28)

The change in the material derivative of strain definition of the current configuration

relative to the initial configuration is thus a linear and non-trivial function in the degree

of freedom u1,0,1.
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The choice of shape functions

Table 4 summarizes the degrees of freedom, their respective functionals, which may be

used to impose continuity conditions at the global level, and their respective geometric

meaning.

A set of shape functions that satisfies the conditions (14) and (22) and thus accommo-

dates the application of continuity conditions both with regard to the first and the second

derivative of the deformation function, generally does not generate the same deformation

space as a set of shape functions that satisfies none or only some of these conditions,

and may also have inferior numerical properties. Therefore, the optimal choice of shape

functions for a finite element constructed on the basis of the Logarithmic finite element

method will depend on the presence of continuity conditions and boundary conditions at

its borders.

For a beam element endowed with one shape function per node I and Lie algebra ele-

ment ZI,r (Lagrange-type shape functions), the polynomials pI,r,0 : α �→ α2 therefore

satisfy the conditions (14). For the case of two shape functions per node I and Lie algebra

element ZI,r (augmented Lagrange-type shape functions), the polynomials pI,r,0 : α �→ α3

and pI,r,1 : α �→ α4 − α3 satisfy these conditions. Figure 3 displays the Lagrange-type and

augmented Lagrange-type shape functions for a two-node beam element. Note that both

sets of Langrangian-type shape functions (see Fig. 3) do not satisfy the additional condi-

tions (22), and therefore cannot be used to model finite elements subjected to continuity

conditions or boundary conditions involving the second derivative of the deformation

function. However, the Hermite-type shape functions (see Fig. 3) satisfy both sets of con-

Table 4 Degrees of freedom and related functionals of the deformation function, for node

1 with x
1
0 = x0 (0, 0), and shape functions satisfying conditions (14) and (22)

Degree of freedom Functional of the deformation function Geometric meaning

u1,0,0 Re
(

Log
∂xξ

∂x0ξ
(0, 0)

)

Strain

u1,1,0 Im
(

Log
∂xξ

∂x0ξ
(0, 0)

)

Rotation

u1,0,1 ε̇mat(0, 0) − ε̇mat
0 (0, 0) Material derivative of strain

u1,1,1 κmat(0, 0) − κmat
0 (0, 0) Material curvature

a b cLagrange-type shape functions Augmented Lagrange-type shape

functions

Hermite-type shape functions

Fig. 3 Polynomials of the shape functions for a two-node beam element. The scalar shape functions NI,r,q

associated with the dilatational degrees of freedom (r = 1) and with the rotational degrees of freedom

(r = 2) are identical
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ditions and can therefore be used to construct finite elements that can accommodate all

types of continuity and boundary conditions described above (see Table 4). The choice of

appropriate shape functions for different boundary conditions is discussed in more detail

in Appendix 1.

Consistency with the linear beam theory

Anon-linear boundary-value problem is often solved by iteratively obtaining the solutions

of a sequence of linear problems, obtaining a sequence of solutions that converges toward

the non-linear solution. In this section, we therefore investigate in more detail the linear

steps involved in the iterative process of finding a non-linear solution. In particular, we

focus on the initial linear step, for which the initial estimate for the degrees of freedom

is given by the zero vector, i.e. the initial estimate for the deformation function is the

identity function. We will compare the characteristics of this initial linear step with the

linear theory of the Bernoulli beam. We will see that for certain standard load cases, the

reaction of the beam in a neighborhood of the identity deformation predicted by the

linearization of the LogFE model is identical, up to terms of higher order, to the reaction

predicted by the linear theory of the Bernoulli beam.

The linearization of the LogFE formulation around the origin, i.e. u = 0, results in a

simplified model that can be regarded as a linear variant of the general approach. In this

case, the degrees of freedom assume values that are proportional to the load intensity.

As a result, the trajectories of the materials points of the configuration are located on

the orbits of their initial locations under the action of a one-parameter Lie group. As we

will see, these orbits are located on circles (and straight lines, which can be regarded as

degenerate circles) if the dilatation coefficients vanish. In the case of non-zero dilatation

coefficients, the orbits are located on logarithmic spirals. In order to analytically determine

the linearization for different load cases, the strain and the curvature (and, as a result, the

normal force and the bending moment) at a given parameter value ξ of the configuration

must be derived from the deformation function.

Normal force and bendingmoment

The neutral axis of the beam shall be parameterized by the curve

ξ �→ χ0 (f (ξ )) =
(

ξ

1

)

,

connecting the nodal positions x10 = 0 and x20 = 1 on a straight line on the real axis. Thus,

we have x0 (ξ ) = ξ . In the following, the scalar product and the determinant are based

on the Euclidean vectors associated with the complex values, i.e. for w, z ∈ C, we have, in

this context, the scalar product

〈w, z〉 :=

〈
(
Re (w)

Im (w)

)

,

(
Re (z)

Im (z)

)
〉

and the determinant

|w, z| := det

(
Re (w) Re (z)

Im (w) Im (z)

)

.

For the purpose of calculating the strain measures, we identify the complex plane with

the Euclidean space, such that a distance of 1 equals 1m.
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With ẋ := ∂ξx, ẍ := ∂2ξ x, the strain ε is given as ε(ξ ) = ‖ẋ‖ − 1 and the curvature κ is

given as κ(ξ ) = ‖ẋ‖−3 |ẋ, ẍ|. The derivatives with respect to a given degree of freedom u

are

∂uε(ξ ) = ‖ẋ‖−1 〈∂uẋ, ẋ〉 and (29a)

∂uκ(ξ ) = −3 ‖ẋ‖−5 〈∂uẋ, ẋ〉 |ẋ, ẍ| + ‖ẋ‖−3 (|∂uẋ, ẍ| + |ẋ, ∂uẍ|) . (29b)

Thus, for ‖ẋ‖ = 1, ‖ẍ‖ = 0, we obtain the derivative of the strain as ∂uε(ξ ) = 〈∂uẋ, ẋ〉 and
the derivative of the curvature as ∂uκ(ξ ) = |ẋ, ∂uẍ|. For u = 0, we have Z̄(ξ ) ≡ 0, eZ̄(ξ ) ≡
Id, from which follows

[

∂uZ̄(ξ ), Z̄(ξ )
]

≡ 0 and therefore ∂ue
Z̄(ξ ) ≡ ∂uZ̄(ξ ). We obtain

ẋ = ∂ξe
Z̄(ξ )

(

x0(ξ )

1

)

+ eZ̄(ξ )

(

1

0

)

=

(

1

0

)

, (30a)

∂uẋ = ∂u∂ξ Z̄(ξ )

(

x0(ξ )

1

)

+ ∂uZ̄(ξ )

(

1

0

)

, (30b)

∂uẍ = ∂u∂
2
ξ Z̄(ξ )

(

x0(ξ )

1

)

+ 2∂u∂ξ Z̄(ξ )

(

1

0

)

. (30c)

Thus, the derivatives of the strain and the curvature are given by

∂uε(ξ ) =

〈

∂u∂ξ Z̄(ξ )

(

x0(ξ )

1

)

+ ∂uZ̄(ξ )

(

1

0

)

,

(

1

0

)〉

and (31a)

∂uκ(ξ ) =

∣
∣
∣
∣
∣

(

1

0

)

, ∂u∂
2
ξ Z̄(ξ )

(

x0(ξ )

1

)

+ 2∂u∂ξ Z̄(ξ )

(

1

0

)∣
∣
∣
∣
∣
, (31b)

respectively. With η1 = 1 (dilatation), η2 = i (rotation), the elements of the Lie algebra

are given as ZI,r,q = ηr

(
1 −xI0
0 0

)

. For the derivatives of the strain and the curvature

with respect to the degrees of freedom u, evaluated at u = 0, we therefore obtain

∂uI,r,qε(ξ ) = Re
(

ηr
(

∂ξNI,r,q(ξ )
(

x0(ξ ) − xI0
)

+ NI,r,q(ξ )
))

and (32a)

∂uI,r,qκ(ξ ) = Im
(

ηr
(

∂2ξNI,r,q(ξ )
(

x0(ξ ) − xI0
)

+ 2∂ξNI,r,q(ξ )
))

. (32b)

Equations (32a) and (32b) indicate that the linearized strain depends on thedilatation coef-

ficients only, while the linearized curvature depends solely on the rotation coefficients.

For a two-node, simply supported beam element without internal degrees of freedom, i.e.

Q̄I = 0, the differentials of the strain and of the curvature at the origin are given by

dε(ξ ) =
∑

I∈{1,2}

(

∂ξNI,1,0(ξ )
(

x0(ξ ) − xI0
)

+ NI,1,0(ξ )
)

duI,1,0, (33a)

dκ(ξ ) =
∑

I∈{1,2}

(

∂2ξ NI,2,0(ξ )
(

x0(ξ ) − xI0
)

+ 2∂ξNI,2,0(ξ )
)

duI,2,0. (33b)
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Linearization based on rotation coefficients

For a simply supported beam, subjected to an external momentM0 at node 1, we have

N1,2,0(ξ ) = p1,2,0 (ψ1(ξ )) = (1 − ξ )3 = −ξ3 + 3ξ2 − 3ξ + 1, (34)

N2,2,0(ξ ) = p2,2,0 (ψ2(ξ )) = −2ξ3 + 3ξ2. (35)

Therefore,

dκ(ξ ) = ϕ1(ξ ) du1,2,0 + ϕ2(ξ ) du2,2,0, (36)

with

ϕ1(ξ ) = −12ξ2 + 18ξ − 6, (37a)

ϕ2(ξ ) = −24ξ2 + 30ξ − 6. (37b)

If the rotation coefficients are set to zero, i.e.u1,1,1 = 0,u2,1,1 = 0, the linearized strain van-

ishes, as η2 = i and therefore, as a result of Eq. 32a, ∂uε(ξ ) = 0. A linearization of the total

energyU at the initial configuration, with vanishing initial curvature κ0(ξ ) ≡ 0, is given by

U =
1

2
EI

∫ 1

0
κ(ξ )2

∥
∥∂ξx0

∥
∥ dξ − M0u1,2,0, (38)

with κ(ξ ) = (ϕ1(ξ )u1,2,0 + ϕ2(ξ )u2,2,0)m
−1. The equilibrium condition is given by

∂u1,2,0U = 0 for all I , resulting in u1,2,0 = 1
3 (EI)

−1M0m, u2,2,0 = − 1
6 (EI)

−1M0m. With

these values, the curvature is given by κ(ξ ) = (ξ − 1)(EI)−1M0. These results are consis-

tent with the linear theory of the Bernoulli beam.

In a finite element formulation based on the LogFE method, the function

g0(ξ ) (x0(ξ )) = exp

⎛

⎜
⎝

∑

I,q

sβI,2,q
︸ ︷︷ ︸

=uI,2,q

NI,2,q(ξ )ZI,2,q

⎞

⎟
⎠ x0(ξ )

= es exp

(
∑

I,q
βI,2,qNI,2,q(ξ )ZI,2,q

)

︸ ︷︷ ︸

Z̃(ξ )

x0(ξ ), (39)

with I ∈ {1, 2}, 0 ≤ q ≤ QI,r , βI,2,q ∈ R and s ∈ R can be thought of as the analogon of the

deflection curve in the conventional linear theory. In this formulation, the scalar degree of

freedom s is exclusively related to the load intensity. By setting s proportional to the load

intensity, based on the sensitivity of s to an infinitesimal increase of the load, we obtain

a formula that is fully linearized on the space of the Lie algebra, while still resulting in a

nonlinear deformation function in the physical space.

For the present load case, i.e. a simply supported beam, subjected to an externalmoment

at the left node (see also Fig. 4), we have

N1,2,0 = −3(1 − ξ )4 + 4(1 − ξ )3, (40a)

N1,2,1 = −3ξ4 + 4ξ3. (40b)

With β1,2,0 = 1, β2,2,0 = − 1
2 , we obtain

Z̃ := N1,2,0(ξ )Z1,2,0 −
1

2
N2,2,0(ξ )Z2,2,0 = i

(
3
2ξ

2 − 3ξ + 1 −ξ3 + 3
2ξ

2

0 0

)

. (41)
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a b

c d

Simply supported beam, external moment on left

support

Simply supported/clamped beam, external moment

on left support

Simply supported, linearly decreasing line loadSimply supported, constant line load

Fig. 4 Linearized deformation (only rotational degrees of freedom): deformed configuration and orbits x (s)

of points on the neutral axis of the beam

This formula also reveals that the deformation can be expressed as a rotation of each point

of the initial configuration, with rotation center and angle depending on the parameter ξ .

Thus, the orbits of thematerial points under the given deformations are located on circles

of different radius and location. For 3
2ξ

2 − 3ξ + 1 = 0, i.e. ξ = 1− 1
3

√
3, the deformation

is a pure translation in the z direction.

g0(ξ ) (x0(ξ ))

=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

es exp

⎛

⎝
(
3
2 ξ

2 − 3ξ + 1
)

⎛

⎝
i

−ξ3+ 3
2 ξ2

3
2 ξ2−3ξ+1

i

0 0

⎞

⎠

⎞

⎠

(

ξ

1

)

if ξ �= 1 − 1
3

√
3,

es exp

(

0
(

−ξ3 + 3
2 ξ

2i
)

0 0

)(

ξ

1

)

=

(

1 − 1
3

√
3

1

)

+

(
1
9

√
3i

0

)

s if ξ = 1 − 1
3

√
3.

(42)

For a beam simply supported at the left side and clamped at the right side, subjected to

an external moment at the left support (see Fig. 4), we omit the shape function N2,2,0 (see

Table 8 in Appendix 1), and obtain N1,2,0 = (1 − ξ )2, β1,2,0 = 1, ∂sκ(ξ ) = 6ξ − 4, as

predicted by the linear beam theory, and

g0(ξ ) (x0(ξ )) = es exp

(

(

ξ2 − 2ξ + 1
)

(

i 0

0 0

))(

ξ

1

)

=

(

es(ξ
2−2ξ+1)iξ

1

)

. (43)
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For a simply supported beam subjected to a constant line load (see Fig. 4), we have

N1,2,0 = −3(1 − ξ )4 + 4(1 − ξ )3, N2,2,0 = −3ξ4 + 4ξ3. With β1,2,0 = 1, β2,2,0 = −1, we

obtain ∂sκ(ξ ) = 12ξ2 − 12ξ , also consistent with the linear beam theory.

Finally, for a simply supported beam subjected to a linearly decreasing line load (see

Fig. 4), we use the same shape functionsN1,2,0 = −3(1 − ξ )4 +4(1 − ξ )3,N2,2,0 = −3ξ4 +
4ξ3. With β1,2,0 = 1, β2,2,0 = 1, we obtain ∂sκ(ξ ) = −120ξ3 + 180ξ2 − 60ξ , conforming

to the results of the linear beam theory.

These cases demonstrate that for some simple load cases, the tangent spaceTu(gξ ) of the

function space of the LogFE formulation at the origin, i.e. foru = 0, contains the deflection

functions obtained by the linear beam theory. Naturally, for more complicated load cases,

Tu(gξ ) will not be large enough to contain the exact linear deflection function. For larger

deformations, the linearized logarithmic deformation function, just as the conventional

linearized deflection curve, does not adequately represent the actual deformation of the

beam.

The general case

In the general case, which includes, e.g., the deformation within a single step of a Newton-

Raphson approximation, the orbits of the material points of the configuration are not

located on circles, but on logarithmic spirals with different points of origin.

Figure 5 presents an example of the general case. For a diagonally applied constant line

load f , resulting from a combination of a line load perpendicular to the neutral axis, q,

and a line load parallel to the neutral axis, fN , we use N1,2,0 = −3(1 − ξ )4 + 4(1 − ξ )3,

N2,2,0 = −3ξ4 + 4ξ3, as above. We set β1,2,0 = γ2, β2,2,0 = γ2, γ2 ∈ R, such that

∂sκ(ξ ) = 12γ1ξ
2 −12γ1ξ , consistent with the linear beam theory. As there is a line load in

the direction of the beam, we must also determine the coefficients β1,1,0, β2,1,0, which are

related to the dilatations (r = 1). Because the impact of the line force in the longitudinal

direction on the curvature of the beam vanishes for u = 0, we can drop the optional

restriction ∂pI,2,0 = 0 (see Table 8 in Appendix 1). Thus, Q̄I = 0 for I ∈ {1, 2}, and the

shape functions related to the dilatations, which result in a change in the normal force

in the linear beam theory, are given as N1,1,0 = (1 − ξ )2, N2,1,0 = ξ2. From the linear

theory, we know that ∂fN ε(ξ ) = 1
EA (−ξ + 1

2 ). Using Eq. 33a, we see that β1,1,0 = 1
2γ1,

β2,1,0 = − 1
2γ1, γ1 ∈ R, result in ∂sε(ξ ) = −γ1ξ + 1

2γ1, conforming to the linear theory.

a bWeak normal external load component: γ 2 = 4γ 1 . Strong normal external load component: γ 2 = γ 1 .

Fig. 5 Linearized deformation (general case): deformed configuration and orbits x (s) of points on the

neutral axis of the beam
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Introducing the single parameter s ∈ R, as above, we obtain the orbits of the material

points of the beam as

g0(ξ ) (x0(ξ ))

= es exp

(
γ1
s

(

−ξ + 1
2

)

+ γ2
s i

(

4ξ3 − 6ξ2 + 1
)

1
2

γ1
s ξ2 + γ2

s i
(

−3ξ4 + 4ξ3
)

0 0

)

·

(

ξ

1

)

.

(44)

In this formula, the coefficients γ1, γ2, depend on the relative strengths of the line loads

perpendicular and parallel to the neutral axis, q and fN , as well as on the axial and flexural

rigidity of the beam. The results for γ2 = 4γ1 and γ2 = γ1 are shown in Fig. 5.

Quasi-static equilibrium

In this section, we consider the non-linear deformation of a linear elastic Bernoulli

beam, modelled as a single element. The stress resultants, i.e. the axial force N and

the bending moment M, are given as σ(ξ ) = Cǫ(ξ ), with σ(ξ ) :=
(
N (ξ )

M(ξ )

)

, the matrix

C :=
(
EA 0

0 EI

)

, and the beam strains ǫ(ξ ) :=
(

ε(ξ )

κ(ξ )

)

. In these definitions, E is Young’s

modulus,A is the area of the cross-section, I is the moment of inertia, ε denotes the strain

and κ the curvature of the neutral axis. The neutral axis of the beam is parameterized by

the variable ξ ∈ 
. Partial derivatives are given in index notation. The local internal energy

is given as 1
2σ(ξ )

Tǫ(ξ ). External loads, such as distributed loads, concentrated loads, and

external moments, are given as pext. With this, we obtain the residuum r as

r(u) =
∫




ǫTCǫu dξ − pext . (45)

It is important to recall that in the present formulation, the shape functions are linear in

the degrees of freedom only on the logarithmic space. With regard to the physical space,

the displacements of the material points induced by a change in the degrees of freedom

are non-linear. Thus, even for conservative loads, pext generally is a non-linear function

of the degrees of freedom u, and, as a result, its derivative pext,u does not vanish.

Given a suitable initial estimate for the values of the degrees of freedom, the Newton-

Raphson method can be used to obtain a root of Eq. (45). An update of the Newton-

Raphson root-finding algorithm is given by

un+1 = un +
(

kmat
int (un) + k

geo
int (un) − k

geo
ext (un)

)

(pint(un) + pext(un)) , (46)

with the material stiffness matrix kmat
int :=

∫




(

ǫT
)

u
⊗ Cǫu dξ , the geometric stiffness

matrix k
geo
int :=

∫



ǫTCǫuu dξ , the derivative of the external loads k

geo
ext := pext,u and the

internal forces pint := −
∫



ǫTCǫu dξ .

For moderate load intensities, the geometric stiffness matrix, k
geo
int , and the derivative of

the external loads, k
geo
ext , are small in relation to the material stiffness matrix. Therefore,

one or both of these comparatively computationally expensive geometric components of

the derivative of the residuum may be omitted in the root-finding algorithm. In this case,

however, the reduction in computation effort during each iteration may be offset by an

increase in the number of iterations necessary to obtain a sufficiently good solution, as the

root-finding algorithm will no longer show quadratic converge near the exact solution,
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and the convergence characteristics is likely to be affected negatively throughout the

entire iteration process. Nevertheless, if the iteration is taking place in a setting in which

quadratic convergence cannot be expected as a result of other causes, such as in the

context of a multigrid algorithm, omitting one or both of the terms may be advantageous

with regard to the overall efficiency of the calculation.

Beam strains and external loads

In the initial configuration, as well as in the current configuration, the Euclidean plane

will be identified with the homogenized complex plane, C × {1}. It is assumed that the

beam, in its initial configuration, is represented by a straight line without initial stresses.

In the following, we will use the notations x̄ := (Re x, Im x) ∈ R2, ẋ := x̄ξ and ẍ := x̄ξξ for

brevity. We use the symbol “•” in the tensor notation in order to indicate that expressions

suchas 〈ẋu , ẋ•u〉 involve taking the tensorproduct,with the scalar product asmultiplicative

operation. Thus, as ẋu and ẋ•u belong to the tensor space
(

R2
)ndf

, with ndf denoting the

number of degrees of freedom per element, 〈ẋu , ẋ•u〉 is a tensor of order 2, belonging to

the tensor space Rndf ⊗ Rndf .

Using the notation described above, the strain and its derivatives are given by

ε = ‖ẋ‖ − 1, (47a)

εu = ‖ẋ‖ −1 〈ẋu , ẋ〉 , (47b)

εuu = −‖ẋ‖−3 〈ẋ•u , ẋ〉 〈ẋu , ẋ〉 + ‖ẋ‖ −1 (〈ẋuu , ẋ〉 + 〈ẋu , ẋ•u〉) , (47c)

the curvature and its derivatives by

κ = ‖ẋ‖−3 |ẋ, ẍ| , (48a)

κu = −3 ‖ẋ‖−5 〈ẋu , ẋ〉 |ẋ, ẍ| + ‖ẋ‖−3 (|ẋu , ẍ| + |ẋ, ẍu|) , (48b)

κuu = 15 ‖ẋ‖−7 〈ẋ•u , ẋ〉 〈ẋu , ẋ〉 |ẋ, ẍ|

− 3 ‖ẋ‖−5 ((〈ẋuu , ẋ〉 + 〈ẋu , ẋ•u〉) |ẋ, ẍ| + 〈ẋu , ẋ〉 (|ẋ•u , ẍ| + |ẋ, ẍ•u|)

+〈ẋ•u , ẋ〉 (|ẋu , ẍ| + |ẋ, ẍu|))

+ ‖ẋ‖−3 (|ẋuu , ẍ| + |ẋu , ẍ•u| + |ẋ•u , ẍu| + |ẋ, ẍuu|) . (48c)

In the case of a distributed load q(ξ ) on an interval I ⊆ 
, the external load and its

derivative with regard to the degrees of freedom u are given by pext =
∫

I

〈

x̄u(ξ ),q(ξ )
〉

dξ

and k
geo
ext =

∫

I

〈

x̄uu(ξ ), f (ξ )
〉

dξ . For a concentrated load f at ξ0, the external load and its

derivative with regard to the degrees of freedom u are given by pext =
〈

x̄u(ξ0), f
〉

and

k
geo
ext =

〈

x̄uu(ξ0), f
〉

. For an external moment M0, applied at (ξ0), the external load and its

derivative with regard to the degrees of freedom u are given by pext = −M0 ‖ẋ‖−2 |ẋ, ẋu|
and k

geo
ext = M0

(

2 ‖ẋ‖−4 〈ẋ•u , ẋ〉 |ẋ, ẋu| − ‖ẋ‖−2 (|ẋ•u , ẋu| + |ẋ, ẋuu|)
)

, evaluated at ξ0.

Gauss quadrature

The integral of the local energy of the beam, as well as its derivatives, over the domain


 is being approximated by Gauss quadrature. The minimum number of Gauss points,

nGauss, that are required to achieve an exact integration, in the limit of Z̄ → 0, results from

the polynomial degree of the function space generated by the shape functions, denoted

d, which in turn depends on the values q̄I , I ∈ {1, 2}, of the nodes associated with the
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beam element. For the meaning of q̄I , see “Full p-refinement and selective p-refinement”

section in Appendix 1. With d = q̄1 + q̄2 + 2, 2nGauss − 1 ≥ 2(d − 1), we obtain nGauss ≥
1
2 (2(d − 1) + 1) = q̄1 + q̄2 + 3

2 .

Thus, for a beam element without Dirichlet boundary conditions, based on one shape

function per nodal degree of freedom, i.e. q̄1 = q̄2 = 0, we obtain nGauss ≥ 2, while

for a beam element based on two shape functions per nodal degree of freedom, we have

q̄1 = q̄2 = 1 and nGauss ≥ 4. For large deformations, the interaction of the shape functions

due to the exponentiation increases and may necessitate a higher number of Gauss points

in order to achieve a good approximation of the total energy and its derivatives with regard

to the nodal degrees of freedom.

The spatial derivatives of the current configuration

In order to obtain the derivatives of the current configuration with regard to the degrees

of freedom, ẋ and ẍ, we apply a calculation that can be subdivided into two steps.

In the first step, we set up formulas for the derivatives of ẋ and ẍ with respect to the

degrees of freedom u. Those formulas contain the derivatives of eZ̄(ξ ,u) with regard to the

parametrization variable ξ and the degrees of freedom.

In the second step,wederive the expressions for the derivatives of the exponential eZ̄(ξ ,u).

Insteadof thewell-knownanalytical form for thederivative of thematrix exponential given

in Eq. (16), we use the definition of the exponential as a power series (see Eq. (15)), and

obtain the derivatives of that power series by taking the derivatives of each summand,

resulting in an expression of ∂ξe
Z̄(ξ ,u) as a power series. In addition to simplifying the

calculation of the derivatives, the results do not contain any expressions involving the

inverse of a matrix, so that they are defined at the origin and numerically stable in the

vicinity of the origin. The latter property is of particular importance, as the origin in

the vector space of the coefficients related to the degrees of freedom corresponds to the

identity map, which is often the preferred choice of an initial estimate for a non-linear

approximation algorithm. We note that there exist a number of other series expansions

approximating thedirectional derivativeof thematrix exponential thatmayoffer increased

computational efficiency [18].

In this context, we note that any closed-form expression of the exponential of a non-

trivial semidirect product of two Lie algebras h⋉n, including for the Lie algebra associated

with the special Euclidean group, will include a rational expression that is not defined at

the origin of h and induces numerical instabilities in its vicinity, and that the associated

numerical difficulties increase with the order of differentiation of the exponential map as

given by such a closed-form expression.

A good approximation of the power series involved in the computation, with a relatively

sharp estimate of the approximation error, can be obtained by calculating the sum of a

small number of its leading summands. Thus, it is possible to significantly reduce the

computational effort involved in the calculation of the derivatives. The calculation of

the upper bound of the approximation error is described in Appendix 2. The calculation

of the derivative is the crucial step to determine the relevant derivatives of the current

configuration x (ξ ,u) = eZ̄(ξ ,u)x0 (ξ ), which is otherwise straightforward. We also note

that small proportional errors in the calculation of the derivatives do not affect the order

of convergence of the Newton-Raphson root-finding algorithm [1, p. 155].
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We define the complex numbers ζ1, ζ2 such that

(
ζ1 ζ2

0 0

)

≡ Z̄. Using this notation, the

matrix exponential of Z̄ is given by

eZ̄ =
∞
∑

k=0

1

k !
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We obtain the first and the second derivative of eZ̄ with regard to the parameterization

variable ξ as

∂ξe
Z̄ =

(

eζ1ζ1,ξ
∑∞

k=0
ζ1

k

(k+2)!

(

(k + 1)ζ2ζ1,ξ + (k + 2)ζ2,ξ
)

0 0

)

, (50a)
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These derivatives, as well as all other derivatives of Z̄with respect to the parameterization

variable ξ and the degrees of freedom u, can be written in the form of matrices with non-

zeros entries of the form
∑∞

k=0
1

(k+m)!
ζ1

k
∑N

n=1

∏

j∈Jn (k + j)δn(ξ ), with m ∈ N, N ∈ N,

Jn ⊂ N. In this equation, δn(ξ ) denotes a linear combination of products of derivatives of

ζ1 and ζ2. In particular, δn(ξ ), which is themost computationally expensive term, does not

depend on k . The calculation of the derivatives, although leading to several quite lengthy

expressions, is straightforward and thus not included in this outline of the model.

Results and discussion

In order to evaluate the characteristics and the performance of the LogFE method, we

have implemented a formulation for a Bernoulli beam in the plane as a program written

in the numerical computing environment MatLab. This section presents the results of a

number of numerical examples characterized by different external loads and boundary

conditions. The prismatic beam has length l = 1m and a constant, rectangular cross-

section given by the height h = 0.08m and the width b = 0.1m. Young’s modulus is set

to E = 3.4 · 109Nm−2. This value is consistent with the material properties of a hardened

epoxy resin. As in the previous sections, ξ denotes the parameterization of the neutral axis

of the beam, running from ξ = 0 on the left side to ξ = 1 on the right side of the beam.

The deflection of the beam is given by w := −Im(x − x0)m, and the axial displacement

is given by u := Re(x − x0)m. Both quantities are expressed in the unit metre (m). (See

Fig. 2 for the identification of the complex plane with the 2-dimensional Euclidean space.)

Note that the stress resultants are given as normalized values, i.e. as relative values with

respect to the standard load value given for the load case.

In the presence of boundary conditions, selective p-refinement, as described in “Full

p-refinement and selective p-refinement” in Appendix 1, has been applied. At simply
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supportednodes, thehinge conditionmodificationgiven in “Hinge condition” inAppendix

1 has been used. The shape functions that have been used in the numerical examples,

shown in Table 7, can be obtained from Table 8.

The focus of the following presentation and discussion of numerical examples is on

characterizing the approximation properties induced by the discretization of the func-

tion space of the deformation function. Therefore, in order to eliminate, for all practical

purposes, the effects of the approximation of the exponential, and of the approximate

evaluation of the current configuration, the number of summands in the truncated power

series approximating the exponential has been set to sixteen, and eighteen linearly spaced

evaluation points have been used to evaluate the current configuration. It is obvious that,

in a production-oriented implementation, these parameters should be adjusted to reduce

computational cost.

Finally, the numerical algorithm can be set up with the element matrices and vectors

described in “Quasi-static equilibrium” section. These element matrices are based on the

geometrically exact evaluation of the strain and the curvature at the evaluation points.

The application of the Newton-Raphson algorithm follows standard procedures, and the

element-related data enter into the iterative calculation in the usual way.

As reference, we use the solutions given by a discretization of the beam by 96 non-linear,

finite rotation beam elements endowedwith linear shape functions and Reissner kinemat-

ics [21]. The formulation of this element is derived from the shell element presented in

[32]. The simulation was realized in the finite element analysis program FEAP [29]. As

a finite value for the shear module was required by the specific implementation of the

element in the program, a very high value of 5 · 1011Nm−2 was chosen, thus virtually

eliminating shear strains. In addition, several solutions based on the Reissner formulation

and a small number of elements have been obtained from simulations performed in FEAP.

For comparison, we include the results of a non-linear simulation in Abaqus/Standard

[10] using the Euler-Bernoulli beam element B23, which is endowed with a linear inter-

polation function for the axial and a cubic interpolation function for the transversal dis-

placements. Due to the strong nonlinearity of the observed deformations, the simulations

based on the B23 beam element are based on a large number of load steps, applying an

exponential increase in the load factor. For some load cases, only models using a small

number of elements succeed, while higher numbers of elements lead to a breakdown of

the convergence. Therefore, we report the results for the 12-element beam model, where

available. If the 12-elementmodel fails, we report the results of themodel with the highest

number of elements that resulted in a converged solution. According to the Abaqus man-

ual, the B23 beam element should be employed for “small-strain, large-rotation” analysis.

A loss of accuracy for the load cases characterized by a strong load intensity is therefore to

be expected. For the other load cases, the displacements and bending moments obtained

by Abaqus are generally in good agreement with the results obtained by FEAP. For the

normal force, larger differences between the solutions obtained by Abaqus and by FEAP

occur. However, it should be noted that in most cases, the normal forces contribute only

a relatively small share of the total normal stress of the beam that can be calculated from

the bending moment and normal force along its neutral axis.

The number of elements, nodes, and degrees of freedom for a simply supported beam

(pin/pin) and a beam with mixed boundary conditions (pin/clamped) are reported in

Table 5. The LogFE formulation, in general, includes both nodal and internal degrees of
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freedom. Nodal degrees of freedom may be linked to the nodal degrees of freedom of

other finite element elements, e.g. by continuity conditions. In contrast, internal degrees

of freedom are not linked to any degrees of freedom of other elements, and thus can be

eliminated from the model by static condensation.

When interpreting the results reported below, one should bear inmind that the primary

goal of the LogFE method is to approximate the low-frequency component of a deforma-

tion resulting from a given load condition with a small number of degrees of freedom. It is

thus to be expected that the results display some deviations from the reference solution,

especiallywith regard to high-frequency components of the deformation. This is especially

evident in load cases involving concentrated forces. We also stress that the calculation

of the estimates for both the position and the stress resultants for any material point of

the beam is straightforward in the case of the LogFE formulation, while similar calcula-

tions based on the conventional FE formulation require the identification of appropriate

interpolation functions.

For specific load cases, the polynomials presented in “Consistency with the linear beam

theory” section result, for small deformations, in a solution of the model that is consistent

with the linear deflection curve of the Bernoulli beam theory. Note that for small defor-

mations, the degrees of freedom, which are defined on the logarithmic space, are located

close to the origin of the vector space of the Lie group, which represents the application of

the identity function to the initial configuration. For other load cases, the bases provided

by the shape functions do not allow for a solution consistent with the linear theory in

a neighborhood of the identity function. With increasing load, the components of the

exact solution that do not lie within the function spaces generated by the shape functions

generally increase, and, as a result, the quality of the finite element solution diminishes.

Similar to the hp-FEM concept, better solutions for higher load intensities can be

obtained by increasing the number of finite elements or by increasing the number of shape

functions associated with a single finite element, e.g. by adding shape functions based on

polynomials of higher order. For many load cases, increasing the number of elements will

be an efficient method to increase the accuracy of the results. However, a meaningful

study of the advantages and disadvantages of increasing the number of elements versus

an increase in the number of shape function would have to include translational degrees

of freedom at each node, in addition to the rotational and dilatational degrees of freedom

that have been incorporated into the finite element formulation presented in this paper.

As the inclusion of nodal translations leads to a significant extension of the method at

the conceptional level, we will not consider the possibility of increasing the number of

elements at this time, and instead focus on the effects of an increase of the number of

shape functions.

Table 5 Number of elements, nodes, and degrees of freedom of the LogFE and the

conventional finite element formulation

Formulation Degrees of freedom: total (internal)

Elements Nodes Pin/pin Pin/clamped Clamped/clamped

LogFE, 1 polynomial 1 2 4 (0) 4 (1) 4 (2)

LogFE, 2 polynomials 1 2 8 (4) 8 (5) 8 (6)

Conventional FE, 3 elements 3 4 8 (0) 7 (0) 6 (0)

Conventional FE, 6 elements 6 7 17 (0) 16 (0) 15 (0)

Conventional FE, 96 elements 96 97 287 (0) 286 (0) 285 (0)
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External moments and distributed loads

External moments and distributed loads generally result in deformations that are charac-

terized by a large relative low-frequency component for the deformation as well as for the

stress resultants.While fairly good approximations of the deformation and the stress resul-

tants can already be obtained with a single shape function per nodal degree of freedom,

the results of the application of two shape functions, i.e. two polynomial functions per

nodal degree of freedom, are often quite close to the exact solution, not only with regard

to the deformed configuration, but also with regard to its derivatives and thus the stress

resultants, which are derived from those derivatives. In order to illustrate someof the char-

acteristics of the LogFEmethod, we present the results of several load cases, given in Fig. 6.

Due to the given boundary conditions, which preclude any dislocation of the nodes, the

results for all load cases show a rather high share of the strain energy in the total internal

energy of the beam, leading to strong non-linear deformations. The absolute values of the

strain energy and the bending energy, as well as the relative share of the strain energy, are

reported in Table 6.

For load case A, a simply supported beam subjected to a moment on the left support

(see Fig. 6a), Fig. 7 compares the results of the LogFE formulation with a 96-element

reference solution as well as with the results of a 3-element and a 6-element finite element

a b c

d e f

Load case A Load case B Load case C

Load case D Load case E Load case F

Fig. 6 Load cases with different boundary conditions

Table 6 Strain energy (Ustrain) and bending energy (Ubending) for different load cases and

load intensities

Load case Moderate load intensity Strong load intensity

Ustrain (J) Ubending (J) Ustrain/Uint (%) Ustrain (J) Ubending (J) Ustrain/Uint (%)

A 451 2108 17.6 10,284 26,541 27.9

B 509 1885 21.3 11,891 9724 55.0

C 264 2299 10.3 9469 27,909 25.3

D 380 808 32.0 6375 3500 64.6

E 95 818 10.4 3946 5416 42.1

F 8 464 1.6 1405 6366 18.1

Uint denotes the internal energy, which is given as the sum of the strain energy and the bending energy
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Table 7 Shape functions employed in the numerical examples

Load case Node I Basis r Single shape function 1st shape function 2nd shape function

A 1 1 α2 α4 α5 − α4

2 α2 α4 α5 − α4

2 1 −2α3 + 3α2 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

2 −2α3 + 3α2 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

B 1 1 α2 α3 α4 − α3

2 −3α4 + 4α3 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

2 1 α2 α4 α5 − α4

2a α3 − α2 α5 − α4 1
2α6 − α5 + 1

2α4

C 1 1 α2 α3 α4 − α3

2 α3 α4 α5 − α4

2 1 α2 α3 α4 − α3

2a α3 − α2 α4 − α3 1
2α5 − α4 + 1

2α3

D 1 1 α2 α4 α5 − α4

2 −2α3 + 3α2 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

2 1 −2α3 + 3α2 −3α4 + 4α3 1
2α5 − α4 + 1

2α3

2 −2α3 + 3α2 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

E 1 1 −2α3 + 3α2 −3α4 − 4α3 1
2α5 − α4 + 1

2α3

2 −2α3 + 3α2 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

2 1 α2 α4 α5 − α4

2a α3 − α2 α5 − α4 1
2α6 − α5 + 1

2α4

F 1 1 α2 α3 α4 − α3

2a α3 − α2 α5 − α4 1
2α6 − α5 + 1

2α4

2 1 α2 α3 α4 − α3

2a α3 − α2 α5 − α4 1
2α6 − α5 + 1

2α4

G 1 1 −2α3 + 3α2 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

2 −2α3 + 3α2 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

2 1 −2α3 + 3α2 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

2 −2α3 + 3α2 −4α5 + 5α4 1
2α6 − α5 + 1

2α4

The index I of the node refers the left node for the value 1, to the right node for the value 2. The bases r on the Lie algebra

are dilatations for the value 1, rotations for the value 2. “Single shape function” refers to the formulation with only one shape

function for each basis of the Lie algebra. The remaining columns contain the first and the second shape function related to

the respective basis of the Lie algebra for the formulations based on two shape functions for each basis. For node 1, with

ξ1 = 0, α = 1 − ξ , whereas for node 2, with ξ2 = 1, α = ξ
a An additional shape function, given by α2 in the case of one shape function and α4 in the case of two shape functions, is

identically zero, as the beam is clamped in a horizontal orientation. The coefficient of this shape function exclusively

depends on the boundary condition at the clamped node

formulation of the same beam. For themoderate load (see Fig. 7a), the formulation results

in fairly accurate solutions both for one shape function (no internal degrees of freedom)

and for two shape functions (one internal degree of freedom) per nodal degree of freedom.

Inparticular, the axial displacement,which is ratherpoorly approximatedby the3-element

discretization, is fairly well captured by the results of the LogFE formulation.

The estimate for the normal force, interpreted in isolation, shows a significant deviation

of the LogFE solutions with regard to the reference solution. However, for moderate load

intensities, the normal force represents a rather small share of the total normal stress of

the beam. As the respective graph in Fig. 7 shows, the impact of the error of the estimation

of the normal force is fairly small, while the error in the estimation of the bendingmoment

dominates the overall error in the normal stress at the upper and lower side of the beam.

For stronger loads (see Fig. 7b), the interplay of the bending energy and the strain energy

results in a general deterioration of the estimate of the normal force. In the load case

presented in Fig. 7, the estimate of the normal force close to the left support of the
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a bModerate load intensity: Strong load intensity: M 0 = 1 .10
5

NmM 0 = 2 .10
4

Nm

Fig. 7 Comparison of LogFE and conventional finite element formulations (Load case A). FEAP: Reissner

kinematics, Abaqus: Cubic interpolation. 1p./2p.: One/two polynomial(s) per basis on the Lie algebra

beam becomes particularly poor, especially in the case of two shape functions per nodal

degree of freedom. However, the graph of the normal stress shows that the normal force

contributes only a small share of the total internal energy of the beam, as well as of the

local contributions of the cross-sections along the neutral axis to the total internal energy.

Figure 8 displays the results of load case B, the application of a line load across the entire

neutral axis of the beam. The beam is simply supported on the left side and clamped

on the right side (see Fig. 6b). As in load case A, for moderate load intensities (see Fig.

8a), the LogFE formulation achieves a good approximation of the actual deformation for

moderate load intensities. For higher load intensities (see Fig. 8b), the solution given by
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a bModerate load intensity: q = 2 .10
5 Strong load intensity: q = 1 .10

6
N/mN/m

Fig. 8 Comparison of LogFE and conventional finite element formulations (Load case B). FEAP: Reissner

kinematics, Abaqus: Cubic interpolation. 1p./2p.: One/two polynomial(s) per basis on the Lie algebra.

one shape function per nodal degree of freedom deteriorates, while the solution using

two shape functions remains quite close to the reference solution. For this load case,

the local relative approximation error remains stable as the load intensity increases. It is

noteworthy that the rather complex axial displacement of the beam under the given load

conditions is fairly well approximated by the LogFE solution, given the small number of

degrees of freedom employed by the formulation.

Other load cases yield similar results. For load case C (see Fig. 6c), a beam that is

simply supported at the left side, clamped at the right side, and subjected to an exter-

nal moment at the left support, the solution based on one shape function per nodal

degree of freedom, for higher load intensities, does not result in a valid approximation of



Schröppel and Wackerfuß Adv. Model. and Simul. in Eng. Sci. (2016) 3:27 Page 33 of 42

a bModerate load intensity: M 0 = 2 .10
4

Nm Strong load intensity: M 0 = 1 .10
5

Nm

Fig. 9 Comparison of LogFE and conventional finite element formulations (Load case C). FEAP: Reissner

kinematics, Abaqus: Cubic interpolation. 1p./2p.: One/two polynomial(s) per basis on the Lie algebra

a bModerate load intensity: q0 = 2 .10
5

N/m Strong load intensity: q0 = 1 .10
6

N/m

Fig. 10 Comparison of LogFE and conventional finite element formulations (Load case D). FEAP: Reissner

kinematics, Abaqus: Cubic interpolation. 1p./2p.: One/two polynomial(s) per basis on the Lie algebra

the actual stress resultants. However, the solution employing two shape functions yields

results that are very close to the reference solution (see Fig. 9b). On the other hand, for

lower load intensities, the reference solution, as well as the approximations, remain quite

close to the linear theory, which would predict a normalized bending moment given as

M(ξ )/M0 = − 3
2ξ + 1 (see Fig. 9a).

Figure 10 shows the forces and moments resulting from a line load that varies along

the neutral axis of the beam (Load case D, see Fig. 6d). The LogFE solution is close to the
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a bModerate load intensity: q = 2 .10
5

N/m Strong load intensity: q = 1 .10
6

N/m

Fig. 11 Comparison of LogFE and conventional finite element formulations (Load case E). FEAP: Reissner

kinematics, Abaqus: Cubic interpolation. 1p./2p.: One/two polynomial(s) per basis on the Lie algebra

reference solution for both the moderate and the high load intensity case. The load case

also shows that the LogFE formulation can provide good approximations for load cases

that induce deformations which fall outside of the deformation space generated by the

shape functions in the linear limit.

Load case E (see Figs. 6e, 11) illustrates the frequency-dependence of the accuracy of the

solution provided by the LogFE formulation. For the solutions based on one and on two

shape functions per nodal degree of freedom, the estimates of the bending moment and

of the normal force captures overall shape of the reference solution. The error consists

mainly of higher frequency components, changing signs several times on the parameter

interval along the neutral axis of the beam.

Load case F (see Fig. 6f) involves a clamped beam subjected to a triangular load. Due

to the boundary conditions, only shape functions of higher polynomial degree are being

used to model the rotations. Figure 12 shows that the LogFE formulation quite accurately

predicts the deformation of the beam for both the moderate and the strong load intensity.

Concentrated loads

Load case G (see Figs. 13, 14), includes a concentrated load. It illustrates that the LogFE

formulation is ill-suited for loads that induce high-frequency or highly localized changes

in the internal forces and moments. The approximation of the solution based on one

shape function per nodal degree of freedom (i.e. without internal degrees of freedom) is

of poor quality across the entire parameter interval, and the solution based on two shape

functions is still characterized by a large error near the location of the concentrated load.

In these cases, it will probably be preferable to increase the number of elements and to

place an additional node at the location of the concentrated load, rather than to increase

the number of shape functions.
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a b Strong load intensity: q0 = 1 .10
6

N/mModerate load intensity: q0 = 2 .10
5

N/m

Fig. 12 Comparison of LogFE and conventional finite element formulations (Load case F). FEAP: Reissner

kinematics, Abaqus: Cubic interpolation. 1p./2p.: One/two polynomial(s) per basis on the Lie algebra

Fig. 13 Load case G: A concentrated load

Conclusions

In this work, we have presented a novel finite element formulation which allows to

formulate polynomial shape function on the space of the Lie algebra associated with

the deformation function, i.e. on the logarithmic space. We therefore refer to the pro-

posed approach as the “Logarithmic finite element method”, or “LogFE method”. The

deformation function is defined on the Lie group of planar similarity transformations

Sim(2,R) = (GL (1,R) × SO(2)) ⋉Id T (2,R) and acts on the initial configuration. Associ-

ating the polynomial scalar part of the shape functions with vectors that span across the

rotational/dilatational and translational subalgebras of sim(2,R) induces a strong coupling

of the translational and rotational variables. The numerical examples show that this cou-

pling conforms well to the interaction of the rotational and the translational components

of deformations observed in typical load cases.

Using the example of a two-node beam element endowedwith Bernoulli kinematics, the

concepts involved in the construction of the LogFEmethod have been explained in detail.

In particular, by choosing appropriate basis functions and polynomial shape function on

the Lie algebra sim(2,R), the LogFE method results in element formulations that are, in
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a bModerate load intensity: F = 1 .105 N Strong load intensity: F = 5 .105 N

Fig. 14 Comparison of LogFE and conventional finite element formulations (Load case G). FEAP: Reissner

kinematics, Abaqus: Cubic interpolation. 1p./2p.: One/two polynomial(s) per basis on the Lie algebra

the case of a beam element, not limited to a constant curvature along the neutral axis

within a single element. Therefore, the LogFE method is able to provide a smoother

interpolant than other methods that rely on the identification of rotational degrees of

freedoms with elements Lie algebras associated with the respective rotational groups.

The stress resultants obtained in the numerical experiments indicate that the resulting

estimate of the curvature, although not constraint to a constant function within a single

finite element, provides a good approximation to the reference solution, especially for

those models that include additional polynomial shape functions associated with internal

degrees of freedom.

The results obtained from the numerical experiments show that models based on the

LogFE method can indeed, with fewer degrees of freedom, achieve approximations of

the low frequency component of deformations induced by different external loads that

display an accuracy comparable to existing finite element formulations. The numeri-

cal experiments also confirmed that the method indeed focuses on the approximation

on the low-frequency component of the deformation function. Thus, as a standalone

formulation, the LogFE method is ill-suited to solve problems characterized by spatial

high-frequency deformations. In these cases, including the modelling of cracks, the use

of extended finite element methods (XFEM), i.e. enriching the finite element formu-

lation by high-frequency or discontinuous shape functions, will often be the preferred

approach.

In this paper, we have restricted themodel to rotational and dilatational degrees of free-

dom. We intend to present an extended formulation that includes translational degrees

of freedom, in addition to rotations and dilatations, in a future publication.
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Appendix 1: Boundary conditions

In the context of conventional finite element methods, boundary conditions are set by

fixing the respective degrees of freedom and thus eliminating them from the calculation

of the quasi-static equilibrium. Because the number of elements located at the constrained

boundary is generally small in comparison to the total number of elements, the loss of

accuracy resulting from a smaller set of degrees of freedom within the finite elements at

the boundary is often negligible with regard to the entire configuration. In the presence of

boundary conditions, the accuracy of the model may be increased by different strategies,

such as refining the mesh near the boundary (h-refinement) or choosing more complex

finite elements near the boundary (p-refinement).

Full p-refinement and selective p-refinement

In full p-refinement, all shape functions of an element located at the boundary are being

refined,while in selectivep-refinement, only those shape functions associatedwithdegrees

of freedom belonging to the node(s) of the element that are located at the constrained

boundary are being refined.

In general, the refinement of any shape function in a finite element necessitates some

modification of the other shape functions of that element, in order to keep the impact

of the different degrees of freedom of the element as independent from each other as

possible. In the following, we assume that shape functions for node I are chosen such that

∂μNI,r,q(ξI ) = 0 ∀ {μ|μ < q}. Then, in order that the shape for the node J �= I do not

interfere with the local impact of the shape functions for node I in the neighborhood of ξI ,

the respective derivatives must vanish. If q̄I is the highest q in the set of shape functions

associated with node I and Lie algebra base r, then all derivatives of the shape functions

associated with node J and Lie algebra base r up to the order q̄I +1must vanish at position

ξI . Thus, a change in q̄I due to a selective refinement at node I will, in general, entail a

modification of the shape functions NJ,r,q for J �= I .

Hinge condition

In the case of a simply supported node, the value of the degree of freedom related to

the derivative of the rotation can be obtained solely from the local characteristics of

the configuration and the load case. At a simply supported node, the curvature of the

neutral axis is a function of the external moment, with the proportionality factor given

by the flexural rigidity. In the absence of an external moment, the curvature will vanish,

implying that the value of the degree of freedom related to the derivative of the rotation

will vanish likewise. This, in turn, implies that the derivative of the dilatation will vanish

as well. As a result, the values of the associated degrees of freedom, NI,1,1 and NI,2,1, may

be set to zero. Such a situation is referred to as a hinge condition.

We note, however, that the value of the respective degree of freedom calculated in this

way corresponds to the unconstrained solution in the exact (i.e. non-discretized) solution

space. In a non-linear setting, it generally differs from the estimated value resulting in the
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unconstrained solution in the discretized space of deformation functions. Yet, although

applying the hinge condition will not, in general, result in a local energy minimum in

the discretized function space with regard to a variation in that degree of freedom, it will

generally result in a good approximation with using fewer degrees of freedom.

Boundary-dependent shape functions

Table 8 lists possible polynomial functions pI,r,q for different boundary conditions and

assumptions. It contains the polynomial functions of lowest degree that fulfill the con-

ditions given in Eq. (14) and, if applicable, Eq. (22) in “Continuity conditions” section

and satisfy ∂qpI,r,q = 1. Polynomials of higher degree, and other functions, which are

square integrable on the interval [0, 1], whose derivatives ∂μpI,r,q , μ ≤ q, are locally

Lipschitz continuous at ξI and whose derivatives ∂μpI,r,q , μ ≤ q̄J + 1, are locally Lip-

schitz continuous at ξJ , are also admissible, if they satisfy the conditions given in Eq. (14)

and, if applicable, Eq. (22), as well as the additional condition with regard to the shape

functions associated with node J given in “Appendix: Full p-refinement and selective

p-refinement”.

Figure 15 presents the scalar-valued shape functionsNI,r,q(ξ ) for the case of a beamwith

a simply supported node on the left side and a clamped node on the right side.

Table 8 Polynomial functions for different boundary conditions and up to two degrees of

freedom per Lie algebra elementZI,r

Boundary cond. r q ∂μpI,r,q(1) pI,r,q (α)

μ = 0 μ = 1 μ = 2 q̄J = 0 q̄J = 1 q̄J = 2

clamped 1 0 • ∗ ∗ α2 α3 α4

1 1 ◦ • ∗ α3 − α2 α4 − α3 α5 − α4

2 0 ∗a ∗ ∗ α2 α3 α4

2 1 ◦ • ∗ α3 − α2 α4 − α3 α5 − α4

2 2 ◦ ◦ • 1
2α4 − α3 + 1

2α2 1
2α5 − α4 + 1

2α3 1
2α6 − α5 + 1

2α4

pin (w/o load)b 1 0 • ◦ ∗ −2α3 + 3α2 −3α4 + 4α3 −4α5 + 5α4

1 1 ◦ ◦c ∗ (not included in the element formulation)

1 2 ◦ ◦ • 1
2α4 − α3 + 1

2α2 1
2α5 − α4 + 1

2α3 1
2α6 − α5 + 1

2α4

2 0 • ◦ ∗ −2α3 + 3α2 −3α4 + 4α3 −4α5 + 5α4

2 1 ◦ ◦c ∗ (not included in the element formulation)

2 2 ◦ ◦ • 1
2α4 − α3 + 1

2α2 1
2α5 − α4 + 1

2α3 1
2α6 − α5 + 1

2α4

pin (moment) 1 0 • ∗ ∗ α2 α3 α4

1 1 ◦ • ∗ α3 − α2 α4 − α3 α5 − α4

2 0 • ∗ ∗ α2 α3 α4

2 1 ◦ • ∗ α3 − α2 α4 − α3 α5 − α4

pin (distr. load)d 1 0 • ∗ ∗ α2 α3 α4

1 1 ◦ • ∗ α3 − α2 α4 − α3 α5 − α4

2 0 • ◦ ∗ −2α3 + 3α2 −3α4 + 4α3 −4α5 + 5α4

2 1 ◦ ◦c ∗ (not included in the element formulation)

2 2 ◦ ◦ • 1
2α4 − α3 + 1

2α2 1
2α5 − α4 + 1

2α3 1
2α6 − α5 + 1

2α4

Filled circles denote nonzero values, empty circles denote zeros, and asterisks denote arbitrary real numbers. For the

meaning of q̄J , see Section “Full p-refinement and selective p-refinement”. For node I with ξI = 0, α = 1 − ξ , whereas for

node J , with ξJ = 1, α = ξ
a Value of the coefficient associated with this shape function is externally given by the boundary condition
b Simply supported node
c Value is zero due to the local characteristics of the configuration
d Distributed load in transversal direction in the neighborhood of the position of the node on the neutral axis
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a bDilatations (r = 1) Rotations (r = 2)

Fig. 15 Polynomials of the shape functions for a two-node beam element simply supported (without load)

at node 1 and clamped at node 2. The shape functions N1,1,1 (ξ ), N1,2,1 (ξ ) and N2,2,0 (ξ ) are not included in the

element formulationdue to thegivenboundary conditions. “rhs”: graph refers to the scaleon the right hand side

Appendix 2: Error bounds for the derivatives of thematrix exponential

The calculation of various derivatives of matrix exponentials is an essential step in the

implementation of the LogFE method. In order to construct a reliable algorithm based

on approximations of these derivatives, the availability of an upper limit for the absolute

value of the error with regard to the exact solution is crucial. In the following, we derive

a sharp and computationally inexpensive upper bound of the absolute value of the error

induced by truncating the power series that converge to the exact solution in the analytical

limit.

The necessity to truncate, as part of a numerical implementation, the power series in

Eq. (15) after a number of summands induces an error with regard to the exact value of

the derivative. Naturally, the error depends on the number of summands in the truncated

series, but it also depends on the value assumed by the indeterminate. While the exact

value of the error can only be computed if the exact value of the derivative is known,

it is possible to compute an upper bound for the absolute error using only information

obtained in the calculation of the truncated series. The upper bound on the absolute error,

which decreases as the number of summands increases, allows for the calculation of the

respective power series with an error bounded by an arbitrarily small upper absolute value.

In order to obtain the upper bound for this error, we consider power series of the form

limν→∞ sν with

sν =
ν
∑

k=0

ak =
ν
∑

k=0

∏

j∈J (k + j)

(k + m)!
zk (51)

z ∈ C, J ⊂ N, ν ∈ N. We obtain an upper limit for the absolute value of the remainder

rn,m,J (z) = |sn − limν→∞ sν | as follows:

|aμ+1|
|aμ|

=

∏

j∈J (μ+1+j)

(μ+1+m)!
|z|μ+1

∏

j∈J (μ+j)

(μ+m)!
|z|μ

=
1

μ + m + 1

∏

j∈J
μ + j + 1

μ + j
|z|

=
1

μ + m + 1

∏

j∈J

(

1 +
1

μ + j

)

|z| (52)
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Thus, for μ ≥ n, we have
|aμ+1|
|aμ| ≤ 1

n+m+1

∏

j∈J

(

1 + 1
n+j

)

|z| =: q and |aν | ≤ qν−n|an|.
Therefore, we obtain an upper bound r̂n,m,J (z) for the absolute remainder as

rn,m,J (z) ≤
∞
∑

k=n+1

|ak | ≤
∞
∑

k=n+1

qk−n|an| = |an|
∞
∑

k=1

qk = |an|q
∞
∑

k=0

qk
q<1= |an|

q

1 − q

=: r̂n,m,J (z) (53)

Let �n(•) denote the absolute error of a power series for n summands and [•]1,2 the

upper right entry of a 2 × 2 matrix. Then, using Eqs. 50a and 50b, we obtain

[

�n

(

∂ξ e
Z̄
)]

1,2
= |ζ2ζ1,ξ |r̂n,2,{1}(ζ1) + |ζ2,ξ |r̂n,2,{2}(ζ1), (54)

[

�n

(

∂2ξ e
Z̄
)]

1,2
= |ζ2ζ1,ξ 2|r̂n,3,{1,2}(ζ1) + |2ζ1,ξ ζ2,ξ + ζ2ζ1,ξξ |r̂n,3,{1,3}(ζ1)

+ |ζ2,ξξ |r̂n,3,{2,3}(ζ1). (55)

The entry in the upper left corner of eZ̄ and its derivatives depends only on the expo-

nential of ζ1 and is thus assumed to be given exactly. Let �n

(

∂
μ
ξ x

)

denote the absolute

error bound of the μth derivative of the current configuration with regard to its parame-

terization for n summands. Then, for the given parameterization, we have �n

(

∂ξx
)

=

�n

(

∂ξe
Z̄
)
(

ξ

1

)

=
[

�n

(

∂ξe
Z̄
)]

1,2
and �n

(

∂2ξ x
)

= �n

(

∂2ξ e
Z̄
)
(

ξ

1

)

=
[

�n

(

∂2ξ e
Z̄
)]

1,2
.

Table 9 shows the error bounds r̂n for two different power series. For complex numbers z

of smallmagnitude, the relative error becomes negligible after only a few summands, while

for complex numbers of larger magnitude—typically associated with large displacement

gradients—the error diminishesmuch slower as the number of summands rises. Figure 16

illustrates the dependence of the error on the number of summands and on themagnitude

of the complex number z. It also shows that, while the actual value of the error changes

as z varies along a circle given by a constant |z|, the absolute error remains within a

small range that depends on the magnitude of z, making it possible to obtain a relatively

sharp upper bound on the magnitude of the error as a function of |z|. While about three

Table 9 Absolute error bound r̂n of the estimate for the value of the power series

n |z| = 0.025 |z| = 0.1 |z| = 0.25 |z| = 1 |z| = 2

(a)m = 1, J = { }
0 1.27·10−2 5.26·10−2 1.43·10−1 1 ∞
1 1.05·10−4 1.72·10−3 1.14·10−2 2.5·10−1 2

2 6.55·10−7 4.27·10−5 6.94·10−4 5.56·10−2 6.67·10−1

3 3.27·10−9 8.5·10−7 3.43·10−5 1.04·10−2 2.22·10−1

4 1.36·10−11 1.41·10−8 1.42·10−6 1.67·10−3 6.67·10−2

(b)m = 5, J = {1, 2, 3, 4}
n |z| = 0.025 |z| = 0.1 |z| = 0.25 |z| = 1 |z| = 2

0 4.26·10−3 1.82·10−2 5.26·10−2 1 ∞
1 4.51·10−5 7.46·10−4 5·10−3 1.25·10−1 2

2 3.28·10−7 2.15·10−5 3.51·10−4 2.94·10−2 4·10−1

3 1.82·10−9 4.73·10−7 1.91·10−5 5.95·10−3 1.33·10−1

4 8.17·10−12 8.49·10−9 8.52·10−7 1.02·10−3 4.17·10−2
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Fig. 16 Approximation of a power series derived from the exponential. The power series
∑∞

k=0
zk

(k+1)!
is

being approximated by
∑n

k=0
zk

(k+1)!
on the unit disc. For z ∈ C \ {0}, the power series

∑∞
k=0

zk

(k+1)!
is

equivalent to the term ez−1
z

summands are sufficient to obtain very good approximations for moderate deformations,

about five summands are necessary to achieve a precision that allows for the phase of

quadratic convergence in the Newton-Raphson algorithm to extend up to the point at

which commonly used tolerance levels in finite element calculations are being met.
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