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Abstract without regard to the amount of time it is taking or 

the changes meanwhile going on, is not likely to make 

ra.tional decisions. We describe a system called Tileworld, which con- 

sists of a simulated robot agent and a simulated 

environment which is both dynamic and unpre- 

dictable. Both the agent and the environment 

are highly parameterized, enabling one to control 

certain characteristics of each. We can thus ex- 

perimentally investigate the behavior of various 

meta-level reasoning strategies by tuning the pa- 

rameters of the agent, and can assess the success 

of alternative strategies in different environments 

by tuning the environmental parameters. Our hy- 

pothesis is that the appropriateness of a pa.rticu1a.r 

meta-level reasoning strategy will depend in large 

pa,rt upon the characteristics of the environment 

in which the agent incorporating that strategy is 

situated. We describe our initial experiments us- 

ing Tileworld, in which we have been evaluating a 

version of the meta-level reasoning strategy pro- 

posed in earlier work by one of the authors [Brat- 

man e2 al., 19SS]. 

One solution that has been proposed eliminates ex- 

plicit execution-time reasoning by compiling into the 

agent all decisions a.bout what to do in particular 

situations [Agre and Chapman, 1987, Brooks, 1987, 

Ka.elbling, 198S]. This is an interesting endeavor, but 

its ultimate feasibility for complex domains remains an 

open question. 

Introduction 

An alternative is to design a.gents that perform ex- 

plicit reasoning at execution time, but manage that 

reasoning by engaging in nzeta-level reasoning. Within 

the past few years, researchers in AI have provided the- 

oretical analyses of meta-level reasoning, often a.pply- 

ing decision-theoretic notions to it [Boddy and Dean, 

19s9, Horvitz, 1987, Russell and Wefald, 1989]. In ad- 

dition, architectural specifications for agents perform- 

ing meta-level reasoning have been developed [Brat- 

man et al., 19881, and prototype systems that engage 

in meta-level reasoning have been implemented [Cohen 

et nl., 1989, Georgeff and Ingrand, 19891. The project 

we describe in this paper involves the implementa.tion 

competing 

Recently there has been a surge of interest in systems 

that are capable of intelligent behavior in dynamic, un- 

predictable environments. Because agents inevitably 

have bounded computational resources, their delibera- 

tions about what to do take time, and so, in dynamic 

environments, they run the risk that things will change 

while they reason. Indeed, things ma-y change in ways 

that undermine the very assumptions upon which the 

reasoning is proceeding. The agent may begin a delib- 

eration problem with a particular set of available op- 

tions, but, in a dynamic environment, new options ma,y 

arise, and formerly existing options disappear, during 

the course of the deliberation. An agent that blindly 

pushes forward with the original deliberation problem, 

of a system for experimentally evaluating 

theoretical and architectural proposals. 

*This research was supported by the Office of Naval 

Research under Contract No. N00014-89-C-0095, by a 

contract with the Nippon Telegraph and Telephone Cor- 

poration and by a gift from the System Development 

Foundation. 

More specifically, we ha.ve been constructing a sys- 

tern called Tileworld, which consists of a simulated 

robot agent and a sim&ted environment which is both 

dynamic and un)cedictable. Both the agent and the 

environment a.re highly parameterized, enabling one to 

control certain characteristics of each. We can thus ex- 

perimentally investigate the behavior of various meta- 

level reasoning strategies by tuning the parameters of 

the a.gent, and can assess the success of alternative 

strategies in different environments by tuning the en- 

vironmental parameters. Our hypothesis is that the 

appropriateness of a particular meta-level reasoning 

strategy will depend in large part upon the charac- 

teristics of the environment in which the agent incor- 

porating that strategy is situated. We shall describe 

below how the parameters of our simulated environ- 

ment correspond to interesting characteristics of real, 

dynamic environments. 
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Figure 1: A Typical Tileworld Starting State 

In our initial experiments using Tileworld, we have 

been evaluating a version of the meta.-level reasoning 

strategy proposed in earlier work by one of the authors 

[I3 * t la. man et al., 19SS]. However, the Tileworld can 

be used to evaluate a range of competing proposals, 

such as the ones mentioned above: agents instantiating 

many alternative proposals can readily be imported 

into the Tileworld environment. 

The Tileworld Environment 

The Tileworld is a chessboard-like grid on which there 

a.re agents, tiles, obstacles, and holes. An agent is a 

unit square which is able to move up, down, left, or 

right, one cell at a time, and can, in so doing, move 

tiles. A tile is a unit square which “ slides” : rows of 

tiles can be pushed by the agent. An obstacle is a 

group of grid cells which are immovable. A hole is a 

group of grid cells, each of which can be “ filled in”  by 

a tile when the tile is moved on top of the hole cell; the 

tile and particular hole cell disappear, leaving a blank 

cell. When all the cells in a hole are filled in, the a.gent 

gets points for filling the hole. The a.gent knows ahead 

of time how valuable the hole is; its overall goal is to 

get as many points as possible by filling in holes. 

Figure 1 depicts a typical Tileworld starting state. A 

Tileworld simulation takes place dynamically: it begins 

in a state which is randomly generated by the simulator 

according to a set of parameters, and changes contin- 

ually over time. Objects (holes, tiles, and obstacles) 

appear and disappear at rates determined by param- 

eters set by the experimenter, while at the same time 

the agent moves around and pushes tiles into holes. 

The dynamic aspect of a Tileworld simulation distin- 

guishes it from many earlier domains that have been 

used for studying AI planning, such as blocks-world. 

The Tileworld can be viewed a rough abstraction of 

the Robot Delivery Domain, in which a mobile robot 

roams the halls of an office delivering messages and ob- 

jects in response to human requests. We have been able 

to draw a fairly close correspondence between the two 

domains (i.e., the appearance of a hole corresponds to 

a. request, the hole itself corresponds to a delivery loca- 

tion, tiles correspond to messages or objects, the agent 

to the robot, the grid to hallways, and the simula.tor 

time to real time). 

Features of the domain put a variety of demands on 

the a.gent. Its spatial complexity is nontrivial: a sim- 

ple hill-climbing strategy can have modest success, but 

when efficient action is needed, more extensive reason- 

ing is necessary. But the time spent in reasoning has a.17 

associated cost, both in lost opportunities and in unex- 

pected changes to the world; thus the agent must make 

trade-offs between speed and accuracy, and must mon- 

itor the execution of its plans to ensure success. Time 

pressures also become significant a.s multiple goals vie 

for the agent’s attention. 

Of course, a single Tileworld simulation, however.in- 

teresting, will give only one data point in the design 

space of robot a.gents. To explore the space more vigor- 

ously, we must be able to vary the challenges that the 

domain presents to the agent. We have therefore pa- 

rameterized the domain, and provided “ knobs”  which 

can be adjusted to set the values of those parameters. 

The knob settings control the evolution of a Tile- 

world simulation. Some of the knobs were alluded t,o 

earlier, for instance, those that control the frequency 

of a.ppearance and disappearance of each object type. 

Other knobs control the number and average size of 

each object type. Still other knobs are used to control 

factors such as the shape of the distribution of scores 

associa.ted with holes, or the choice between the instan- 

taneous disappearance of a hole and a slow decrease in 

value (a hard bound versus a soft bound). For each set 

of parameter settings, an agent can be tested on tens 

or hundreds of randomly generated runs automatically. 

Agents can be compared by running them on the same 

set of pseudo-random worlds; the simulator is designed 

to minimize noise and preserve fine distinctions in per- 

forma.nce. 

The Tileworld environment is intended to provide 

a testbed for studying a wide range of dynamic do- 

mains and tasks to be performed in them. It exhibits 

spatial complexity, a central feature of many such do- 

mains; and it includes tasks of varying degrees of im- 

portance and difficulty. It is generic: although we have 

explored connections between Tileworld and tasks in- 

volving robot delivery, Tileworld is not tightly coupled 

to any particular application domain, but instead al- 

lows an experimenter to study key characteristics of 

whatever domain he or she is interested in, by varying 

parameter settings. For example, the experimenter can 

focus on doma.ins in which the central characteristic is 
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a wide distribution of task values (simulated in Tile- 

world by hole scores), or of task difficulty (simulated 

by hole size). In this regard, Tileworld differs from 

the Phoenix simula.tor [Cohen e2 al., 19891, which is 

more closely tied to a pa.rticu1a.r a.pplica.tion. Instead, 

the goals of the Tileworld project are closer to those of 

the MICE simula.tor [Durfee and h’fontgomery, 19901. 

However, Tileworld is a more highly dynamic environ- 

ment than MICE. Also, where h4ICE is used to focus 

on issues of real-time inter-a.gent c6ordina.tion, Tile- 

world is intended as a framework for the more general 

investigation of intelligent behavior in dynamic envi- 

ronments. 

Using Plans to Constrain Reasoning 

The a.gent we have implemented and used in our exper- 

iments insta,ntiates IRMA-the Intelligent Resource- 

Bounded Machine Architecture [Bra.tma.n e-t al., 1988]. 

IRMA builds on observa.tions ma.de by Bratman [Brat- 

man, 19871 that agents who a.re situated in dynamic 

environments benefit from ha.ving plans because their 

plans ca.n constrain the amount of subsequent reason- 

ing they need to perform. Two constraining roles of 

plans concern us here: 

o An agent’s plans focus subsequent means-end rea- 

soning so that the agent can, in general, concentrate 

on elaborating its existing pla.ns, rather than on com- 

puting all possible courses of action that might be 

underta.ken. 

e An agent’s plans restrict the set of further poten- 

tial courses of action to which it needs to give full 

consideration, by filtering out options that are in- 

consistent with the performance of what the agent 

alrea.dy plans to do. 

The first role of plans has always been at least implicit 

in the standard models of AI planning: AI plamlers 

compute means to goals that the agent already has. 

The second has a more dramatic effect on the architec- 

ture we are investigating: it leads to the introduction of 

a filtering mechanism, which manages execution-time 

reasoning by restricting deliberation, in general, to op- 

tions that ‘are compatible with the performance of al- 

ready intended actions. (To have the desired effect of 

lessening the amount of reasoning needed, the filter- 

ing mechanism must be computationally inexpensive, 

relative to the cost of deliberation.) 

Of course, a rational agent cannot aEways remain 

committed to its existing plans. Sometimes plans may 

be subject to reconsideration or abandonment in light 

of changes in belief. But if an agent constantly recon- 

siders its plans, they will not limit deliberation in the 

way they need to. Thus, an agent’s plans should be 

reasonably stable. 

To achieve stability while at the same time allowing 

for reconsideration of plans when necessary, the filter- 

ing mechanism should have two components. The first 

checks a new option for compatibility with the exist- 

ing plans. The second, an override mecha.nism, encodes 

the conditions under which some portion of the exist- 

ing plans is to be suspended and weighed against some 

other option. The filter override mechanism operates 

in parallel with the compa.tibility filter. For a new 

option to pass through the filter, it must either pass 

the compatibility check or else trigger an override by 

matching one of the conditions in the override mecha- 

nism. A critical task for the designer of an IRMA-a.gent 

is to construct a filter override mechanism so tl1a.t it 

embodies the right degree of sensitivity to the problems 

and opportunities of the agent’s environment. 

The options that pass through the filter are subject 

to deliberation. The deliberation process is what actu- 

ally selects the actions the agent will form intentions 

towards. In other words, it is the deliberation pro- 

cess t.hat performs the type of decision-making that 

is the focus of traditional decision theory. The filter- 

ing mechanism thus serves to frame particular decision 

problems, which the deliberation process then solves. 

The process of deliberation is different from means- 

ends reasoning in our view, and this distinction is 

worth discussing further. As we see it, deliberation 

is deciding which of a set of options to pursue, while 

means-ends reasoning is more a process of determining 

how to achieve a given goal. We see means-ends rea- 

soning producing options (candidate plans to achieve 

a goal), which can then be the subject of deliberation. 

This ma.y be a surprising distinction to those fa,mil- 

ia.r with the sta.ndard AI planning paradigm, in which 

the job of a planner is usually to produce the single 

best p1a.n according to some set of criteria. Any delib- 

era.tion which is to be done in such a system is done 

by the planner, and it might be argued that a planner 

is the best place for such reasoning. Certainly some 

pruning of alternatives must be done by a planner; 

however, there are reasons to believe that some delib- 

eration belongs outside the planner. In some situations 

it is a.ppropriate to have several means-ends reasoners 

with differences in solution quality and time required; 

these must be invoked appropriately and a single so- 

lution chosen. In other circumstances it is desirable 

to engage in a decision-theoretic analysis of compet- 

ing alternatives. Consequently, we have maintained 

the distinction between deliberation and means-ends 

reasoning in our system. 

The Tileworld Agent 

In implementing an IRMA-agent for the Tileworld, we 

adopted a model of a robot with two sets of process- 

ing hardware. One processor executes a short control 

cycle (the act cycle), acting on previously formulated 

plans and monitoring the world for changes. The sec- 

ond processor executes a longer cycle (the reusoning 

cycle), which permits computations with lengths of up 

to several seconds. 

The act cycle is straightforward; the agent performs 
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al 1 existing intentions, or if it triggers an override. 

Compatibility checking of top-level options, as im- 

Action 

Figure 2: Tileworld Agent Architecture 

those acts that have been identified during the pre- 

vious reasoning cycle, monitoring for limited kinds of 

failures. Perception also occurs during the act cycle: 

the agent can access a global map of the world that in- 

dicates the loca.tions of all objects, as well as the score 

and time remaining to timeout for a.11 holes. 

The reasoning cycle makes decisions about what 

goa.ls to pursue and how to pursue them. The por- 

toion of the agent architecture that controls reasoning 

is depicted in Figure 2. Processing is aimed at main- 

taining the intention structure, a time-ordered set of 

tree-structured plans that represents that agent’s cur- 

rent intentions. During any given reasoning cycle, one 

of two things can happen: 

Potential additions to the intention structure, called 

options, can be considered by the filtering and delib- 

eration processes. These options can come from two 

sources. One, the agent may perceive environmen- 

ta.1 changes that suggest new options-in Tileworld, 

this occurs when new holes or tiles appear. Alterna- 

tively, options may be suggested by the means-end 

reasoner. 

Means-ends reasoning can be performed to produce 

new options that can serve as means to current in- 

tentions. The bulk of our means-ends reasoner is a 

special-purpose route planner. 

We will concentrate here on the filtering and deliber- 

ation mechanisms. All options are in principle subject 

to filtering and deliberation; so far, however, we have 

confined such reasoning to top-level options, i.e., op- 

tions to fill a particular hole. 

Recall that the IRMA filtering mechanism has two 

parts: the compatibility filter and the filter override. 

An option passes the filter if it is either compatible with 

plemented, is straightfo&ard. - A top-level option is 

either to fill a hole now or Inter; if the agent alrea.dy 

hcas a current intention to fill a particular hole now, 

then an option to fill some other hole now is incompat- 

ible. All intentions 

with each other. 

to fill a hole later a.re compatible 

The filter override must identify options that are 

potentially valuable enough that they warrant delib- 

eration even if they fail the compatibility test. The 

simplest override mechanism compares the score of a 

hole being considered as an option to that of the hole 

currently being filled. If the difference between them 

equals or exceeds some threshold value v, then the new 

option passes the filter. The threshold value is set by 

a Tileworld pa.rameter. Sometimes it may sensibly be 

set to a negative value: in that case, a new option 

could be subject to deliberation even if it involved fill- 

ing a hole with a lower score than the hole currently 

being filled. This might be reasonable, since the new 

hole may, for instance, be much easier to fill. Setting 

the threshold value to --co results in all options being 

subject to deliberation. 

Recall t1la.t an option’s passing the filter does not 

1ea.d directly to its introduction into the intention 

structure: instea.d, it is passed to the deliberation pro- 

cess for more detailed consideration and comparison 

with the current intention. Deliberation may involve 

extensive analysis; deliberation stra.tegies ca.n be cho- 

sen in the Tileworld agent by the setting of a para.m- 

eter. We currently have implemented two deliberation 

strategies. 

The simpler deliberation module evaluates compet- 

ing top-level options by selecting the one with the 

higher score. When there is a nonnegative threshold 

value in the filter, this mode of deliberation always se- 

lects the new option; with a negative threshold value, 

it instead always maintains the current intention. This 

illustrates a general point: if deliberation is extremely 

simple, it may be redundant to posit separate deliber- 

ation and filtering processes. 

A more sophisticated deliberation strategy computes 

the likely value (LV) of a top-level goal. LV is an esti- 

mate of expected utility, combining information about 

reward (score) with information about likelihood of 

success. For a given option to fill a hole h, LV is com- 

puted as 

LV(h) = 
score(h) 

dist(a, h) + Ck, 2 * dist(h, ti) 

where score(h) is the reward for filling the hole, 

dist(a, h) is the distance between the agent and the 

hole, n is the number of tiles needed to fill the hole, 

and dist(h, ti) is the distance from the hole to the jth 

closest tile. The factor of 2 occurs because the agent 

must traverse the interval in both directions, i.e., it 

must make a “ round trip” . If there are fewer than n 
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tiles available, LV(h.) is zero. 

We intend to design additional deliberation modules, 

including one that performs complete means-end rea.- 

soning for all options under consideration before mak- 

ing its decision. Such a. deliberator must not be in- 

voked caxelessly; we expect our filtering mechanism to 

be increasingly useful as we add more sophisticated 

and time-consuming delibera.tion components. 

Prelhinary Experiments 

With both the simulator and the agent in place, we axe 

in a position to conduct experimental studies of the the 

performance of the agent. By a.djusting the Tileworld 

“ knobs” , we ca.n control a. number of domain character- 

istics. We can vary what we call dynamism (the rate at 

which new holes a.ppear), hostility (the ra.te at which 

obsta.cles a.ppear), vurinbility of vdilily (differences in 

hole scores), variability of dificulty (differences in hole 

sizes and distances from tiles), and hnrd/ soft bounds 

(holes having either hard timeouts or gra.dua.lly decay- 

ing in value). There are also variables we can a.djust 

in the a.gent: act/think rate (the relative speeds of act- 

ing and thinking), the filter’s ?hreshold level, and the 

sophisticution of the deliberidion m.echanism. 

Experiment 1 

To begin with, we set all of these parameters to pro- 

vide a baseline enviromnent which is dyna.mic, vari- 

able, and moderately paced. In this environment, a 

competent agent ca.n achieve reasonable scores, but is 

pena.lized for wa.sting time or making poor choices. We 

will sta.rt by compaxing the simple deliberation mech- 

anism, based on score value, with the LV evaluator, 

which provides a better estimate of marginal utility. 

For orientation, we have also included the results of a 

human playing the role of the a.gent in the same sim- 

ulation; and to gain an idea of the benefit of acting in 

parallel with reasoning, we have included results for an 

agent that that acts and reasons serially. 

All of these agents were tested in the baseline en- 

vironment and in a similar but more rapidly changing 

one. In the faster environment, objects appear and dis- 

appear on the average ten times more quickly, but the 

agent can also move ten times more quickly. However, 

the agent’s reasoning takes place at the same rate of 

speed as in the baseline ca.se, so the opportunity cost of 

reasoning is correspondingly greater in the faster en- 

vironment. The agents were all eva.lusted by taking 

the average score from 30 trials; the huma,n performed 

10. Each trial is a self-contained simulation with a du- 

ration of 5000 ticks of the clock, where the agent can 

move once per clock tick. 

~1 

Experiment #1 

The differences here are quite apparent. In the nor- 

ma.1 speed environment, the human subject performed 

best, beca.use he had more-sophisticated planning ca- 

pa.bilities than the robot. But in the faster environ- 

ment, the human’s response speed was insufficient to 

allow him to keep up with the pace of change. 

The robot a.gents were better able to adjust to the 

more rapidly changing environments, but it is clear 

that the cost of reasoning is still significant for them. 

This is evident both from an overall decrease in score 

in the high-speed environment, and from the superi- 

ority of the robot agents that could reason and act in 

parallel. 

The other distinction of note is that the LV evalua.tor 

performs better than the simple evaluator, as expected. 

Experiment 2 

We now move on to our initial experiments directed 

at understanding some of the design trade-offs in our 

agent. The use of Tileworld to experimentally evalu- 

ate our a.gent architecture is a.n ongoing project, and 

these a.re early results. We stress that the hypothe- 

ses presented below are preliminary; significantly more 

esperimenta.tion and statistical analysis of the results 

need to take place before we can make strong claims 

about the relative appropriateness of any particular 

agent-design strategy. 

In Experiment 2, we attempt to test the usefulness of 

the filtering mechanism in our a.gent as implemented, 

using the LV evaluator as the deliberation component, 

and using the most quickly computed evalua.tion met- 

ric, thresholding on tlhe score value, as the filter over- 

ride mechanism. We vary the threshold from -100 to 

100. Since the score for each hole ranges from 1 to 

100, a threshold setting of -100 means that every new 

option is subject to delibera.tion, while a setting of 100 

means that no new option will ever be considered until 

the currently executing plan is complete. The result- 

ing scores are summarized in the following chart, where 

each value represents an average over 30 trials. 

420 

Scor e 

320 

-25 

Threshold 

Experimen #2 

SLOW 

q NORMAL 

q FAST 

At the slowest speed setting, 100 times slower than 

our “ normal”  setting, it is better to do no filtering at 

all. The scores achieved at this speed decrease con- 

sistently as the threshold is increa.sed. At the normal 
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speed setting, the effect of increased filtering still ap- 

pears to be negative, but less markedly so. At a setting 

10 times faster than the normal one, there seems to be 

little correlation between threshold level and perfor- 

mance, although the uncertainty in the results, which 

appears to be in the range of lo-20 points, prevents a 

sure determination. We hope, in the future, to be able 

to maeke even these relatively subtle determinations; 

the noise in the data comes, we believe, largely from 

our decision to use actual CPU-time measurements to 

determine reasoning time. If we wish to get the clea,n- 

est trials possible, we ma.y need to use a time estimate 

that does not depend on the vagaries of the underlying 

machine and Lisp system. Failing that, we will need 

to model the uncertainty involved, and run larger trial 

sets. 

To sum up the results of this experiment, we see that 

filtering is harmful at slow speeds, and even at high 

speeds does not give a net benefit. Our hypothesis is 

that the time cost of the LV evaluator is not very high, 

a.nd consequently, it is usually worth taking the time to 

engage in extra deliberation about new opportunities. 

The fact that filtering is less detrimental in the faster 

environment leads us to hypothesize that there may be 

a break-even point at even faster speeds, above which 

filtering is useful; we intend to test for such a point. We 

also intend to implement more accurate (and costly) 

deliberation mechanisms in the near future. For these, 

filtering may be much more valuable; perhaps the LV- 

estimator is efficient enough that it can itself be used 

as the filter override mechanism for the more complex 

deliberation components. 

Experiment 3 

In our third experiment, we attempt to test a conjec- 

ture that the LV evaluator as described is deficient in 

an important way: it does not consider the time cost 

of means-end reasoning already performed. We modify 

the deliberation functions by adding a bias in favor of 

existing intentions, since typically at deliberation time, 

some means-end reasoning about how to achieve these 

has already taken place. This is distinct from Experi- 

ment 2, in which we adjusted the filtering mechanism 

in an attempt to save deliberation time; here we inves- 

tigate a bias in the deliberation process itself with the 

intent of reducing the time cost of means-end reason- 

ing. 

We consider two cases. In the first, deliberation is 

done by the simple evaluator, and we apply a bias to- 

wards existing intentions equal to a fixed number of 

points. In the second, deliberation is done by the LV 

evaluator, and we apply a bias equal to a fraction of 

the current LV. Thus, for example, with a 100 percent 

bias, a newly appearing hole must have double the LV 

of the current one to be adopted as a new intention. 

The environment settings and simulation sizes are the 

same as for Experiment 2. 
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Experiment #3: Simple Evaluator 
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Experiment #3: LV Evaluafor 

As shown by the experimental results, bias in the de- 

liberator does not appear to have a. clear effect on total 

performance. For the simple evaluator, this isn’t terri- 

bly surprising; it provides a fairly weak assessment of a 

hole’s actual potential value in any case. We expected 

to see much more effect of bias on the LV evaluator, 

however. Two hypotheses are availa.ble to espla.in this. 

First, our test environment may have too many oppor- 

tunities available, minimizing the potential cost of high 

bias: if the agent spends most of its time doing some- 

thing with high utility, a few missed opportunities will 

not have a significant impact on the final score. This 

hypothesis can be tested in a less fa.vorable environ- 

ment. Second, it may be tha.t means-end reasoning 

in the current implementation is too inexpensive, min- 

imizing the potential benefit of high bias. This hy- 

pothesis can be tested by increasing the size of the 

environment to increase the planning time required; 

the addition of more complex planning routines would 

also provide situations in which there is a higher time 

cost associated with planning. 

Conclusion 

The experiments we have run to date have included 

some important milestones in the Tileworld effort. The 

Tileworld domain has been demonstrated, and has 

been shown to be a viable system for evaluating agent 

architectures. The Tileworld agent was demonstrated 

and used to test differing deliberation and filtering 

strategies as described in [Bratman et nl., 19881. 

The Tileworld project is ongoing. There are a num- 

ber of specific research tasks that we intend to pur- 

sue in the near future. Perhaps most importantly, we 

will be continuing our experimental efforts. The hy- 

potheses we drew from our preliminary experiments 



suggested several obvious follow-ons, as described in 

the preceding section. It will be particularly useful to 

va.ry parameters other than those that control speed, 

for example, size of the overall space, distribution of 

task value and difficulty, and availability of limited re- 

sources such as tiles. 

We will also implement more sophisticated deliber- 

ation algorithms, and, having done so, will a.ttempt to 

identify better the principles separating the processing 

that is done in the filtering mechanism from that done 

in the delibera.tion procedure. In addition, we plan to 

implement a foveated perceptual scheme, in which the 

agent has access to detailed, precise informa.tion about 

its immediate surroundings and has only increasingly 

abstract, incomplete, and uncertain information about 

about more dista.nt locations in its environment. An- 

other possibility is to add learning to the system: two 

areas of potential benefit are in the means-ends rea- 

soner (e.g.,‘expla.nation-based lea.rning of control rules) 

a.nd in eva.lua.tions of ma.rginal utility (e.g., empiri- 

cal improvement of utility evalua.tions). Finally, we 

hope to extend the architecture to handle more difficult 

questions involving intention coordination. We expect 

that both means-end reasoning and deliberation will 

become much more difficult, and hence filtering much 

more important, when the intention structure involves 

more complex interactions among intentions. 

More generally, we continue to investigate the larger 

question of how an agent should structure and control 

its computa.tional effort. We believe that the a.rchitec- 

ture discussed here is a special case of a more genera.1 

framework, and we are working towards a definition of 

tl1a.t fra.mework and its verification in our domain. We 

also see the Tileworld testbed as a good basis for com- 

parison of other agent architectures proposed in the 

litera.ture, and we strongly encoura.ge other researchers 

to demonstrate their agents in our domain.’ 

The overall goal of our project is an improved un- 

derstanding of the relation between agent design and 

environmental factors. In the future, when faced with 

a performance domain for an agent, one should be 

able to draw on such an understanding to choose more 

wisely from the wide range of implementation possibil- 

ities available. 
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