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METHODOLOGY Open Access

Introduction of customized inserts for
s-treamlined assembly and optimization
of BioBrick synthetic genetic circuits
Julie E Norville1,2,3*, Ratmir Derda4,5,6, Saurabh Gupta2, Kelly A Drinkwater1,2, Angela M Belcher2,3,

Andres E Leschziner7, Thomas F Knight Jr1,8

Abstract

Background: BioBrick standard biological parts are designed to make biological systems easier to engineer (e.g.
assemble, manipulate, and modify). There are over 5,000 parts available in the Registry of Standard Biological Parts
that can be easily assembled into genetic circuits using a standard assembly technique. The standardization of the
assembly technique has allowed for wide distribution to a large number of users – the parts are reusable and
interchangeable during the assembly process. The standard assembly process, however, has some limitations. In
particular it does not allow for modification of already assembled biological circuits, addition of protein tags to pre-
existing BioBrick parts, or addition of non-BioBrick parts to assemblies.

Results: In this paper we describe a simple technique for rapid generation of synthetic biological circuits using
introduction of customized inserts. We demonstrate its use in Escherichia coli (E. coli) to express green fluorescent
protein (GFP) at pre-calculated relative levels and to add an N-terminal tag to GFP. The technique uses a new
BioBrick part (called a BioScaffold) that can be inserted into cloning vectors and excised from them to leave a gap
into which other DNA elements can be placed. The removal of the BioScaffold is performed by a Type IIB
restriction enzyme (REase) that recognizes the BioScaffold but cuts into the surrounding sequences; therefore, the
placement and removal of the BioScaffold allows the creation of seamless connections between arbitrary DNA
sequences in cloning vectors. The BioScaffold contains a built-in red fluorescent protein (RFP) reporter; successful
insertion of the BioScaffold is, thus, accompanied by gain of red fluorescence and its removal is manifested by
disappearance of the red fluorescence.

Conclusions: The ability to perform targeted modifications of existing BioBrick circuits with BioScaffolds (1)
simplifies and speeds up the iterative design-build-test process through direct reuse of existing circuits, (2) allows
incorporation of sequences incompatible with BioBrick assembly into BioBrick circuits (3) removes scar sequences
between standard biological parts, and (4) provides a route to adapt synthetic biology innovations to BioBrick
assembly through the creation of new parts rather than new assembly standards or parts collections.

Background

In traditional modification of organisms by cloning [1],

the emphasis has been on single gene changes that

improve the organism or make a single component

easier to study. Construction of synthetic genetic circuits

brings together many components [2,3] to accomplish

novel tasks, creating functions unobtainable through

single gene changes. De novo construction of genetic cir-

cuits encompasses the techniques that fall into two cate-

gories: techniques for construction and techniques for

optimization. Gene synthesis, though decreasing in price

[4], still remains prohibitively expensive for de novo

synthesis of complete genetic circuits [5]. Instead, either

newly synthesized, natural, or existing DNA fragments

are pieced together using DNA assembly techniques. A

variety of assembly methods now exist including idem-

potent methods [5-12], extensions to idempotent meth-

ods [13-18], ligation independent methods [3,19-21],
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USER enzyme based methods [22,23], multi-part enzy-

matic assembly methods [24,25], and genome-scale

assembly methods [26-28]; however, regardless of how

genetic circuits are constructed, novel circuits almost

always require modification and optimization. Because

understanding of the relevant biological mechanisms

remains incomplete [29], one of the main problems in

newly assembled circuits is mismatch in the expression

levels of the components of the circuit [30]. Optimiza-

tion, thus, involves modifications of the expression levels

[4,31] to increase desired products, decrease toxic

by-products, and increase limiting reagents [32-34]. A

number of existing methods could be used to optimize

circuits by rebuilding [29] or reengineering [21,35]

them. It is desired, however, to minimize the number of

steps and permit rapid modification [35-41].

BioBrick assembly constitutes a widely used strategy

for assembly of custom genetic circuits [5]. BioBrick

parts are DNA pieces with standard sticky ends (Figure

1a and 1c). Using BioBricks, large circuits can be rapidly

assembled using a sequence of similar steps. Over 5,000

BioBrick standard biological parts are freely available to

researchers through the Registry of Standard Biological

Parts [42]. Although BioBricks have been used to con-

struct a large variety of genetic circuits [12,43-54], these

circuits often require optimization [44,55-59] and cur-

rently, there is no standard methodology for optimizing

BioBrick circuits.

Modification of a circuit’s ribosome binding sites

(RBSs) is an attractive method for optimization since

different strength RBSs create large changes in circuit

behavior [35] and a web-based tool is now available to

Figure 1 Desired BioBrick circuit modifications and approach with BioScaffolds. Every BioBrick standard biological part (a) consists of a

DNA sequence embedded between a “prefix” sequence (purple box) and a “suffix” sequence (yellow box). Parts may also contain scars (b),
which form when two parts, such as “A1” and “A2” in (c) are fused together using BioBrick assembly [12]. In many cases one would like to

convert an undesired scar between two parts in a BioBrick assembly into a different part or completely remove it (d). Our approach is to create

a new BioBrick part (the BioScaffold) (e). The BioScaffold can be assembled into a circuit using BioBrick assembly, but unlike normal BioBricks it
can be removed and replaced with a new part (f). In this paper we develop a single prototype BioScaffold that illustrates how BioScaffolds can

be used to either insert parts or remove scars.
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design RBSs of different strengths [36]. Inserting regula-

tory regions with predetermined sequences changes the

levels of protein expression [35,36] and can have dra-

matic effects on circuit performance. Optimizing Bio-

Brick circuits using modification of the RBS, however,

requires overcoming a fundamental limitation of the

BioBrick assembly method: it does not provide a way to

insert parts into the circuits once they are assembled

(Figure 1d). In this paper, we demonstrate a solution to

this problem by designing a new BioBrick part, termed

BioScaffold (Figure 1e and 1f), that can be easily excised

from intact BioBrick circuits and replaced with other

DNA sequences (e.g., RBSs). By virtue of its design,

BioScaffolds also bypass two other fundamental limita-

tions of BioBrick assembly: (1) it allows incorporation of

parts that contain the sites recognized by the enzymes

EcoRI, XbaI, SpeI, and PstI (these sites are incompatible

with standard BioBrick assembly) and (2) it allows

removal of a scar site (Figure 1b and 1f) with sequence

TACTAGAK (where K = G or T [60]) between BioBrick

parts (this is useful because the presence of the stop

codon sequence TAG in the scar interferes with produc-

tion of protein fusions and other modifications [11].)

To outline the design of the BioScaffold part, we first

review a hypothetic circuit built from components “A1”

and “A2” (designated here as “A1-scar-A2”). Removal of

the scar sequence or its replacement with a custom reg-

ulatory element (e.g., a RBS) can be performed in two

steps. In the first step, excision of the scar and small

regions of “A1” and “A2” leaves “sticky ends” inside

“A1” and “A2.” These ends can then be used for the

ligation of the opening with a scar-less DNA sequence

or a short sequence that contains a custom ribosome

binding sequence. For example, if the excised region is

(10 bp of A1)-scar-(12 bp of A2), ligating the gap with

22 base pair annealed repair oligonucleotides consisting

of (10 bp A1)-(12 bp A2) forms a scar-less sequence

“A1-A2.” While the second step is easily accomplished,

the first step requires a specialized enzyme that recog-

nizes scar sequence TACTAGAK and cuts an arbitrary

10 base pairs to the left and 12 base pairs to the right of

it. Unfortunately, no enzymes that bind to the sequence

TACTAGAK and cut on both sides of the sequence

(but outside of it) are available at this time. REases that

cleave outside their recognition sites are known [61-64],

but none satisfy the specific requirements of this appli-

cation. The evolution of an enzyme that can excise the

scar sequence TACTAGAK is in principle possible

[65-67], but not trivial.

As an alternative, one can use an existing Type IIB

or IIS REase that can cleave outside its recognition

sequence and modify the “scar region” between parts

“A1” and “A2” to introduce the recognition sequence.

Additional file 1 Table S1 lists an assortment of Type

IIB REases that cleave the target on both sides of their

recognition sequence [61,64]. Unfortunately, the clea-

vage efficiency of most Type IIB REases is low. For

example, the efficiencies of ArsI and PsrI are above

56% (e.g., for PsrI more than 70% of DNA fragments

can be ligated and 80% of these can be recut), whereas

REases commonly used in cloning experiments, such

as EcoRI and SpeI, typically have efficiencies above

90% http://www.sibenzyme.com. To facilitate selection

of the constructs that will undergo cutting (and subse-

quent ligation with an arbitrary DNA sequence), we

sought to introduce a reporter inside the excised

region. Final design of the BioScaffold part, hence,

contains two Type IIB recognition sequences placed on

either side of RFP reporter (as well as an additional

site within the RFP reporter) that serves as a selection

marker (Figure 2). This configuration makes it simple

to select colonies that circuits in which the BioScaffold

has been placed or excised and replaced with repair

oligonucleotides (Figure 3).

In this paper we demonstrate the utility of a BioScaf-

fold to optimize BioBrick circuits (by inserting a series

of RBS regulatory sequences) as well as for production

of protein fusions. Because none of these processes can

be easily attained through use of standard BioBrick

assembly, these results demonstrate that the use of

BioScaffolds can aid in overcoming several limitations of

BioBrick assembly.

Results
Maximum excision capacity of commercially available

Type IIB REases

As described in the preceding section, the prototype

BioScaffold is primarily useful for introducing RBSs

(Circuit Tuning BioScaffold) or N-terminal protein tags

(Protein Engineering BioScaffold) into BioBrick circuits

that do not contain internal PsrI restriction enzyme

recognition sites or RFP reporters. Thus, a variety of

BioScaffolds might be desirable for other applications or

for use with BioBrick circuits that contain PsrI sites or

RFP reporters. To provide a sense of the extendibility of

BioScaffolds, we examined a variety of restriction

enzymes that can cut outside their restriction enzyme

recognition sites and can thus be used to create the

cloning site within a BioScaffold. For several commer-

cially available Type IIB enzymes we have determined

the maximum number of nucleotides from the sur-

rounding parts “A1” and “A2” that can be excised using

an intermediate BioScaffold inserted between them. To

find the maximum number of excised nucleotides for

each enzyme, we align the enzyme recognition sites to

the outermost position where they can bind to the left

and right scar sequences. The resulting alignments,

shown in Additional file 1 Table S1, demonstrate that
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the furthest distances the enzymes can cut into left part

“A1” and the right part “A2” are 9 nucleotides into “A1”

for enzyme BaeI and 3 nucleotides (plus 2 additional

nucleotides for downstream protein parts) into “A2” for

enzymes BaeI and CspCI. When part “A2” is a protein

coding region then the last 2 nucleotides from the scar

region are included in part “A2,” since the last two

nucleotides of the scar TACTAGAK become the first 2

nucleotides of the start codon ATG.

BioScaffold notation, {w,x;y,z}

Since other BioScaffolds beyond the circuit tuning and

N-terminal protein engineering application (or for the

same function (tuning circuits) where PsrI restriction

enzyme sites or RFP reporters are present) might be

desired, we created a notation to make it simpler to

compare two BioScaffolds. We define the following

notation {w,x;y,z} to describe in condensed form the

positions of the cut sites relative to the BioScaffold: w

is the position of the left cut on the forward strand, x

is the position of the left cut on the reverse stand, y is

the position of the right cut on the forward strand,

and z is the position of right cut on the reverse strand.

The position numbering begins on the right side of the

BioScaffold part with 0 as the first position before

TACTAGAK, where numbers increase to the right,

and on the left side with -1 as the first position after

the K of TACTAGAK, where numbers increase to the

left–see Additional file 1 Table S1 for examples. The

cut sites of the prototype BioScaffold are given by

{0,5;15,10} (see Figure 2 where the excision positions

are marked above the cut sites). When referring to a

BioScaffold in BioBrick format, the notation {w,x;y,z}

assumes that the BioScaffold is in its most common

form when used with BioBricks (i.e., surrounded by a

scar sequence on either side).

Testing the BioScaffold

As a demonstration, we positioned the prototype BioS-

caffold in a synthetic circuit between a promoter and

GFP (Figure 3). Replacement of the BioScaffold with an

RBS caused this test circuit to become a GFP reporter

(containing a promoter, RBS, and GFP) that expresses

GFP within the cell (Figure 4). Alternatively, replace-

ment of the BioScaffold with a RBS-(maltose-binding

protein)-(glycine-serine) (RBS-MBP-GS) sequence cre-

ated a circuit that produced a MBP-GS-GFP fusion pro-

tein (Figure 5) that is fluorescent green and binds to

amylose resin. The prototype BioScaffold has been

designed to contain specific cut locations on either side

Figure 2 The prototype BioScaffold {0,5;15,10} embedded in the test circuit. Here, the internal structure of the prototype BioScaffold and

the locations of the associated PsrI cut sites and recognition sequences are shown. The prototype BioScaffold (part BBa_J70399 in the Registry

of Standard Biological Parts) is assembled between a promoter (BBa_R0010, which is not shown here) and GFP (BBa_E0040, which is partially

shown here). The BioScaffold contains one PsrI recognition site on either side of the RFP reporter (as well as an internal PsrI site within the RFP
reporter that is not shown). PsrI cuts into the scar on the left side of the part and GFP on the right side of the part, allowing the BioScaffold to

be replaced with RBS sequences that control the expression of GFP. When the BioScaffold is present, its internal RFP reporter circuit is also

present and should produce red fluorescent colonies. The RFP reporter circuit should be removed when the BioScaffold is removed. The cutting
profile for the BioScaffold is {0,5;15,10}, using the notation {w,x;y,z} is described in the Results section of the paper. Different BioScaffolds can be

created with different restriction enzyme sites, reporters, or cutting profiles.
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of its sequence (Figure 2). After excision (Figure 3), the

BioScaffold will be replaced with one of several RBSs

that are designed to drive well-defined levels of expres-

sion in the downstream gene, demonstrating how BioS-

caffolds can be used to facilitate the optimization of

circuits. Alternatively, replacement of the BioScaffold

with the MBP-GS fusion protein part will demonstrate

how BioScaffolds can be used to create protein fusions.

The visual markers used in the prototype system help

track the presence of the BioScaffold (which contains an

RFP reporter) and the performance of the optimization

process (effect of different strength RBSs or a MBP-GS

fusion on the GFP reporter). Figure 3 shows graphically

the proposed replacement of the BioScaffold with repair

oligonucleotides that contain an RBS sequence, which

will affect the performance of the final GFP reporter cir-

cuit (Figure 4). Figure 5 shows that the BioScaffold can

successfully be replaced with an expressed MBP-GS

fusion, which causes the final protein fusion to gain the

property of affinity to an amylose column as well as

maintaining the fluorescence of GFP.

Excision of the BioScaffold and replacement with the RBS

and the RBS-MBP-GS sequences

Excision of the BioScaffold from the “promoter-scar-

BioScaffold-scar-GFP” composite part and ligation of

the RBS insert was expected to create a “promoter-

scar-RBS-GFP” composite (where one RBS was

inserted in each of five parallel reactions). The plated

transformations of each reaction contained a mixture

of red colonies and green colonies. It was assumed

that the red colonies resulted from clones where the

BioScaffold was not excised. At the optimal concentra-

tion of vector in the cutting reaction, less than 3% per

Figure 3 Excision and selection for BioScaffold removal. Here,

the prototype BioScaffold is present in a test circuit, with sequence

“promoter-scar-BioScaffold part-scar-GFP.” It is cut with the enzyme

PsrI and then replaced with a RBS sequence. The BioScaffold test
part contains a RFP expression circuit surrounded by two PsrI

recognition sites; thus, cells that contain the BioScaffold part, such

as the cells that contain the test circuit, exhibit red fluorescence. If
PsrI excises the BioScaffold part from the test circuit and an RBS is

ligated across the open gap, then the sequence “promoter-scar-RBS-

GFP” is obtained. Cells that contain this sequence exhibit green

flourescence, where the strength of the fluorescence depends on
the RBS used. To show the flexibility of the BioScaffold, it was also

replaced with a “RBS-MBP-GS” sequence to create the sequence

“promoter-scar-RBS-MBP-GS.”

Figure 4 GFP expression levels created by the different RBSs.

Sequence verified clones of the form “promoter-scar-RBS-GFP”

(a) were analyzed visually (b) and using flow cytometry (c). The
inserted RBSs were expected to drive relative translation initiation

rates of 10, 100, 1,000, 10,000, and 100,000 for the downstream

sequence GFP with the cell fluorescence proportional to the

translation initiation rate (a). Qualitative visual assessment revealed
green fluorescent intensity commensurate with the expected values

(b), although colony thickness can influence perceived intensity.

Simultaneously transformed colonies of RBS10, RBS100, and

RBS1,000 appeared light green, while RBS10,000 appeared green
and RBS100,000 appeared bright green (b). Quantitative assessment

using flow cytometry data revealed GFP intensity levels

commensurate with expected values, except for the higher than
expected translation initiation of GFP driven by RBS10 (c).
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1,000 colonies were red (i.e., still contained the BioS-

caffold.) We picked 25 non-red clones for sequencing

(5 for each RBS insert). For 80% of the non-red clones,

sequencing showed that the RBS was inserted in place

of the BioScaffold part at the correct location with the

correct sequence. For 12% of the clones, sequencing

showed that the entire test circuit was completely

mutated out. For 8% of the clones, the sequencing

result was noisy, preventing interpretation. We specu-

late that none of the errors are due to the cutting

properties of the enzyme, but rather to selection

against the circuit or inadvertent picking of multiple

colonies. Using the same starting circuit, selection,

and circuit verification protocol, ligation of the RBS-

MBP-GS insert was expected to create a “promoter-

scar-MBP-GS-GFP” circuit where the ATG start

codon of the GFP was removed by the BioScaffold.

Expression levels of the RBSs

Colony and sequence verified clones that contain RBSs

in place of the BioScaffold part were assessed qualita-

tively and quantitatively (Figure 4). Visual analysis

demonstrated that the clones exhibited a range of green

fluorescent intensities: the lowest predicted expression

levels appeared light green and the highest expression

levels appeared bright green (Figure 4). Visual analysis is

only a rough guide to intensity since the number of

cells present in a colony could influence its appearance.

Overall, the flow cytometry data confirmed the results

from [36] using our method to introduce the RBS. Flow

cytometry data indicated that the predicted expression

levels were commensurate with the actual intensity

values except for sequence RBS10, which was expected

to produce the lowest intensity of protein fluorescence

(Figure 4). The actual expression level for RBS10 was

higher than expected; however, similar deviations are

observed by Salis, et al. [36] for low RBS translation

initiation strengths, and therefore appear to be unrelated

to the use of the BioScaffolds. If it was important to cre-

ate a circuit with low expression of GFP, we could have

performed another optimization round using RBSs with

similar but slightly different relative translation rates,

such as 8, 9, 11, and 12.

Affinity of the MBP-GS-GFP protein to an amylose column

The following observation confirmed the presence of

desired genetic product (MBP-GS-GFP) in the cells

that contained the “promoter-scar-RBS-MBP-GS-GFP”

circuit (Figure 5a): (1) cells which contained MBP-GS-

GFP exhibited strong fluorescence similar to those of

cells that contained the classic BBa_J04430 GFP repor-

ter circuit [68] (Figure 5b), (2) running a lysate from a

culture of MBP-GS-GFP cells through an amylose col-

umn led to retention of the fluorescent product, which

could only be eluted with a buffer containing maltose,

whereas for GFP cells the fluorescent product was

eluted in the wash (Figure 5c) and (3) both crude

MBP-GS-GFP lysate and eluate from the amylose col-

umn contained a strong band at ~67 kDa and a weak

band at ~134 kDa in a SDS page gel (Figure 5d,

“LOAD” and “ELUTE” lanes), which are the expected

sizes of a MBP-GS-GFP fusion and a MBP-GS-GFP

dimer [69,70], rather than the 40 kDa length of MBP-

GS or the 27 kDa length of GFP. The identity of the

bands was confirmed by mass spectrometry. (The con-

centric patterns seen on the gel are artifacts that come

from the glass of the scanner.)

Figure 5 Properties of GFP with an N-terminal MBP-GS fusion.

Lysate supernatants from cultures expressing GFP alone (a) or the
MBP-GS-GFP fusion (b) were applied to amylose columns. The

green fluorescent product was not retained on the “GFP” column

when column buffer was applied, but rather appeared in the first

wash eluate (c). In contrast the green fluorescent product was
retained on the “MBP-GS-GFP” column when column buffer was

applied (c). The protein purification process for MBP-GS-GFP was

monitored using SDS-PAGE: Lane 1, cell lysate ("load”); Lane 2, first

wash eluate ("wash”); Lane 3, maltose eluate ("elute”) (d). Mass
spectroscopy confirmed that the band at ~67 kDa was MBP-GS-GFP

and identified the minor contaminant at the top of Lane 3 ("elute”)

as a dimer form. The dimer is known to be a normal occurrence
with this construct [69,70].
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Discussion

Use of the BioScaffold test circuit to overcome limitations

in BioBrick assembly and comparison with other methods

The original protocol for BioBrick assembly does not

allow insertion of parts into premade assemblies and

optimization of the performance of premade circuits.

We demonstrate that BioScaffolds enable optimization

of premade circuits through insertion of RBSs of prede-

termined strength and protein fusions. Although a few

other approaches have been recently developed for the

same purpose (see below), the use of BioBricks provides

advantages and flexibility not present in these methods.

For example, Church and co-workers demonstrated

rapid evolution of circuits with RBSs using Multiplex

Automated Genome Engineering (MAGE) to create and

select for circuits with improved performance [35].

Sauro and co-workers used the Clontech In-Fusion PCR

Cloning kit to re-engineer BioBrick circuits [21] after

assembly. Substitution of the BioScaffold with RBSs pro-

vides an approach different from MAGE and In-Fusion

because the expression of proteins was manipulated

rationally using the RBS calculator [36]. In addition,

BioScaffolds can be used to insert both long and short

sequences.

BioBrick parts cannot contain restriction sites for

EcoRI, SpeI, XbaI, and PstI; thus, conversion of arbitrary

DNA sequences into BioBrick parts requires the time-

consuming and expensive process of removing these

sites from the sequence of interest. We demonstrate,

however, that this BioScaffold can be used to insert any

parts into BioBrick circuits except for those that contain

PsrI recognition sites. Importantly, PsrI recognizes

GAACNNNNNNTAC (or GTANNNNNNGTTC) and

the probability of encountering this sequence in a ran-

dom DNA sequence (once every 8,192 base pairs for the

forward or reverse recognition site) is 8 times lower

than that of encountering a site for EcoRI, SpeI, XbaI,

or PstI. In the event that the site for PsrI is present in

the insert part, it is possible to use another restriction

enzyme (see Additional file 1, Table S1) to create appro-

priate sticky ends for the insert.

Conclusions

We demonstrated that BioScaffolds could be implemen-

ted as a BioBrick part, integrated into BioBrick circuits,

and used to remove a scar sequence. Additionally, BioS-

caffolds allowed the introduction of parts directly into

preassembled circuits. This work demonstrated the

introduction of RBSs for circuit optimization, but nat-

ural sequences, BioBrick parts, or assemblies of parts

can alternately be incorporated. Specifically, appropri-

ately designed BioScaffolds allow the creation of protein

fusions or the addition of N- or C-terminal tags. For

instance, the prototype BioScaffold shown here can also

be used to add N-terminal tags, as was demonstrated

here through the introduction of a MBP fusion

upstream of GFP. Another advantage of BioScaffolds is

that a wide variety of parts can be introduced at a speci-

fic position in a single reaction, providing an approach

to perform directed evolution and selection of circuits

using BioBrick standard biological parts. Thus, BioScaf-

folds provide a compelling tool to extend idempotent

assembly techniques, such as BioBrick assembly, and

can even be utilized in combination with PCR based cir-

cuit assembly techniques.

Methods

Construction of prototype BioScaffold: part BBa_J70399

The prototype BioScaffold (BBa_J70399, the part num-

ber assigned by the Registry of Standard Biological Parts

at [42]) was created using the RFP production circuit

(BBa_J04450) as a template and the primers J70399-f

(5’-gtttcttcgaattcgcggccgcttctagagatacatgaacatgcaatacg-

caaacc-3’) and J70399-r (5’-gtttcttcctgcagcggccgctactag-

tagagagcgttcaccgacaaacaacag-3’). Each primer contains a

recognition site for the Type IIB REase PsrI as well as

the standard BioBrick ends. The reactions contained 45

μl PCR SuperMix High Fidelity (Invitrogen), 12.5

pmoles of forward and reverse primer, and 1 ng tem-

plate DNA in a 50 μl total volume. The PCR steps

included a denaturation step of 96°C for 4 minutes fol-

lowed by 36 cycles of a 94°C denaturation step for 30

seconds, a 52.3°C anneal step for 30 seconds, and a

68°C extend step for 2.5 minutes. Finally, the reactions

were incubated at 68°C for 10 minutes before being

cooled to 4°C until the reactions were halted. The sam-

ples and 1 μg of 2-log DNA ladder (New England Bio-

labs, Inc.) were electrophoresed in separate lanes on a

1% agarose gel. Sample bands of length 1000 base pairs

were excised and purified with a QIAEX II Gel Extrac-

tion Kit (QIAGEN). The amplified linear DNA fragment

was cloned into the BioBrick vector pSB1AT3, by

digesting both the fragment and the vector with XbaI

and PstI and performing the ligation using protocols

adapted from BioBricks assembly kit (New England Bio-

labs, Inc.) to place the fragment into the vector. The

ligation mixture was transformed into chemically com-

petent E. coli strain TOP10 (Invitrogen) [12] and plated

on Luria-Bertani (LB) agar plates supplemented with 15

μg/ml tetracycline and 100 μg/ml ampicillin.

Assembly of the BioScaffold test circuit: part BBa_J70423

The test circuit consists of a promoter, the BioScaffold,

and GFP assembled into the circuit “promoter-scar-

BioScaffold-scar-GFP.” The assembly was performed in

two rounds using the BioBrick Assembly kit (New Eng-

land Biolabs, Inc.) for three antibiotic (3A) assembly.

First, the promoter (BBa_R0010 in BioBrick vector
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pSB1A2), the BioScaffold part (BBa_J70399 in BioBrick

vector pSB1AT3), and the destination vector pSB1AK3

were digested. The upstream part, the promoter

(BBa_R0010), was digested with EcoRI and SpeI. The

downstream part, the BioScaffold part (BBa_J70399), was

digested with XbaI and PstI. The destination vector

pSB1AK3 was disgested with EcoRI and PstI. The digests

were mixed together and ligated with T4 ligase, to form a

composite part (BBa_J70405 in the vector pSB1AK3).

The ligation mixture was transformed into chemically

competent TOP10 cells as above and plated on LB agar

plates containing 100 μg/ml ampicillin and 50 μg/ml

kanamycin. 5 colonies that appeared red were verified by

colony PCR and sequencing as described below.

Next, the composite part (BBa_J70405 in BioBrick vec-

tor pSB1AK3), the GFP (BBa_E0040 in BioBrick vector

pSB1A2), and the destination plasmid pSB1AC3 were

digested and ligated in the same manner as above,

where BBa_J70405 was the upstream part and

BBa_E0040 was the downstream part, to form the test

circuit composite part (BBa_J70423). The ligation mix-

ture was transformed into chemically competent TOP10

cells as above and plated on LB agar plates containing

100 μg/ml ampicillin and 35 μg/ml chloramphenicol. 5

colonies that appeared red were verified by colony PCR

and sequencing as described below.

Design of RBSs

The RBS calculator [71] was used to design the RBS

sequences. The downstream GFP (BBa_E0040) was

entered as the protein coding sequence. TACTAGAG

was used as the presequence. Five different target trans-

lation initiation rates (10, 100, 1,000, 10,000, and

100,000) were entered into the calculator to generate

the five different RBS sequences. The sequences gener-

ated by the calculator (see Table 1) were then utilized to

create forward and reverse oligonucleotides, taking into

account the cutting profile of the BioScaffold. The

forward oligonucleotide has the sequence “G-RBS

sequence-ATGCGTAAA” and the reverse oligonucleo-

tide has the sequence reverse complement of “CTA-

GAG-RBS sequence-ATGC.” After the replacement of

the BioScaffold with the annealed oligonucleotides, the

downstream scar disappears, while the upstream scar

remains.

Design of the RBS-MBP-GS insert

The RBS-MBP-GS insert was created using the plasmid

pMAL-p5e (New England Biolabs) as a template and the

primers RBS-MBP-GS-GFPstart-f (5’-gaattcgcggccgcttc-

tagagacgaacgctctctactagatgcctagagtcgccccctaagggcggagg-

taggagaaactcaaatg aaaatcgaagaaggtaaactggtaatctg -3’) and

RBS-MBP-GS-GFPstart-r (5’-ctgcagcggccgctactagtagtaa-

tatatgttcgatagattttacgagaaccagtctgcgcgtctttcagg -3’) using

the same PCR and gel extraction protocol as for

BBa_J70399.

Excision of BioScaffold part from the test circuit and

replacement with RBSs

The oligonucleotides containing the RBSs were prepared

by combining 8 μl of 100 μM forward oligonucleotide,

8 μl of 100 μM reverse oligonucleotide, 10 μl annealing

buffer (100 mM Tris HCl pH 7.5, 1 M NaCl, 10 mM

EDTA), and 74 μl milliQ water. They were then

annealed by heating to 95°C for 2 minutes, ramping

from 95°C to 25°C over 45 minutes, and then cooling to

4°C. We diluted 10 μl of oligonucleotides into a final

volume of 1000 μl.

We digested the test circuit by combining 100 ng

DNA, 1× Buffer Y (SibEnzyme, Inc.), 100 μg/ml Bovine

Serum Albumin (SibEnzyme, Inc.), and 0.5 μL PsrI

(SibEnzyme, Inc.) into a final volume of 50 μl. The

restriction digest reaction was incubated for 1 hour at

30°C followed by 20 minutes at 65°C. In our experience

digestion of more DNA dramatically increases the num-

ber of undigested products yielding red colonies upon

transformation.

We performed the ligation by combining 5 μL of the

PsrI digestion reaction (10 ng DNA), 0.2 μL of the diluted

annealed oligonucleotides, 1× T4 DNA ligase reaction

buffer, 200 units of T4 DNA ligase into a 20 μL total

volume and cooling to 18°C for 30 minutes. The ligation

mixture was transformed into chemically competent

TOP10 cells as above and plated on LB agar plates con-

taining100 μg/ml ampicillin and 35 μg/ml chlorampheni-

col. 5 non-red colonies per reaction were verified by

colony PCR and sequencing as described below.

Replacement of the BioScaffold with the RBS-MBP-GS

insert to create BBa_J70631

Both the test circuit and the gel purified RBS-MBP-GS

insert were digested with PsrI as described above in

Table 1 Sequences generated by the RBS Calculator

Target Rate Sequence

10 10.5 CTAAATAGGAGGCTGGGAGTTCAACGAAACCCCT

100 95.6 CCCCCGTTCACTATACCGCAGGCCTTCTTTACAAA

1,000 950.1 ACATTAACCTACAAAGAACGTCGCAGAGGGA

10,000 9,953.7 TGTCGCGGATACTGATCCATAAAGGCCGGGGTT

100,000 94,459.0 TAGAGCCGTTAAAGAAGCTAGGAGGCCGAA

10, 100, 1,000, 10,000, and 100,000 were entered as target initiation rates in

the RBS calculator. The RBS calculator uses a relative scale to relate relative

translation initiation rate with five terms that quantify the strengths of

molecular interactions involved in this process, with the result that any RBS

sequence designed by the RBS Calculator can be related on this scale (further

descriptions of this unitless parameter are available in the document [36] and

FAQs [77,78] describing this software. Qualitatively from visual analysis of GFP

expression in our samples and quantitatively based on our FACS results, we

consider 10-100 to be low rates of translation initiation, 1,000 to be a medium

rate, and 10,000 and above to be high rates of translation initiation.
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separate reactions. We performed the ligation by com-

bining 5 μl of the test circuit digestion reaction, 5 μl of

the RBS-MBP-GS insert digestion reaction, 1× T4 DNA

ligase reaction buffer, 200 units of T4 DNA ligase into a

20 μl total volume and cooling to 18°C for 30 minutes.

The transformation and sequencing of BBa_J70631

occurred as described previously for a test circuit con-

taining an insert.

Verification with colony PCR and sequencing

Colony PCR and subsequent gel electrophoresis were

performed according to [12] except that the BioBrick

primers BioBrick-f (BBa_G1004) and BioBrick-r

(BBa_G1005) were used. The PCR protocol was the

same as described for the BioScaffold part above, except

that the extension step at 68°C occurred for 3.5 minutes

instead of 2.5 minutes. The Massachusetts Institute of

Technology Biopolymers Laboratory performed DNA

sequencing, using the verification primers VF2

(BBa_G00100) and VR (BBa_G00101).

Flow cytometry measurement of final circuit fluorescent

intensity

Expression data were collected using a Becton-Dickinson

FACSCAN flow cytometer with a 488-nm argon excita-

tion laser and a 515-545 excitation filter [72]. Cells were

grown in M9 media [73] (1× M9 salts, 2 mM MgSO4,

0.5% glycerol, 0.2% casamino acids, 2 mM thiamine) with

ampicillin and chloramphenicol. The cultures were

grown according to [74], except that the samples were

measured in M9 medium [73].

Purification of the MBP-GS-GFP protein using an amylose

column

The BBa_J70631 construct, which contains a MBP-GS-

GFP expression circuit, was expressed in E. coli Top10.

The culture was grown overnight at 37°C in rich media

(10 g typtone, 5 g yeast extract, 5 g NaCl, 2 g glucose) con-

taining 100 μg/ml ampicillin and 35 μg/ml chlorampheni-

col, expanded 1:100 the next day and grown for 3 hours

after the OD600 reached 0.6. The BBa_J04430 construct,

which contains a GFP expression circuit, was grown in the

same manner except the media did not contain chloram-

phenicol. Purification of a 40 ml culture of each construct

was performed according to [75] using amylose resin

(New England Biolabs), expect that the GFP and MBP-

GS-GFP lysates were diluted until they exhibited equiva-

lent fluorescent intensity and an equivalent volume of

each cleared lysate (containing less MBP than the binding

capacity of the amylose resin) was applied to each column.

SDS-PAGE of MBP-GS-GFP

Samples were run on a 4-12% Bis-Tris gel (Invitrogen)

and stained with Coomassie blue or SimplyBlue

(Invitrogen) stain [76]. The contrast of the image was

adjusted uniformly in Adobe Photoshop to simplify the

visualization of the bands.

Mass spectrometry of MBP-GS-GFP

The lanes from a SimplyBlue stained SDS PAGE gel

were excised and submitted for analysis to the Proteo-

mics Core Facility of the Koch Institute for Integrative

Cancer Research at MIT. The gel bands were subjected

to in-gel protein digestion with trypsin, following stan-

dard protocols. LC-MS/MS analyses were carried out

using a nanoflow reversed phase HPLC (Agilent) and an

LTQ ion trap mass spectrometer (Thermo Electron).

Protein identifications were carried out by database

search using Sequest software (Thermo Electron) against

an E. coli protein database, generated from the Uni-

ref100 protein database. The protein sequence of the

MBP-GS-GFP fusion protein was added to the E. coli

protein database.

Identity of the bands at ~67 and ~134 kDa

Proteins in the bands at ~67 and ~134 kDa were identi-

fied by in-gel digestion and LC-MS/MS analysis.

Additional material

Additional file 1: Table S1 - BioScaffold designs for maximal

excision (see additional file). Several Type IIB enzyme recognition sites
are aligned to the scar sequence TACTAGAK to determine maximum
excision to the left and to the right of the BioScaffold. The alignment of
the recognition sites to the scar fixes the sequence at the start and end
of the BioScafffold. We include several notes to clarify the table. First, the
enzymes shown cut on both sides of their recognition site, not just one.
For example, the cut sites and recognition sequence for PsrI is (7/12)
GAACNNNNNNTAC(12/7) [64]. Second, the K (in the scar sequence
TACTAGAK) is T for any protein coding region or other sequence that
starts with ATG (i.e., TACTAGATG) and G for any other sequence. M
represents A or C, R represents G or A, and Y represents C or T [60].
Third, recognition sequences for the enzyme are highlighted in bold

font. Fourth, the internal cuts sites within the BioScaffold are not shown
and the selection marker between the two recognition sites is
represented as |...| In the prototype BioScaffold, the selection marker is a
RFP reporter circuit. Fifth, the notation represents the location of the cut
sites in condensed form. BioScaffold {w,x;y,z} notation is described in the
Results section of the paper.
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