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Abstract The annual data published by IEA is analysed to get a projection for the
combustion share in total primary energy supply for theworld. This projection clearly
identifies that more than 60% of world total primary energy supply will come from
combustion based sources even in the year of 2110 despite an aggressive shift towards
renewables. Hence, improving and searching for greener combustion technologies
would be beneficial for addressing global warming. Computational approaches play
an important role in this search.The large eddy simulation equations are presented and
discussed. Potential termswhich are amenable for usingmachine learning algorithms
are identified as a prelude to later chapters of this volume.

Combustion is a socio-economically important topic for many tens of centuries and it
still remains to be so because more than 90% of the world’s total primary energy sup-
ply (TPES) is met through combustion in one form or another, see IEA (2021). Even
the recently proposed changes towards low carbon or carbonless fuels, including
E-fuels, will involve some sort of combustion employing concepts and technologies
which could be substantially different from those used currently. Figure1 shows the
share of various sources for TPES which is about 606 EJ for the year 2019. This is
nearly 139% of the energy used in 1973 which suggests about 3% increase per year
over the past 46 years and this is inline with an estimate of about 40% increase in the
global energy consumption for the next two decades by the National Academies of
Science, Engineering and Medicine, see How we use energy (2022). This projected
energy demand is likely to be larger because of the widespread use of energy-hungry
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Fig. 1 World total primary energy supply, in exajoule, by source type. Adopted from IEA (2021),
c© IEA, 2021

consumer electronics and other technologies such as Internet of Things (IoTs), elec-
tric vehicles, etc. While these technologies bring their own advantages one cannot
deny their impacts on the environment arising from their manufacturing, end-of-life
treatments and more importantly higher demand for energy during their lifetime
leading to global warming related issues. Indeed, the use of energy-hungry modern
technologies and mitigation of global warming are at the opposite ends and bringing
them together is a grand challenge requiring carefully constructed solutions.

The global temperature is expected to rise in the next 100 years according to the
intergovernmental panel reports—Future climate changes, risks and impacts (2022),
and as discussed byHayhoe et al. (2017). If the emission of green house gases (GHG)
follow a particular Representative Concentration Pathway (RCP 2.6) yielding Giga-
tons of carbon emission close to zero in the year of 2100 and the CO2 concentration
in the atmosphere is about 400 ppm then the temperature raise is expected to range
from 0.3 to 1.7 ◦C. If the CHG emission is high following RCP 8.5 then the tem-
perature rise may range from about 2.6 to 4.8 ◦C which may result in catastrophic
effects.

The energy production using renewable and sustainable sources are gaining pop-
ularity and becoming wide spread in the past decade. The renewable sources include
hydro, solar, wind and tidal. The nuclear energy may be considered as a renewable
since the uranium deposits could provide energy for billion years (Cohen 1983) and
there is no GHG emissions (Vasques 2014; Moore 2006). However, the safety issues
and the concept of clean energy may exclude the nuclear energy from the renew-
ables. Figure1 shows that the share of this energy is 5% for the year 2019whereas the
renewables share, listed as Others, is only 2.2%. However, this substantial increase
from 0.1% in 1973 is because of the advent of the renewable technologies in the
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recent past. The photo voltaic, both rooftop and commercial, systems become pop-
ular but the capital cost projections in Winskel et al. (2009) (see their Fig. 4.1) does
not seem to be realistic (the actual cost is nearly twice the projected cost of about
£1000 per kW for 2019) because the price will increase as the demand grows unless
the supply is in surplus.

The levelised cost of electricity for renewable technologies at utility-scale is
becoming lower than that for the traditional fossil fuels—0.038 to 0.076 USD/kWh
depending on the renewables compared to 0.05 to 0.18 USD/kWh for fossil fuels
(IRENA 2020)—which is an excellent progress. However, the consumer energy
prices do not reflect this lower cost for the renewables yet. Perhaps, this may take
some more time. Although the renewable power generation has increased by nearly
50% (a total of about 780 GW) for the year 2020 compared to 2019 (IRENA 2021),
this is substantially lower than the 2019 projection of 1.5TWfor 2020 (IRENA2019).
This clearly suggests that the renewables share is growing slowly and one may have
to accelerate it but the accelerated growth may have its own consequence on the
environment for the reasons argued in Lørstad et al. (2022a), which are based on the
data for GHG emissions and cradle-to-grave life cycle analysis (LCA) published in
past studies. For example, the electric vehicles projected to have zero emission is
not so in reality according to cave-to-case analysis showing that one has to drive a
110 kW size EV for about 35,000km without recharging to offset the CO2 emitted
by the battery pack production alone (Alvarez 2019). This is not practical. It is likely
that combustion will remain as one of the components in the energy technology
mix and will play an important part for specific applications, such as transport and
energy-intensive industries, requiring high energy densities but its form and type are
likely to be different.

1 Combustion Technology Role

Themitigation of global warming requires solutions, targeted towards reducingGHG
emissions, which arise from efforts concerted across various continents and coun-
trywide solutions are inadequate. While a complete shift towards renewables seems
attractive and achievable over longer timescales but the accelerated shift set by vari-
ous governments independently does not sound pragmatic. Perhaps, this may worsen
the situation because the additional energy required to achieve the accelerated shift
towards renewables has to come from non-renewables. Thus, a balanced approach to
meet the ever increasing energy without aggravating the global warming is needed.

Combustion technologies play important role in this respect as suggested by the
results in Fig. 2 showing future projections for the combustion share of world TPES
under three different scenarios (Swaminathan 2019). The inset is the actual data from
the International Energy Agency (IEA 2021) showing a gradual decrease in the com-
bustion share while a small rise in 2012 is because of the increase in coal combustion
in some countries in that year. If one makes a naive projection by assuming that the
progress in renewable technologies is steady and organic following the current trends
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Fig. 2 Combustion share of world TPES and its future projections. Adapted from Swaminathan
(2019)

then the combustion share will be more than 75% even by the year 2110 (the solid
line). The slope of this curve is related to the progress and advancement of alterna-
tive energy technologies. If one keeps an optimistic view for these technologies and
presumes that they are progressing at about 50% faster pace compared to the current
trend then the combustion share falls to about 70% in 2110. This share decreases
further to 66% for the year 2110 if one assumes that the alternative technologies
progress at 80% faster pace. To achieve this, a radical paradigm shift is needed and
whether this is practical or not from the economical consideration is an open ques-
tion. Even the heavily accelerated shift (80% scenario) reduces the combustion share
only by 40% and thus a pragmatic approach is to seek for alternative combustion
concepts and technologies which can significantly reduce GHG emissions and can
act as retrofits to the existing combustion systems which can also aid a quicker shift
towards renewables in the longer run.

Many alternative combustion concepts such as fuel-lean and MILD (moderate,
intense or low dilution) combustion emerge as potential solutions since they could
deliver both low emissions and high efficiency. However, using them for practi-
cal applications bring their own challenges as discussed by Swaminathan and Bray
(2011) and Lørstad et al. (2022a). Also, carbon-free and E-fuels are emerging as
potential alternative solutions to mitigate CO2 emission while catering to the ever-
increasing energy demand. Specifically, hydrogen combustion seems to be gaining
momentum with a view to use hydrogen as a main energy carrier. Although this
solution addresses the CO2 emission directly it brings additional challenges for its
safe usage, controlled combustion for practical applications and potential increase
in NOx emissions. One of the current NOx reduction technologies can be utilised to
control this emission from hydrogen or E-fuel combustion. Nevertheless, the distri-
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bution of hydrogen from production sites to consumers is challenging which requires
a complete infrastructure overhaul and the scale of economy for this cannot be under-
estimated adding further challenges.

Modern computational methods and approaches play significant parts in devel-
oping these alternative technologies and taking them to fruition. The use of machine
learning algorithm (MLA) and techniques in computational fluid dynamics (CFD),
specifically for turbulent flows and turbulent combustion are gaining renewed
momentum in recent times for two reasons, viz., (i) these algorithms and techniques
have evolved and developed for a wide-spread use across various disciplines and
(ii) to take advantage of their robustness, accuracy and computational efficiencies
so that the CFD codes with MLA can be employed for quick evaluations of design
changes. Before discussing the role of MLA in computational simulations of turbu-
lent flows with chemical reactions, let us briefly review the governing principles and
equations, and various computational methods used for turbulent combustion. The
topic of turbulent reacting flow simulations has been discussed elaborately in many
books, see for example Swaminathan and Bray (2011), Libby and Williams (1980),
Poinsot and Veynante (2005), Echekki and Mastorakos (2011), Swaminathan et al.
(2022b), only a brief review with detail required to fulfil the aim of this volume is
discussed in the next section.

2 Governing Equations

The computational simulations of turbulent reacting flows use three numerical
approaches, namely direct numerical simulation (DNS), large eddy simulation
(LES) andReynolds-AveragedNavier Stokes calculation (RANS). These approaches
involve different levels of detail, approximations and modelling. The complete set
of conservations equations are solved with no models using high order numerical
schemes in the DNS approach and further detail can be found in many books, for
example Poinsot andVeynante (2005). This approach resolves and captures the range
of, from dissipative to energy containing, scales in the flow without using any mod-
eling approximations and this range increases with turbulence Reynolds number,
Ret . The ranges of spatial and temporal scales vary as Re3/4t and Re1/2t respectively
and thus the computational cost for using DNS at Ret relevant for practical appli-
cation in appropriate geometry is prohibitive. Hence, this approach is typically used
to gain fundamental understanding of turbulence and its interaction with chemical
reactions, and these knowledge are important for devising engineering models for
practical use. There are many examples for this which are discussed and summarised
in Swaminathan and Bray (2011), Poinsot and Veynante (2005), Echekki and Mas-
torakos (2011), Swaminathan et al. (2022b). Appropriately averaged conservation
equations are solved in the RANS approach along with closure models and approx-
imations, which are discussed elaborately in many past works, for example see the
books edited by Libby andWilliams (1980, 1994) and the works in Swaminathan and
Bray (2011). The RANS equations are deterministic and do not have the stochastic
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aspects required for statistical inference and hence one must be cautious in using
MLA for RANS calculations. However, it is possible to use some of the machine
learning algorithms to address the uncertainties of RANS model parameters. LES
approach is well suited to make use of MLA since there is inherent stochasticity.
Before identifying the potential avenues to use MLA for LES, let us briefly review
the required governing equations.

3 Equations for LES

In large eddy simulations, the low-pass filtered governing equations for mass,
momentum, energy and species mass fractions are solved. The filtering, or sepa-
ration of the scales, is done with a spatial filter, which is applied to the governing
equations for the above quantities. The various filters and their attributes are discussed
in many text books, for example see Pope (2000) and Favre-filtering, also known
as density-weighted filtering, is commonly used for flows such as turbulent com-
bustion involving strong density variations. The filtering implies that the dynamic
large scales, which are larger than the filter cut-off scale, are resolved and the scales
smaller than the cut-off scale, known as subgrid scales (SGS), are modelled. Hence,
the computational cost for LES is much lower than that for DNS because coarser
grids and larger time steps can be used for similar level of numerical fidelity.

The Favre-filtered governing equations are written as

Mass:
∂ρ

∂t
+ ∇ · (ρ ũ) = 0 (1)

Momentum:
∂ρ ũ
∂t

+ ∇ · (ρ ũ ũ) = −∇ p + ∇ · τ − ∇ · τ S (2)

Energy:
∂ρ˜h

∂t
+ ∇ · (

ρ ũ˜h
) = Dp

Dt
− ∇ · q − ∇ ·

⎛

⎝ρ

Ns
∑

i=1

YiUi hi

⎞

⎠

+ τ : ∇u + Qr + �dil − ∇ · θ
S

(3)

Species:
∂ρ˜Yi
∂t

+ ∇ · (

ρ ũ˜Yi
) = ∇ · (−ρ YiUi

) + ω̇i − ∇ · ψ
S
i (4)

using standard notations and Ui is the diffusion velocity of species i .
The filtering procedure yields extra terms, SGS stress tensor τ S , SGS enthalpy

flux θ
S
, SGS pressure-dilation �dil , and SGS species flux ψ

S
i , given by
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τ S = ρ (ũ u − ũ ũ) (5)

θ
S = ρ

(

˜uh − ũ˜h
)

(6)

�dil = u · ∇ p − ũ · ∇ p (7)

ψ
S
i = ρ

(

˜u Yi − ũ ˜Yi
)

(8)

These unknownquantities represent the influenceof unresolved scales on the resolved
scales and need closure models. The pressure-dilation in Eq. (7) is sometimes less
important in compressible flows and therefore commonly neglected (Piomelli 1999;
Martin et al. 2000). A plausible modelling for it and its limitation are explored
in Langella et al. (2017). Closure models are required for all the SGS quantities in
Eqs. (6) to (8), molecular diffusion related quantities in Eqs. (2) to (4) and the species
reaction rate ω̇i . The molecular diffusion of momentum (viscous shear, τ ), energy
(heat flux, q), and species (diffusive flux, −ρ YiUi ) are modeled following classical
ideas of gradient diffusion after neglecting the fluctuations in viscosity, diffusivity
and heat conductivity (Piomelli 1999; Gicquel 2012). Further detail on these models
and the LES governing equations are discussed in Pope (2000), Poinsot andVeynante
(2005) and Garnier et al. (2009).

3.1 SGS Closures

A few common closures for the SGS terms given in Eqs. (6) to (8) are discussed
briefly here. The eddy viscosity models are the most simple ones for the SGS stress
in Eq. (5) and the popular of these is the classical Smagorinsky model (Smagorinsky
1963), which has been extended to the SGS kinetic energy by Yoshizawa (1986).
The Smagorinsky model, in tensor notation, is

τ S
i j − δi j

3
τ S
kk = −2C2

s 
2ρ |˜S|
(

˜Si j − δi j

3
˜Skk

)

= −2 ρ νSGS

(

˜Si j − δi j

3
˜Skk

)

, and (9)

τ S
kk = 2CIρ 
2|˜S|2 (10)

where ˜Si j = 0.5
(

∂ ũi/∂x j + ∂ ũ j/∂xi
)

is the resolved symmetric strain-rate tensor

and |˜S| =
√

2˜Si j˜Si j . The filter width estimated typically using the local numerical
cell volume is denoted as 
. Equation (9) defines the SGS eddy viscosity, νSGS,
and the symbols Cs and CI are model constants. The τ S

kk , which is twice the SGS
kinetic energy, is likely to be small or negligible in lowMach number flows as noted
by Martin et al. (2000) but may not be so for flows with strong heat release.
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The Smagorinsky models is relatively simple and robust, but it has its limitation
for near-wall and transition flows since it can give a non-vanishing eddy viscosity,
which is unphysical and this can be remedied by invoking damping functions, but
an alternative approach is to use a dynamical procedure to determine Cs and CI as
proposed in Moin et al. (1991). This approach is used widely by applying a second
filter of typical width 
̂ = 2
 to the resolved fields to compute the resolved stress
near the filter cut-off. Assuming similarity of the stresses near the cut-off scale, 
,
this resolved stress can be used to find an expression for Cs and CI in terms of the
resolved velocity gradients, see Pope (2000), Martin et al. (2000) and Garnier et al.
(2009).

The dynamic procedure allows the model to adapt itself to the local flow changes
and hence νSGS naturally approaches zero near solid walls and in laminar regions
which retains physical behaviour. The dynamic procedure can produce νSGS < 0
implying an instantaneous reverse cascade of kinetic energy locally whichmay occur
in turbulent flows. However, this can lead to numerical instabilities and therefore,
it is common to clip Cs to avoid negative νSGS or by averaging it in either space or
time.

Other algebraic approaches have also been developed in past studies to over this
specific issue of νSGS not approaching zero near a wall in wall bounded flows. Details
can be found in Vreman (2004), Nicoud and Ducros (1999), Nicoud et al. (2011). An
alternative approach to estimate νSGS uses the SGS turbulent kinetic energy, ˜kSGS,
obtained directly by using its transport equation, see Yoshizawa and Horiuti (1985)
andGhosal et al. (1995). Various approaches have also been proposed, developed and
tested for the SGS stresses in many past studies and detail can be found in Zang et al.
(1993), Lesieur andMétais (1996), Layton (1996), Kosovic (1997), Misra and Pullin
(1997), Meneveau and Katz (1997), Armenio and Piomelli (2000), Domaradzki and
Adams (2002), Chaouat and Schiestel (2005), Lucor et al. (2007).

Further to the SGS stress discussed above, the SGS fluxes needing modelling and
a straightforward approach is to use an eddy diffusivity model written as

ψ
S
i = −ρ νSGS

ScSGS
∇˜Yi , and θ

S = −ρ νSGS

PrSGS
∇˜h (11)

for species and enthalpy respectively. The symbols ScSGS and PrSGS are the SGS
Schmidt and Prandtl numbers respectively. These quantities may be estimated using
a static or dynamic procedure, see Martin et al. (2000), Garnier et al. (2009) and
Moin et al. (1991). Many other models for the SGS stresses and fluxes have been
developed and tested in past studies (Martin et al. 2000; Garnier et al. 2009; Silvis
et al. 2017) and these models are introduced and discussed in later chapters, specifi-
cally in chapter “Machine-Learning for Stress Tensor Modelling in Large Eddy Sim-
ulation”. The statistics obtained using these models could show some sensitivities to
errors introduced by the numerical scheme, especially for second order statistics and
thus some care is needed. Perhaps, one way to address these issues is to use MLA
to estimate the model parameters, which is discussed in chapter “Machine-Learning
for Stress Tensor Modelling in Large Eddy Simulation”.

http://dx.doi.org/10.1007/978-3-031-16248-0_4
http://dx.doi.org/10.1007/978-3-031-16248-0_4
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The chemical reaction rate in the species equation, Eq. (4), is important for tur-
bulent combustion. The physical processes represented by this term typically occur
at SGS level. Also, the reaction rate is a highly nonlinear function of temperature,
T , and species mass fractions, Yi , and, hence it cannot be expressed in a meaningful
way using only the resolved temperature and species mass fractions. Formulating
a robust yet accurate SGS closure for the reaction rate is challenging and impor-
tant and this has been studied in past studies which are reviewed and summarised
in many references, see for example Swaminathan and Bray (2011), Poinsot and
Veynante (2005), Swaminathan et al. (2022b), Gicquel et al. (2012), Peters (2000),
Pitsch (2006), Rutland (2011). Each of these approaches has their advantages and
limitations in terms their predictive abilities, simplicity, ease of use, computational
expenses, physical basis and these aspects are discussed in past works, for example
see Swaminathan et al. (2022b). In the following, we give an brief overview on the
challenges involved in LES and the role of MLA to tackle them which also helps us
to articulate the objectives for this volume.

3.2 LES Challenges and Role of MLA

The SGS closures are predominantly based on the gradient flux hypothesis as dis-
cussed in the previous subsection and it is well known that in reacting flows there
are processes which defy this hypothesis. Hence, modelling counter-gradient sub-
grid scalar fluxes are still an outstanding issue, specifically for low Reynolds number
reacting flows. Despite this, LES calculations with the gradient flux models have
shown good agrements between the computed and measured statistics suggesting
that these models are sufficient for flows of interest to practical systems. Another
challenge for LES is on the near-wall flow characteristics. It is quite well known that
practical LES cannot recover the law of the wall and some special numerical treat-
ments are required as noted by Nikitin et al. (2000) and Brasseur and Wei (2010).
Recovering the law of the wall becomes important when the heat and momentum
fluxes through the walls (of the combustor, for example) need to be evaluated as
design variables.

It is observed generally that the numerical grids used for LES of reacting flows
resolve instantaneous flame structure to some extend, which is acceptable for atmo-
spheric pressure. High pressure flows in complex geometries are common in practical
applications and thus resolving the instantaneous flame structure will likely to yield
impractical grid cell counts because the flame thickness approximately scales as
δth ∼ p−1/2 (Turns 2006) and some of the important geometry detail need to be cap-
tured in the grid. Thus, the common practice of using grids having cell sizes of the
order of δth is unattractive for practical LES. Consequently, SGS combustion models
have to be robust and accurate in representing the relevant physical processes and
machine learning algorithms can play important role here. Probably, it is useful to
design or select a grid resolvingmost of the kinetic energy in the flow and let the SGS
closures, specifically for combustion, to handle the turbulence-chemistry interactions



10 N. Swaminathan and A. Parente

and their intricacies for LES of reacting flows in practical systems. The guidance
suggested by Pope (2000), which isK = ksgs/

(

kres + ksgs
) ≤ 0.2, where ksgs and kres

are subgrid scale and resolved kinetic energies respectively, may be used. It is to be
noted that this condition can only be evaluated after completing a preliminary LES
of non-reacting flow in a given geometry. Alternative measures to evaluate LES grid
requirement have also been suggested in past studies. However, the parameter K is
quite practical and useful, and thus it is recommended. This requirement is to be
applied for flows before igniting the flame and thus checking and satisfying this grid
requirement are quite straightforward since the LES of non-reacting flow is the first
step in conducting LES of turbulent combustion.

Machine learning algorithms can play a vital role in turbulent combustion calcu-
lations. These algorithms can be leveraged to build SGS models which can reduce
computational requirements substantially. However, using MLA for these purposes
are not common yet and there is a surge of research activities in this direction. The
subgrid fluid dynamic and combustion processes and their interactions are highly
non-linear stochastic events and thus MLA is well suited to infere the SGS statis-
tics required for LES. Typically, machine learning methods are used for pattern
recognition in various fields (Hinton et al. 2012; Sathiesh et al. 2016; Gogul and
Sathiesh Kumar 2017) and are finding their ways into other fields such as climate
modelling (Watson-Parris 2021), drug discovery (Bhati et al. 2021) and fluidmechan-
ics (Brunton et al. 2020). Their application to reacting flows is gaining momentum
although it is still at an early development and validation stage. Hence, the objective
for compiling this volume is to bring together the latest developments inMLA and its
application to chemically reactingflows andmake it readily accessible for researchers
and graduate students interested in this multi- and cross-disciplinary topic.

4 Objectives

The broad aim here is to bring together the recent developments in the field of
MLA applied to reacting flow calculations. These flows in practical systems are
invariably turbulent and hence there are three important aspects, viz., turbulence,
chemical reactions and their interactions, requiring close attention. The chemical
reactions are because of molecular collisions but, at continuum level of description
used commonly for turbulent reacting flow simulations, they are modelled using
Arrhenius rate expressions involving kinetic parameters. These parameters, related
to the atomic potential energies, are obtained typically using shock tube experi-
ments but recent advances in ML techniques is helping to estimate these parameters
using atomistic molecular dynamic simulations as described in chapter “Machine
Learning Techniques in Reactive Atomistic Simulations”. This chapter also gives
an overview of various ML algorithms. One needs large data sets to train and
validate these algorithm before using them for inferring quantities of interest and
thus their robustness depends on the conditions covered in the data sets and hence
these data sets can be huge. Hence one needs a clever and intelligent algorithm to

http://dx.doi.org/10.1007/978-3-031-16248-0_5
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detect events/patterns of interest in the data. Machine learning algorithms can come
handy for this purpose as discussed in chapter “A Novel In Situ Machine Learning
Framework for Intelligent Data Capture and Event Detection” suggesting an inter-
esting idea—in situ training—to train MLA. The application of MLA to infer SGS
stresses and fluxes are described in chapter “Machine-Learning for Stress Tensor
Modelling in Large Eddy Simulation”. The combustion chemistry is quite complex
even for a simple fuel like methane or hydrogen and involves a large number of
elementary reactions with disparate time and length scales. Hence integrating these
reaction into numerical simulations of turbulent combustion can make the simula-
tions to be prohibitively expensive. Machine learning can be leveraged to accelerate
chemistry integration by helping us to understand combustion chemistry closely
as described in chapter “Machine Learning for Combustion Chemistry”. The third
aspect, turbulence-chemistry interaction, of turbulent combustion noted above can
be addressed using different modelling approaches which helps us to estimate the
filtered reaction rate of a chemical species or a reaction progress variable depending
on the modelling approach used. The application of machine learning algorithms to
these approaches are discussed in chapters “Deep Convolutional Neural Networks
for Subgrid-Scale Flame Wrinkling Modeling” to “AI Super-Resolution: Applica-
tion to Turbulence and Combustion”. Obeying constraints coming from physical
conservation laws and requirements (for example species mass fractions have to
positive or zero) can become an issue for machine learning methods and some extra
care is required while defining the cost function needed in the training step for
machine learning algorithms, see chapters “Machine Learning Techniques in Reac-
tive Atomistic Simulations” and “AI Super-Resolution: Application to Turbulence
and Combustion”. The interaction between fluctuating heat release rate and pressure
in turbulent combustion established inside a tube as in many practical combustion
systems, for example gas turbines and rocket engines, will have thermoacoustic
oscillations which can become an issue for safe operation of these systems if these
oscillations are not controlled. Predicting these oscillations and their on-set are chal-
lenging machine learning algorithms can be applied to these problems as described
in chapter “Machine Learning for Thermoacoustics”. The concluding remarks are
drawn in the final chapter.
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