
Introducing the Modeling and Verification process in SysML

Marcos V. Linhares∗, Rômulo S. de Oliveira, Jean-Marie Farines

DAS – UFSC

Campus Universitário – Trindade

88040-900 Florianópolis/SC – Brazil

{marcos, romulo, farines}@das.ufsc.br

François Vernadat

LAAS – CNRS

University of Toulouse

7, avenue du Colonel Roche

31077 Toulouse – France

francois@laas.fr

Abstract

The development process of complex systems needs to

take in account differents domains and aspects. SysML

(Systems Modeling Language) is a new modeling lan-

guage that allows a system description with various inte-

grated diagrams (as structure, behavior and requirements

diagrams), but SysML lacks formality for the requirement

verification. The aim of this paper is to propose an ap-

proach to verify complex systems using SysML as a lan-

guage which describes the system structure and require-

ments. Petri nets and temporal logic LTL are used respec-

tively to formalize the system behavior and requirements.

The benefit of such formalization is to allow an automatic

formal verification. In order to demonstrate this method-

ology, it will be used a factory automation system, mod-

eled by SysML and Petri nets, and verified by the TINA

toolbox.

1. Introduction

With the increase of the complexity and diversity of

the industrial applications, the need for collaboration ap-

pears in the development process, since it involves knowl-

edge in the areas of software, mechanical, electrical and

electronic engineering. The integration of these areas will

result in a complex system product. However, each area

uses different methodologies and development tools. That

makes difficult the understanding of each part of the sys-

tem development by project collaborators of different ar-

eas. System engineering has to use a shared methodology

to integrate the products of different engineering areas.

The System Modeling Language (SysML) is a semi-

formal language that intend to support the specification,

analysis, design and verification of complex systems [9].

It allows to capture informations in a precise and efficient

way, so as to facilitate integration and reuse in a larger

context. It should also support several activities such as:

to analyze and to evaluate the specified systems, to iden-

∗This author is supported by CAPES/COFECUB and CNPq.

tify and to provide requirements of the system, to dis-

tribute projects and to support exchange among them; to

communicate system informations, correctly and consis-

tently among several participants of the same project (soft-

ware, mechanical, electrical and other engineers).

A semi-formal modeling is easy to use and permits to

quickly obtain a preliminar specification of a complex sys-

tem including architecture, behavioral and requirements

aspects. The counterpart of this kind of modeling is the

lack of formalization. In the other hand the formal models

that make a well defined behavior modeling, system prop-

erties specification, and allows verification, but requires

some expertise.

An early stage in the development of any complex sys-

tem is to specify its requirements. For example, several

conceptual models can be used in order to understand and

to organize the requirements in a systematic way. Also,

there are several ways of describing the behavior of a sys-

tem. The description in natural language may contain am-

biguities. It is essential to insert formal or semi-formal

models, that are capable of specifying the requirements,

making it possible the use of system design automated

methods [7]. The SysML requirements diagram provides

a way to make that. But, the semi-formality of this dia-

gram does not allow the verification task of systems. Al-

though a verify stereotype is used in the SysML require-

ments diagram, it is not well adapted for requirement ver-

ification.

The modeling and verification process, proposed in this

paper, gets the better of the two worlds (semi-formal and

formal). This process is shown in the figure 1, it is based

on a first semi-formal modeling task before a formal mod-

eling and verification task. This paper intends to be more

clear about this process by using a factory example.

The aim of this paper is not to give a formal semantics

of various SysML diagrams but focusses on the SysML

framework proposed to capture, refine and trace require-

ments. We use temporal logic to progressively formalize

SysML requirement diagrams. We illustrate the whole ap-

proach by considering a factory automation system. As

formal verification also requires a formal description of

the component behaviours, we use Petri nets instead of

ETFA'2007 - 12th IEEE Int. Conf. on Emerging Technologies and Factory Automation

In
fo

rm
a
l

S
y
s
te

m
 D

e
s
c
ri
p
ti
o
n

System

Properties

Behavioral

Modeling

Formal Modeling

Requirements

Modeling

Structural

Modeling

Semi−formal Modeling

VerificationnotSatisfied

Figure 1. Modeling and Verification process.

standard activity diagrams. The global behaviour of the

system is obtained by composing elementary components

according the system architecture. System description, in-

cluding behavioural aspects and requirements expression,

is analysed using the TINA toolbox [4].

In section 2, the SysML language is briefly presented

and especially, the requirement diagram is described. In

section 3, some concepts of formal modeling (with Petri

nets) and verification (with LTL formulas) are presented

and the TINA toolbox is described. The approach joining

the SysML language and Petri nets is presented and ap-

plied in a factory automation example in section 4. Sec-

tion 5 presents the final considerations and future works.

2. The SysML Language

SysML is a general purpose modeling language for

system engineering applications. It establishes a descrip-

tion pattern for a great variety of complex systems. These

systems may include hardware, software, data, methods,

personal and instruments.

It was being defined based on UML 2.0, using its syn-

tax and semantics. That will improve the communication

among the several designers that participate in the devel-

opment of the system, promoting interoperability among

modeling tools, not only for software and hardware design

but also for the other parts of the system, as electrical, me-

chanical ones and so on [10].

Figure 2 shows the modifications in the diagrams

reused from UML 2.0 as well as the new diagrams of

SysML. The specification of SysML is classified in three

basic model types: the structure models, the behavior

models and the requirement models. For each one there

are defined constructions that are used in a specific model.

Some constructions can be used together with several

model types (called cross-cutting constructions).

The SysML diagrams represent the model elements

such as packages, blocks and associations. They allow

to reuse UML diagrams without modification. Moreover,

the extensions of these diagrams aim at meeting the spe-

cific requirements of system engineering [10]. The fol-

lowing UML behavior diagrams are included in SysML

without modifications: state machines, interactions (se-

quences) and use cases. Other UML diagrams such as

SysML

Diagrams

Behavior

Diagrams Diagram

Structure

Activity

Diagram Diagram

Sequence

State Machine

DiagramDiagram

Use Case

Requirement

Diagram

Package

Diagram

Block Definition

Diagram

Diagram

Parametric

Internal Block

Diagram

Modified from UML2.0

New diagram

Same as UML2.0

Figure 2. SysML diagrams [10]

activities, classes are reused with the addition of some ex-

tensions. Some new diagrams as requirements, parametric

and allocation diagrams were also added.

The structural constructions define the static and struc-

tural elements used in SysML. The diagrams that include

the structural constructions are: Package Diagram (to par-

tition the system), Block Definition Diagram (to define the

block features and relationships), Internal Block Diagram

(to show the internal structure of a block) and the Paramet-

ric Diagram (a restricted form of internal block diagram

containing constraint properties and parameters). Despite

of some similarities with the UML models these contruc-

tions brought several improvements.

The behavioral constructions specify the dynamic parts

used in the behavior diagrams of SysML, including: the

Activity Diagram (used to describe the control flow), the

Sequence Diagram, the State Machine Diagram and the

Use Case Diagram, the same ones used in UML with little

or none modification. The most important improvement

in the behavioral models is to make possible the modeling

of continuous time by the activity diagram.

Finally, another diagram which does not exist in UML,

the Requirement Diagram allows the system requirement

description.

2.1. SysML diagrams for the proposed approach

This approach uses SysML to perform the structural

(block definition diagram and internal block diagram) and

requirement modeling (requirement diagram).

The block definition diagram (BDD) and the internal

block diagram (IBD) describe the external and internal

system or subsystem structure using a block as its basic

unit. They allow the description of which elements are in-

terconnected and how they are interconnected. They also

allow a top-down and/or a bottom-up modeling while giv-

ing an abstract/concrete system level to different system

elements.

The relationships among the BDD elements (composi-

tion, inheritance, aggregation and others) and the diagram

format are the same ones used in the UML class diagram.

With this diagram it is possible to visualize all the parts

2

ETFA'2007 - 12th IEEE Int. Conf. on Emerging Technologies and Factory Automation

that compose the system and the relationship among them

in an abstract way. The IBD describes the internal struc-

ture of a block, its parts and the connections among them.

The connections are made through the use of flow ports,

where matter, energy or data may flow, and service ports

that connect the services provided and/or requested by a

block.

Unfortunately, to describe a complex system a better

organization is necessary because the number of BDD and

IBD diagrams and model elements (blocks, ports, ...) can

increase very quickly, depending on the system to model,

and the view to show.

The requirement diagram is developed from system en-

gineer needs and they present an important role during the

system modeling. It shows how the requirements are sat-

isfied by the system elements. Those requirements may be

provided by the user, the environment, or by the system it-

self. Requirements are described through sentences based

on natural language. In this diagram they can be grouped

in a clear way, also documenting their origin (standards

or more detailed specifications) and tracing their destina-

tion. The requirements also can be used to provide useful

acceptance tests before the system deployment.

However, the requirements diagram is very abstract.

Requirements are inserted in the model as text using nat-

ural language. It presents the same problems of an in-

formal specification. Moreover, the sentences in natural

language can describe structural or non-structural require-

ments, which directly affect the system architecture and

behavior characteristics. It presents a high degree of in-

formality and consequently the verification of those re-

quirements becomes a very hard task. Misunderstandings

and inconsistencies can happen during the extraction of

information from this diagram.

3. The Petri Net Model and Tool

Petri nets and Time Petri nets [8] are one of the most

widely used model for the specification and verification of

real-time systems. Time Petri nets are Petri nets in which

a nonnegative real interval Is(t), with rational end-points,

is associated with each transition t of the net [2]. Function

Is is called the Static interval function.

R+ and Q+ are the sets of nonnegative reals and ratio-

nals, respectively. Let I+ be the set of nonempty real in-

tervals with nonnegative rational end-points. For i ∈ I+,

↓ i denotes its left end-point, and ↑ i its right end-point

(if i bounded) or ∞. For any θ ∈ R+, i −
.

θ denotes the

interval {x − θ|x ∈ i ∧ x ≥ θ}.

Definition A Time Petri net (or TPN) is a tuple

〈P, T,Pre,Post,m0, Is〉, in which 〈P, T, Pre, Post,
m0〉 is a Petri net, and Is : T → I+ is a function called the

static interval function. Where, P is the set of places, T is

the set of transitions, Pre, Post : T × P → N+ are the

precondition and postcondition functions, m0 : P → N+

is the initial marking.

Time Petri nets add to Petri nets the static in-

terval function Is, that associates a temporal interval

I with every Petri net transition t (with t ∈ T),

where Is(t) ∈ I+. A Time Petri net example is

shown in Figure 3. This TPN represents a production

worker (a worker that works in a production line) with

P = {Wi idle,Wi work,Wi workExcess} (places)

and T = {Li startLine, Li endLine,Wi workT ime}
(transitions). The Pre and Post functions place the

arrows as it is showed in the figure 3 (for example,

Pre = (Li endLine,Wi idle) = 1 and Post =
(Li startLine,Wi idle) = 1). His initial marking (m0)

is Wi idle when he is able to go to work. His work-

ing time depends on the line working time (between

Li startLine and Li endLine, more detailled in the sec-

tion 4) but, if he works more than 35 minutes in a pro-

duction line (Is(Wi workT ime) = [35, 35]) the transi-

tion Wi workT ime is fired and the worker go to the state

Wi workExcess. The verification phase will allow to

check if this property hold or not.

Wi_idle Li_startLine

Li_endLine Wi_work Wi_workTime

[35,35]

Wi_workExcess

Figure 3. A Petri net example.

States, and the temporal state transition relation
t@θ
−→,

are defined as follows:

Definition A state of a TPN is a pair (m, I) in which m is

a marking (m ∈ P) and I is a function called the interval

function. Function I : T → I+ associates a temporal

interval with every transition t (t ∈ T) enabled at m. We

write (m, I)
t@θ
−→ (m′, I ′) iff θ ∈ R+ and:

1. m ≥ Pre(t) ∧ θ ≥ ↓I(t) ∧ (∀k ∈
T)(m ≥ Pre(k) ⇒ θ ≤ ↑I(k))

2. m′ = m − Pre(t) + Post(t)

3. (∀k∈T)(m′ ≥ Pre(k) ⇒
I ′(k) = if k 6= t ∧ m−Pre(t) ≥
Pre(k) then I(k) −

.
θ else Is(k))

Definition The state graph of a TPN is the structure

SG = (S
t@θ
−→ s0), where:

S = {s|s0
∗

→ s} is the set of states reach

able from the initial state s0

s0 = (m0, I0), where I0(t) = Is(t) for

any t enabled at m0.

3

ETFA'2007 - 12th IEEE Int. Conf. on Emerging Technologies and Factory Automation

Many techniques for analysis of Time Petri nets pro-

ceed by building a labeled transition system (LTS) pre-

serving the properties of interest (e.g. reachability set,

deadlocks), in a first step, and then checking on this LTS

the properties to be satisfied. Considering Time Petri nets,

the main difficulty concerns the obtention of a finite state

space.

Transitions may fire at any time in their temporal inter-

vals, so states typically admit an infinity of successors. As

with many formal models for realtime systems, the state

spaces of Time Petri nets are typically infinite. Model

checking Time Petri nets first requires to produce finite

abstractions for their state spaces. Labeled transition sys-

tems that preserve some classes of properties of the state

space, are so built.

Different state class constructions have been proposed

and are available in TINA, preserving different families

of properties of the state space. State class graph con-

struction [3] preserves markings of the TPN and all its

properties one can express in linear time temporal logics

like LTL. [5] presents alternatives preserving states and

bisimilarity with the state graph.

3.1. Model-Checking

We use State/Event − LTL [6], a linear time tem-

poral logic supporting both state and transition properties.

The modeling framework consists of labeled Kripke struc-

tures (the state class graph in our case), which are directed

graphs in which states are labeled with atomic proposi-

tions and transitions are labeled with actions. Formulae

Φ of State/Event − LTL are defined according the fol-

lowing grammar (here p ranges over P and a ranges over

Σ):

Φ ::= p | a | ¬Φ | Φ ∨
Φ | © Φ | � Φ | ♦ Φ | Φ U Φ

Example Example of State/Event − LTL formulae :

(For all paths)

P P holds at the beginning of the path,

© P P holds at the next step,

� P P globally holds,

♦ P P holds in a future step,

P U Q P holds until a step is reached where Q holds

3.2. Tina toolbox for Time Petri Nets Verification

TINA (TIme Petri Net Analyzer1) is a software envi-

ronment to edit and analyze Petri nets and Time Petri

nets. This paper overviews its capabilities, architecture,

and main applications. More details can be found in [4].

In addition to the usual editing and analysis facilities of

similar environments, TINA offers various abstract state

space constructions that preserve specific classes of prop-

erties of the state spaces of nets, like absence of deadlocks,

linear time temporal properties, or bisimilarity. For un-

timed systems, abstract state spaces helps to prevent com-

binatorial explosion. For timed systems, abstractions are

1http://www.laas.fr/tina

mandatory as their state spaces are typically infinite, TINA

implements various abstractions based on state classes.

The TINA toolbox offers the capacity to construct com-

plex specification in a compositional manner. Each transi-

tion or place may be labelled and a Petri net composition

is performed according the transitions or places merging

with the same label. This facility allows to a modular

specification for each part of the system. The figures 4(a)

and 4(b) show the Petri nets used to compound the Petri

net ilustrated before in figure 3, it can be observed a place

merging labeled as Wi work.

Wi_idle Li_startLine

Li_endLine Wi_work

Wi_workTime

[35,35]

Wi_work

Wi_workExcess

(a) (b)

Figure 4. Petri nets composition.

The different tools constituting the environment can be

used alone or together:

• nd (NetDraw): is an editing tool for automata and

time Petri nets, under a textual or graphical form. It

integrates a “step by step” time Petri nets simulator.

• tina: this tool builds the state space of a Petri nets,

timed or not. TINA can perform classical constructs

(marking graphs, covering trees) and also allows ab-

stract state space construction, based on partial order

techniques.

• selt: to check more specific properties than the gen-

eral ones such as boundedness, deadlocks, pseudo

liveness and liveness already checked by TINA. The

selt tool is a model-checker for temporal logic exten-

sion formulae (State/Event LTL - seltl) [6].

Realtime properties, like those expressed in Timed

Computation Tree Logic TCTL [1] could be checked by

using the standard technique of observers. The technique

is applicable to a large class of realtime properties and can

be used to analyze most of the “timeliness” requirements

found in practice. This facility is used later in order to al-

low the verification of deadline properties. For example,

looking to the figure 3 it is necessary to know if there is

a moment that the production worker works more than 35

minutes; in this case, it is possible to use the following

LTL formula: 2¬Wi workExcess. In case of non satis-

fiability, selt is able to build a readable counter-example

sequence which presents an execution violation of the re-

quirement.

4

ETFA'2007 - 12th IEEE Int. Conf. on Emerging Technologies and Factory Automation

4. A Modelling and Verification Example

We used a simple factory plant example to show how

to join these two modeling languages in a single approach

that allows the high level modeling with both semi-formal

and formal modeling language. The aim is to use part of

SysML language to model structure and requirements, to-

gether with Petri net to describe the behavioral part. After

that, the formal requirement verification was performed.

4.1. Structural modeling

The example is based on a simple factory plant. The

factory plant objective is to manufacture products and, for

that, workers and machines are available. The products

(Px) are made by the production lines (Lx) that put the

machines (Mx) in a specific production order. The work-

ers are divided in two types: a) the production workers

(Wx), that use the machines and work in the production

lines and; b) the technicians (Tx), that make the machine

maintenance.

Figure 5 illustrates the SysML block definition diagram

for the factory plant. It shows the factory structure in an

abstract way. Looking to this figure, it is possible to know

the elements that compose the factory and their relation-

ship with each other without too many details. For ex-

ample, a factory is composed by one or more machines

(composition relationship); the production lines use the

machines and the production workers in the product man-

ufacturing task (dependency relationship).

<<block>>

Worker

<<block>>

Machine

<<block>>

Product

<<block>>

Factory Plant

∗1..∗1..∗1..

∗1..

<<block>>

Technician

<<block>>

Production Worker

<<block>>

Production Line

<<use>>

<<use>> <<use>> <<use>>

Figure 5. Factory structure.

Figure 6 shows the internal block diagram, in this case

the internal factory structure. It can be noticed the inter-

connection points among all factory elements. Those in-

terconnection points are performed by flow ports. Like

a block definition diagram, that is based on a high level

structure specification, the internal block diagram shows a

more detailed structure specification. The factory manu-

factures a product (P1) and uses two production lines (L1

and L2) to perform it. There are four machines (M1, M2,

M3 and M4) and each production line uses three machines

in its production task, respectively L1(M1,M2,M3) and

L2(M2,M3,M4). The production worker W1 works on

L1 and the W2 works on L2. The technician T1 makes the

maintenace on all machines.

L1 L2

Li_Mi_startMachine / Li_Mi_endMachine

T1

M1 M4M2 M3

Mi_startMachineMnt / Mi_endMachineMnt

W2W1 P1

Li_startLine / Li_endLine

Figure 6. Factory internal structure.

4.2. Requirements modeling

There are some requirements that should be satisfied

by the factory. The SysML requirement diagram de-

scribes the requirements hierarchy and creates a require-

ment traceability matrix. Figure 7 shows the requirement

diagram with the properties that we need to verify in the

system. For example, it is important the norms and the

work legislation to be satisfied by the factory. The work

legislation requires that the production workers have a

pause after a continuous work and any worker does not

work more than 35 minutes on a production line. The fac-

tory norms require that the machine maintenance is en-

sured during the manufacturing process.

Factory Requirements

<<requirement>>

Laws and Norms

<<requirement>>

Usine Norms

<<requirement>>

Maintenance Norms

<<requirement>>

Work Legislation

<<requirement>>

Health and Safety

<<requirement>>

Employment Rights

<<requirement>>

Work Pause

<<requirement>>

MachineMaintenance

MachineMnt

<<testCase>>

WorkerPause

<<testCase>>

<<requirement>>

WorkContinuousTime

WorkExcess

<<testCase>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<verify>>

<<verify>>

<<verify>>

Figure 7. Factory requirements diagram.

5

ETFA'2007 - 12th IEEE Int. Conf. on Emerging Technologies and Factory Automation

Each requirement has a specification written in textual

form. The high level requirement is that the laws and the

norms will be respected. This requirement can be subdi-

vided in:

• Work Legislation:

– Employment Rights: the employer will provide a rea-

sonable support and a safe working environment.

– Health and Safety: employers will be responsible

for ensuring physical and psychological health, safety and

welfare of employees at work.

– Work Pause: a pause (5 minutes in our case) will be

guaranteed after a continuous work.

– Work Continuous Time: the worker will not work

more than 35 minutes in a continuous work.

• Factory Norms:

– Maintenance Norms: the maintenance norms will be

responsible for ensuring the factory functioning without

failure.

– Machine Maintenance: the machine maintenance

will be ensured during the manufacturing process.

The requirement diagram also shows the requirement

hierarchy and derivation, the hierarchy is made by a com-

position relationship that ilustrates a requirement that con-

tains anothers requirements (for example, Work Legisla-

tion is compounded by the Employment Rights and Health

and Safety). The derivation relationship (deriveReqt)

shows a requirement that is derived from one or more re-

quirements, the objective is to know a requirement ori-

gin (such as Work Pause that is derived from Employment

Rights and from Healt and Safety). It also shows a rela-

tionship with a test case (performed by verify) that will

work as a verification case, as explained later.

4.3. Behavioral modeling

After the requirement and structural modeling is ended,

it is necessary to perform the system behavioral modeling.

In the SysML specification it is possible to associate a be-

havior for each block. It is usually represented by an UML

activity diagram or an UML state diagram. The UML 2.0

activity diagram includes some modifications that allow to

use it as a Petri net diagram. In our case we used only the

activity diagram features that allow the construction of a

Petri net. Our objective is the formalization of the behav-

ior because we want to verify some properties on it. The

TINA toolbox was used to build the Petri net system rep-

resentation and to verify its properties (or requirements).

The system behavioral modeling starts with the prod-

uct manufacturing behavior (figure 8). It shows the pro-

duction line sequence to manufacture the product P1. It

can be noted its interconnection points with the produc-

tion lines: Li startLine and Li endLine.

The second step was to create the behavior modeling

of the production line, ilustrated in figure 9. It is pos-

sible to observe the interconnection points Li startLine

and Li endLine between production workers and prod-

uct manufacturing task, and Li Mi startMachine and

Li Mi endMachine between machines, as represented in

Figure 8. Product manufacturing behavior.

the IBD diagram of factory internal structure (figure 6).

Figure 9. Production lines behavior.

Next, the production worker behaviors can be created.

Figure 10(a) shows a production worker behavior when

he has not rights to a pause. He stays in an idle state

Wi idle waiting the line to start production; then he goes

to a work state Wi work and after a work he returns to an

idle state. But, looking to the requirements again (figure 7)

it is possible to see a structural requirement constraint for

the production worker (Work Pause). Then, it is necessary

to change that behavior to a new behavior that includes a

6

ETFA'2007 - 12th IEEE Int. Conf. on Emerging Technologies and Factory Automation

pause state (Wi pause) after a work. This new behavior

is shown in figure 10(b).

Wi_idle Li_startLine

Li_endLine Wi_work

Wi_idle Li_startLine Wi_work

Wi_pauseWi_sleep

[5,5]

Li_endLine

(a) (b)

Figure 10. Production worker behavior:

(a)without pause and (b)with pause.

Figure 11 shows the technician behavior. Like the

production worker, he stays in an idle state Ti idle
waiting for the machine maintenance cycle. When the

machine is ready to start the maintenance, the techni-

cian goes to a work state Ti work and the machine is

stopped. For the maintenance task the technician does

not need more than five minutes (represented by transition

Mi endMachineMnt).

Ti_idle Mi_endMachineMnt

[0,5]

Ti_workMi_startMachineMnt

Figure 11. Technician behavior.

Finally, figure 12 shows the machine behavior. Each

machine starts from an idle state (Mi idle) and go to a

work state (Mi work), staying between 5 and 10 min-

utes working. When this task ends, it returns to the idle

state. Looking again to the requirement diagram (figure

7), it can be observed another structural requirement con-

straint for the machine maintenance task. For that, it was

included a cycle counter. Each time that the cycle counter

(Mi cycle) reaches fifteen cycles, the machine is stopped

to begin its maintenance task. The machine maintenance

state (Mi mnt) is guaranteed by an inhibition arc that

does not permit the machine working state when the ma-

chine is ready to go to maintenance.

The composition of these behaviors, as defined by the

system structure of figure 6, performs the complete factory

behavior, including product lines, machines, workers and

technicians. The aim of this paper is to verify that require-

ments are correctly satisfied by the system. This compo-

sition is made by TINA toolbox that merges the places or

transitions, with the same label, in a complete behavioral

Mi_startMachineMnt

[0,0]

Mi_endMachineMnt

Mi_mnt

Mi_idle Li_Mi_startMachine

[0,0]

Mi_cycle

Mi_work

Li_Mi_endMachine

[5,10]

15

15

Figure 12. Machines behavior.

model. The complete model has 47 places and 28 transi-

tions.

4.4. Requirements verification

The SysML requirement diagram recommends the use

of the UML Testing Profile to allow the requirements test-

ing. This recommendation is represented by an arrow

stereotyped by verify that connects a requirement to a test

case. Test and verification are used in different moments

of the system development cycle and correspond to dif-

ferent goals. Test is realized on the implemented system.

Furthermore, the test case, following the profile definition,

is a behavior performed against the SUT (System Under

Test). This behavior corresponds to a set of possible inputs

that can put the system in trouble; the objective consists

to determine the possible system behavior when a specific

system property is tested.

“SysML Test” only allows to ensure that specific sce-

narios are accepted by the system implementation while

formal verification allows to be sure that the expected re-

quirement are fullfilled by the system specification.

In our case, the profile associated with the requirement

diagram is not sufficient because our objective is to ver-

ify the system before its implementation. Moreover, test

cases don’t provide the necessary informations to repre-

sent the system properties. But, some little modifications

can facilitate the verification task. The aim of our proposal

is not the change of the SysML requirements diagram but

the introduction of few modifications which allow the sys-

tem verification. In this case the requirement under veri-

fication is connected by the same arrow stereotyped with

verify and the same test case structure. The difference is

that in the case of verification, its attributes hold LTL logic

formulas and the behavior associated to each one, when

necessary, is performed by a Petri net as an observer.

Then, a test case, in this proposal, can be understood as

a property verification performed against the SUV (Sys-

tem Under Verification). It is composed by a LTL logic

formula which is a formalization of a property which was

expressed in an informal way in the requirements diagram.

The LTL formula specifies a property (or a system require-

ment) that the user must know if it is satisfied or not by the

system.

The informal requirements of figure 7 are now trans-

7

ETFA'2007 - 12th IEEE Int. Conf. on Emerging Technologies and Factory Automation

lated in LTL formulas. WorkerPause and MachineMain-

tenance are qualitative requirements. They admit a direct

translation, like:

WorkerPause : 2(Li endLine ⇒ 3Wi pause), “Al-

ways, the worker Wi has a pause after a continuous

work in a line”.

MachineMnt : 23Mi mnt, “Always, there is a moment

that the machine Mi is under maintenance”.

WorkExcess is a quantitative requirement. Its veri-

fication needs the use of an observer (see figure 4(b)).

WorkExcess holds if event Wi workExcess never occurs

(the objective is to guarantee that it is not performed by the

system), then:

WorkExcess : 2¬Wi workExcess, “The worker Wi
never works in excess”.

The LTL formulas can be verified using the TINA tool-

box. For this example, all refined requirements are veri-

fied and satisfied by the system. Looking to the require-

ments diagram (figure 7), it is possible to see that the high

level requirements (Laws and Norms) are satisfied by the

system. The reachability graph has 635 states and 787

transitions.

If any requirement is not satisfied by the system it is

necessary to search in the structural or behavioral dia-

grams the cause of that (see figure 1). For example, if

a production worker works in excess more than 35 min-

utes), probably, the production line spends too much time

because it has many machines (a production line with 5

machines in the worst case works for 50 minutes). One

possible solution is to break the line in two other lines with

less machines. Other solution is to buy machines that per-

form their work faster than before (a production line with

5 machines, that perform their work in 5 minutes, works

for 25 minutes). The solutions are not the aim of this pa-

per, but at this moment it is important to notice that the

system is not yet developed, only specified and that it is

already possible to know if this system satisfies or not the

requirements.

5. Conclusions and Future Work

In this paper was presented a preliminar approach to in-

troduce a modeling and verification process using SysML,

Petri nets and LTL formulas. The objective was to allow

the requirements verification before the system implemen-

tation. The SysML language was introduced to perform a

semi-formal system structural and requirement modeling,

the Petri nets was used to perform the formal system be-

havior modeling and the formal verification was made by

LTL formulas.

A semi-formal approach allows a rapid modeling but

lacks in formality and encapsulates some ambiguity. For

this reason, it is not possible to make formal verifications.

However, a formal approach allows the formal verification

but lacks to perform a more understandable system struc-

ture view and the requirements traceability from more ab-

stract requirements.

In order to allow the system requirements verification

a mixing approach was chosen. A modular modeling was

used to connect the behavior to the structure models and

the requirements model was refined until that the require-

ments could be expressed by means of temporal logical

formulas. The TINA toolbox was used to perform the for-

mal behavioral system modeling with Petri nets and also

the formal verification using LTL formulas.

The paper aim was not modified the SysML initial

specification but allows the system verification, for that

reason it was used the UML Testing Profile in the verifi-

cation context. But, testing is different from verification

and in future work, it will be necessary to define a new

profile that performs the verification.

Finally, we will conclude that the use of both semi-

formal and formal models brings powerful to the model-

ing and verification tasks. The objective was to ensure a

well defined and understable system modeling to the for-

mal system requirements verification.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. The-

oretical Computer Science, 126(2):183–235, 1994.
[2] B. Berthomieu and M. Diaz. Modeling and verification of

time dependent systems using time Petri nets. IEEE Trans-

actions on Software Engineering, 17(3):259–273, Mar.

1991.
[3] B. Berthomieu and M. Menasche. A state enumeration ap-

proach for analyzing time Petri nets. In Proc. Applications

and Theory of Petri Nets (ATPN’82), Como, Italy, pages

27–56, 1982.
[4] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool

TINA – construction of abstract state spaces for Petri nets

and time P etri nets. International Journal of Production

Research, 42(14):2741–2756, 15 July 2004.
[5] B. Berthomieu and F. Vernadat. State class constructions

for branching analysis of time Petri nets. In Proc. Tools

and Algorithms for the Construction and Analysis of Sys-

tems (TACAS’2 003), Warsaw, Poland, Springer LNCS

2619, pages 442–457, 2003.
[6] S. Chaki, M. E, Clarke, J. Ouaknine, N. Sharygina, and

N. Sinha. State/event-based software model checking. In

4th International Conference on Integrated Formal Meth-

ods (IFM’04), Springer LNCS 2999, pages 128–147, apr

2004.
[7] S. Edwards, L. Lavagno, E. Lee, , and A. Sangiovanni-

Vincentelli. Design of embedded systems: formal models,

validation and synthesis. Proceedings of the IEEE, March

1997.
[8] P. M. Merlin and D. J. Farber. Recoverability of communi-

cation protocols: Implications of a theoretical study. IEEE

Trans. Comm., 24(9):1036–1043, Sept. 1976.
[9] SEDSIG. Systems Engineering Domain Special Interest

Group. http://syseng.omg.org/, March 2006.
[10] SysML Merge Team (SMT). Systems Modeling Language

(SysML) Specification. version 1.0. Object Manegement

Group (OMG), April 2006.

8

ETFA'2007 - 12th IEEE Int. Conf. on Emerging Technologies and Factory Automation

