
Introduction of Viewpoints in
Conceptual Graph Formalism

Myriam Ribibre, Rose Dieng
INRIA (project ACACIA)

2004, route des Lucioles BE93
06902 Sophia-Antipolis Cedex

E-mail: {Myriam.Ribiere,Rose.Dieng} @sophia.inria.fr

Abstract:
To represent knowledge in a context of several experts, it is interesting to model the multiple
perspectives that different experts may have on the objects handled in their reasoning. The con-
cept of a particular perspective called viewpoint, is already used in the field of object oriented
representation or in the field of databases conception. Taking inspiration of research made in
object oriented representation, we propose in this paper an extension of the conceptual graph
formalism to integrate viewpoints in the support and in the building oLconceptual graphs. We
also study mechanisms for managing viewpoints.

Keywords: Knowledge Representation, Conceptual Graphs, Viewpoints.

1. Introduction

In knowledge acquisition and modelling, it is often to encounter multi-expertise prob-
lem. Indeed, each expert, involved in knowledge acquisition, can have a particular per-
spective on a handled object, depending on his/her position in the enterprise
organization, domain (working context) and the knowledge learned from experience
(know-how, competence). Therefore it is difficult to elaborate a unique model taking
into account the different terminologies used by the different experts. The notion of
viewpoints on the handled object, helps to model knowledge by factorizing informa-
tion. Viewpoints are also efficient for knowledge extraction; there are viewpoint-based
mechanisms allowing accessibility to a subset of information o f a~common model.

Viewpoints for knowledge acquisition are particularly used in the field of object ori-
ented representation. The interest is based on manipulation of a complex system in
terms of accessibility and dynamic knowledge representation. After describing previ-
ous work in object oriented representation, we propose an extension of the concgptual
graph formalism to support the viewpoint management: we first describe the different
steps to integrate viewpoints in support and in conceptual graph, then we explain how
to manage viewpoints.

In conclusion, we describe our perspectives and we discuss on the interest of our work
in comparison with previous work related to views or viewpoints in conceptual graph
formalism.

169

2. Viewpoint Notion

Research on viewpoint notion was carried out in the seventies. Several interpretations
of this notion are possible. The first one is a spatial interpretation [9]: viewpoints cor-
respond to the different perceptions of an object with respect to the observer's position.
The second interpretation is a knowledge domain one: viewpoints correspond to the
different ways to translate knowledge with respect to the social position, know-how
and competence of an expert. In this interpretation, a viewpoint includes a context, and
the perception of a person or a group of persons.
This second interpretation underlies several systems developed since 1977. The first
one, KRL [t] is dedicated to knowledge representation. LOOPS [12] inherits the
approach of KRL. SHOOD [10], ROME [2], TROPES [7] are the second generation of
those systems. The definition of the viewpoint interpretation is more restricted in those
systems: they consider the different ways by which an expert can see a knowledge
base, but they don't explain explicitly what is a viewpoint. In most applications with
such systems, viewpoints are restricted to a knowledge domain or a competence
domain.

We describe here two example models for the introduction of viewpoint in knowledge
representation and for the management of multiple viewpoints. We focus on these
models because they are sure as basis of our reflection about introducing viewpoints in
conceptual graphs.

2.1 TROPES

TROPES [7] notion of multiple perspectives allows to structure a knowledge base
according to different objectives. TROPES is based on the definition of a set of basic
conce)ts, which can be described in a class arborescence [fig. 1], according to different
view >oints.

bidirectional
viewpoint bridge

root " ' i ~ ..Class

t t t * t ~ i

t *
t t t

Concept

' j _ . j :, ' , J I n s t a n c e

tional

Fig. 1. The TROPES model

170

Bridges in the structure allow to build an inclusion or equivalence relation between
two classes pertaining to different viewpoints. Each class belongs to only one view-
point. The concept of multi-instantiation enables to instantiate an object with several
classes.
This structuration is dedicated to the classification process allowing the manipulation
of complex systems and, in particular, an easier access to information.

2.2 ROME

ROME [2] and FROME [3] (the extension of ROME for frames) are dedicated to mod-
elling incomplete and evolving knowledge, in particular through the multiple represen-
tation according to multiple viewpoints. FROME uses a simple link for instantiation,
but multiple links for representation. So an object [fig. 2] is identified by a main class,
which keeps the identity of the object, and can have multiple representation links,
which specialize the object through viewpoints.

_(basic class),

r ~ " " ~ " ~ J 7 , ~ k ~ N ' N ~ viewpoint class)
k'viewp~ / / i ~

r ~ / ~ i~:~:.~ N(~viewp ~
(,,.viewpoint class.) / rostand!athos,\

(viewpoint class__) i ~ viewpoint class)
\

{ , . object _)

Fig. 2. The ROME model

This technique allows to add information by adding a new viewpoint to an object (by a
new link of representation). FROME also uses an exclusion link to prevent an object
from having incompatible representation links. In TROPES this exclusion link does
not exist, since an object can be instantiated only by one class per viewpoint.

2.3 Objects and Conceptual Graphs

A natural correspondence can be made between formalisms for object oriented repre-
sentation on the one hand and conceptual graph formalism on the other hand. Indeed,
object oriented formalisms often rely on the notions of class and object (i.e. instance).
A class is described by slots and methods, that may be inherited through a hierarchy of
classes. An object is an instance of a class and can be manipulated in a knowledge
base. So a class corresponds to a concept type (in CG formalism), and an object to a
concept, having a concept type and a referent. The class hierarchy corresponds to the
concept type lattice in the support.
Furthermore previous work already exists on bringing together oriented object lan-
guage and conceptual graph formalism [5]. Therefore this correspondence convinced
us that the integration of viewpoints in conceptual graph formalism can be inspired by
research realized in object oriented representation.

171

3. Viewpoint Integration in Conceptual Graph

In object oriented formalisms, the integration process of viewpoints can be summed up
by two phases:

�9 How to represent viewpoints inside the class hierarchy?

�9 How to identify an object with different viewpoints?

These phases are situated at two different levels: the first one concerns the class level,
which corresponds to the support level in CG formalism. The second one deals with
the instance level, which corresponds to the graph level in CG formalism. The figure 3
summarizes our approach. It shows the different entities that take place in the view-
point integration.

/ Support

~.. lattice Set of relatio/

Viewpoint management

Qt~ Instan tia tion bas)j/

/Knowledge base of C&

I I

I I

\ /
Fig. 3. Viewpoint integration in conceptual graph formalism

We present the different steps of viewpoint integration at different levels in next sec-
tions.

3.1 Viewpoint and Support

In this section we define the different elements that we introduced in the support and
we describe a viewpoint knowledge base.

3.1.1 Concept Type Lattice

Viewpoints are already underlying in the concept type lattice but they are implicit. The
information contained implicitly in the subtype link can be explicitly expressed by a
viewpoint. When, in the classic support, a concept type has several fathers, it generally
corresponds to the use of several implicit viewpoints for building the lattice: such
viewpoints are implicit in the ordering relation upon which the concept type lattice
relies.

172

Definition:
Let C, C' two concept types. If C' is a subtype of C, then a viewpoint P can be made
explicit, such that C' is a subtype of C according to the viewpoint R Once such a view-
point made explicit, C is called a ~basic concept type>> and C' an ~viewpoint oriented
concept type>> (noted v-oriented concept).

Note:
�9 C' itself can also be a basic concept type, if it is decomposed through at least one

explicit viewpoint. In this case we must consider the two characteristics (v-oriented
and basic) of the concept type for the viewpoint management.

�9 A v-oriented concept type can be subtype of several basic concept types.

A viewpoint is then the explicit expression of a particular subtype relation existing
between two concept types.

3.1.2 Conceptual Relations

In the set of conceptual relations, we introduce the notion of ~viewpoint relation>>,
which expresses a more precise subtype link. This viewpoint relation has two concept
types in its signature. Esch in [6] uses a superior level concept type TYPE, to manipu-
late second order concept types. So our viewpoint relation is a second order binary
relation between two concept types. The signature of this relation type is (TYPE,
TYPE).
In a previous work [11], we defined second order relations with an associated behav-
iour. A ~viewpoint relatiom~ is one of such relations, and its associated behaviour ena-
bles to manage consistency between the subtype link in the concept type lattice and the
expression of a viewpoint between the same concept types. This behaviour is particu-
larly realized during the process of creation or modification of a viewpoint (i.e. addi-
tion or removal of a concept type in the concept type lattice) which has an impact on
the subtype link.
Let the following graph G:

~YPE: g asic type....t | ~ r~ I ~" 1 TYPE: v-oriented type. t2 I

G is read: ethe v-oriented type t 2 is a subtype of the basic type t I according to the

viewpoint VPb>

Definition:
Let C 1, C 2 two concept types. If C t < C 2, then there may exist a ~viewpoint relation>~
VPt such that C t is a subtype of C 2 according to VPt. VPt is a second order conceptual
relation of signature (TYPE,TYPE). Then C l is a basic concept type and C 2 a v-ori-
ented concept type.

Remark: According to Wermelinger's theory [12], there are several finite concept type
lattices (one for each order) and a finite set of finite relational concept type lattices
(one for each order).There are several relation type hierarchies: relation types are clas-
sified according to their arity and order. Each hierarchy contains all relations with the
same signature (i.e. order, arity and arguments' orders).

173

So, as the relation type SUBTYPE, our ~<viewpoint relation type>> VPt belongs to the
hierarchy of dyadic relation types and of signature (TYPE, TYPE), in the lattice of sec-
ond-order relation types. TYPE belongs to the second-order concept type lattice. In
addition, VPt < SUBTYPE.

> a concept type lattice based on accidentology

/•infra
in built up area \

nfra-in coufftry~--------- x " \
nrra_w!tn_mtercnange-------x\ \
ntra-wltll-acceleratl~176 X

/-Departmental_ro~ad x ~ k \
Motorway
Communal road

J ~ / ~ / / R o a d ~ N a t i o n a l r l ~ X ~

T---InfrastructurE \ \ \ \ \ \- ~ranslt__roaa ~. .__~-~_--~\~

~k~4 l a n e s ~ 37a~neS Y #

\ Single-lane ~ ' / ' ~ /r / /
\ / Giratory / / / / / / / / /
\ / / T u r n to f i ~ h t " / / / / /

Cros sroad~---Turn-to-leTt / / / / /
/ /

\\\" Crosswise-crossroad7 /
\~ T_shaped_crossroad /

Crossroad_with_traffic_ligtits
Half_moon shaped_crossroa~

l)> set viewpoint (VPt_curvature, VPt_administrative, of relations:
VPt_lane_nb, VPt administrative&town).

D a pa r t viewpoint knowledge base: of the ~ . . . _ ~ [T y p e : Bend]

f
Pt_curvature~ ~ [Type:Straight_road]

~ [Type: Motorway]
�9 . . [Type: Nationalroad]

/~Pt-admmlstrat lve)~_.~2Z~'~ [Type: Departmental_road]
[Type: R o a d] ~ - - ~ T y p e : Communal_road]

~k \ \ ~ [T y p e : 4 lanes]
\ - " (v r 'Uane -n~ [Type: 3_-lanes]

~ ~ [T y p e : 2,lanes]
X - " ~ [T y p e : Single_lane]

\\ ~ ~....[Type:Transit_road]
~ (V P t administrative&town)(-~ [Type: Main road]

Fig. 4. Example of viewpoint expression in the domain of accidentology

3.1.3 Viewpoint Knowledge Base

Modifications and definitions brought in the two previous sections allow to build a

174

knowledge base, where all subtype links, according to a viewpoint, are described. We
call this base a ~wiewpoint base>>. We choose to represent viewpoints outside the sup-
port, in order to avoid to enforce a systematic use of viewpoints in conceptual graphs.
Indeed a viewpoint must be used only if a subtype link contains information which can
help in the information retrieval or modelling. This is how we introduce viewpoints in
a conceptual graph base. We present an example [fig. 4] in the domain of accidento-
logy to illustrate the aim of such a module [fig. 3].

This example shows that different criteria were used to define the subtypes of Road.
The introduction of viewpoints makes these criteria explicit and allows the classifica-
tion of the different kinds of subtypes. Those different viewpoints come from several
experts having different competence domains. Each expert gives importance to some
viewpoints on the definition of a road. The infrastructure expert gives an importance to
the viewpoints: <<VPt_administrative>>, ~VPt_administrative&town>> and
~<VPt_lane_nb~>, while the psychologist points to <~VPt_curvature>> or <~VPt_lane_nb>>
that help him/her to make the driver's error explicit to be considered as a factor of the
accident.

The consequence is that if an expert only wants to see a part of the concept type lattice
depending on his/her competence domain and/or an other competence domain depend-
ent on an other expert, the adequate information to be shown, can be filtered through
viewpoints. It may be very efficient for a complex system, having a wide concept type
lattice.
Each user (expert) can work with only the concept types that are relevant for his/her
expertise. The concept type lattice plays the role of a common concept type lattice,
from which several concept type sets, dedicated to the intended user, can be extracted.
Such sets are partly organized in a hierarchy but not in a lattice structure.

3.2 Viewpoint and Conceptual Graphs

After having defined how to introduce viewpoints in the support, let us now define how
to construct a concept and a conceptual graph with viewpoints.

3.2.1 Instantiation of a Concept Type

If a concept type is a <<basic concept type>>, then it has several representations through
the different viewpoints.

Definitions:
- Let Tc a basic type concept, and let r an individual or generic referent. [Tc:r] is an
instantiation of the <<basic concept type>~ Tc. It is called <<basic concept>>.
- Let To a v-oriented concept type, and let r an individual or generic referent. [To:r] is
an instantiation of the <w-oriented concept type>> To. It is called <w-oriented concept>>.

Each representation of a given basic concept describes the same object as this basic
concept, but with different levels of precision due to the specialization characterized
by the considered viewpoint. So if a basic concept type is instantiated, then it can be
described by the instantiation of any of its subtypes according to the different view-
points characterizing this object.

175

Here, we introduce a new relation, called <<Repr>>, which links a concept to one of its
representations.
Let the graph R:

]Basic_concept [~ @ e ] v-oriented_concept I

R can be read: The concept ~v-oriented_concept>> is a representation of the concept
<<basic_concept>>.
Repr is a first order relation. It can be expressed only if the two concept types are
linked through a viewpoint relation in the viewpoint knowledge base. Two concepts
linked by a ~representation relation>> describe the same object (cf. fig.5).

~ (Repr) e [Bend:RN7]

[Road: R N 7 l ~ . . ~ (R e p r) ~ [National_road: RN7]

" (Reprr, [2_lanes: RN7]

Fig. 5. Example of instantiation graph

3.2.2 Instantiation Knowledge Base

Using this relation of representation, we can now build a knowledge base containing
each instantiation of each basic concept type. This base (called ~dnstantiation knowl-
edge base>> [fig. 3]) complements the viewpoint knowledge base. In section 5, we
detail the interest of both bases.
Two methodologies for building this instantiation base can be thought out:

- We can oblige the user to declare all the instantiations of a concept type in the
instantiation knowledge base, before using them in a conceptual graph. In this case,
the v-oriented concept types connected by Repr relations with the basic type
instantiated, must have the same referent.
- Otherwise, when a concept type C is instantiated, we must verify if it is a subtype
of a basic concept type. In that case, we can build an instantiation graph of the
basic concept type with the referent proposed for the instantiation of the v-oriented
concept type (with verification of the conformity relation). If C is a basic concept
type, the adequate instantiation graph must be built.

We can notice that two representations of the same concept can be incompatible (e.g.
[Nationat_road:RN7] and [Communal_road:RN7]). Therefore we will introduce in the
next section the exclusion relation between two v-oriented concept types.

3.2.3 Additional Relation for Instantiation Management

In this section we detail different second order relations, which can help to manage the
representation relation or to make deductions. Those relations depend on the represen-
tation relation. They can be expressed in the viewpoint knowledge base [fig. 3].
Several definitions presented in this section will use the following links [fig. 6] (based
on the IE..THEN graphs defined by Sowa in [14]).

t76

link ~ (u,v) is:
I IF : *u

[T H E N : *v]

link r (u,v) is:
[proposition : *u]---t~(~) ...[proposition : *v]

~ ~) a l J ~ f

Fig. 6. Definition of implication and equivalence links

3.2.3.1 Exclusion Relation

An exclusion is only an intra-viewpoint relation.

Definition of excl (C, C 1, C2):
Let C a basic concept type, C 1 and C 2 two v-oriented concept types both subtypes of
C. If .Repr>> connects the v-oriented concept Cl=[Cl:ref] to the basic concept
c=[C:ref] then ~Repr>~ cannot connect the v-oriented concept type c2=[C2:ref] to c.

Graph representation:
relation excl (C,C1,C2)

-~ [pr~176176 [C: *x] I II
"~ [proposition: [C1: ?x]

t
[C: ? x ~ - - - (R e p r) ~

"-(Repr) ".,

This relation allows to avoid incompatible instantiations. We precise the basic concept
type C, because an exclusion relation cannot exist between two v-oriented concept
types subtyping two different basic concept types.

Relation behaviour:
Monotonic reasoning: before adding in the instantiation base a new ~<Repr>> relation
between a new v-oriented concept Co and a basic concept, it is checked whether none
of the types of the v-oriented concepts already representing this basic concept in the
instantiation base has any <~excl~> relation with the type of Co. If one such exclusion
relation is found, the new ~Reprr~ relation with Co is rejected.

3.2.3.2 Equivalence Relation

Equivalence relation is an inter-viewpoints relation.

Definition of equiv (C, C 1, C2):
Let C a basic concept type and C 1 and C 2 two v-oriented concept types both subtypes

177

of C. If <<Repr>> connects the v-oriented concept Cl=[Cl:ref] to the basic concept

c=[C:ref], then <<Repr>> necessarily connects the v-oriented concept type c2=[C2:ref] to

c and vice versa.

Graph representation:
relation equiv (C,C1,C2):

I Proposition: [C:'v']I (Repr).~ [CI: y] [

[Proposition: [c: ,k]~

(r

(Repr) ~ [C2: '*x]

Relation behaviour:
If in a viewpoint graph, there exists an <<equiv>> relation between, on the one hand C 1

the type of Cl=[C l:ref], a v-oriented concept connected with Repr to a basic concept

c=[C:ref], and on the other hand C 2, then a v-oriented concept type c2=[C2:ref] is cre-

ated if needed and a <<Repr>> relation connecting c 2 and c=[C:ref] is created.

3 . 2 . 3 . 3 I n c l u s i o n R e l a t i o n

Definition of incl(C, C 1, C2):
Let C a basic concept type and C 1 and C 2 two v-oriented concept types both subtypes

of C. If <<Repr>> connects the v-oriented concept type c2=[C2:ref] to the basic concept

c=[C:ref], then <<Repr>> necessarily connects Cl=[C 1 :ref] to c (but not vice versa).

Graph representation:

relation incl (C,C1,C2):
,]-~ I Proposition: [C: V "

I Proposition: [C: *x]~

(Repr)e [C2: .V] I

(~)

(Repr)-~ [Cl:'*x]

Relation behaviour:
If in the instantiation base, there exists c2=[C2:ref] a v-oriented concept connected

through Repr to its basic concept c=[C:ref], and if in the viewpoint base, there exists an
<<incl>> relation between C 1 a v-oriented concept type, and the v-oriented concept type

C 2, then the v-oriented concept Cl=[Cl:ref] is created if needed in the instantiation
base and a ,<Reor>, relation connects c, to c.

178

4. Viewpoint Management in Conceptual Graph Formalism

The two bases described in the previous section allow to have an independent view-
point management through the conceptual graph formalism. A user can choose to use
or not the viewpoint management. So we call <<viewpoint management>> the set created
by the two bases. [fig. 7] shows the different interactions between the different entities.
There are two sorts of interactions:

�9 interaction for consistency management
�9 interaction for construction of conceptual graph.

Support
T

Concept b'pe Set c
lattice

Knowledge base of CG

Viewpoint management

Viewpoint base

Instantiation base

Interaction for consistency management

Interaction for conceptual graph construction

Fig. 7. Viewpoint management in conceptual graph formalism

4.1 Interaction for Consistency Management

There are three kinds of interactions for consistency management:
�9 The interaction between the support and the viewpoint base is to manage con-

sistency between the concept type lattice (which expresses all the subtype
links between concept types) and the viewpoint base (which expresses all the
subtype links according to viewpoints). We must manage at the same time the
creation, suppression, and modification of concept types in the two parts.

179

This is an example of property that must be satisfied:
If [TYPE:T1]g--(VPt)+--[TYPE:T 2] in the viewpoint base then T 2 < T 1 in the

concept type lattice (even more, T 2 is a direct subtype of T 1 in the concept

type lattice).

�9 The interaction between the two bases of the viewpoint management, with the
different relations (exclusion, inclusion and equivalence). We must check also
during the creation of a <<Repr>, relation, if the involved v-oriented concept
type is subtype of the basic concept type, according to a viewpoint. The con-
formity relation must also be satisfied.

�9 The interaction between the viewpoint management module and the knowl-
edge base of CG allows the verification of the relation signatures. Indeed if a
conceptual relation has a v-oriented concept type as maximal concept type in
its signature, the other arguments must be in the common viewpoints. It
allows also consistency management between information in viewpoint man-
agement module and conceptual graph base [fig. 8].

--4

Viewpoint management

A part of the viewpoint base: ~ [T T y p e : Ben.d] ..
/_....___[lype:Stralglat_roadl

. / . . - (VPt_curvature)~-- - - - -~

[Type: R o a d l _ ~ M T v p e : Motorway] .
. ~ [T v p e : National roadl .

\ " ~ v t ' t _ a a m i n i s t r a d v e ~ [T y p e : D e p a r t r n ~ n t a l roadl
" ~ [l y p e : tcommunm_rd-aal

. ~..-.[Type :Transit_road]
\(VPt_administrative&town)l~---~Type: Main_road]

A part of the instantiation base:

�9 / . (R e p r) (~ [N a t i o n a l : R N 9]

[Road: RN91~ (Repr)l [Straight_road:RN9]

The user creates the instance RN9
with the concept type Main_road ~ introduction in the
in the base of conceptual graphs. This instantiation base
instantiation is not in the instantiation [Road:RN9]
base, so the system verifies if
Main road is a subtype of Road and

\ 7 adds t-he new instance in the base. iRepr,~

A graph L the base of Conceptual graphs: ~
. I ~ / ,A [Main_road:RN9]
t*vlam_road:RNgb-)(suggests)-~[Cross.road acmdentll / �9

7 r new instantiafion
[Priority-modeN (influenced by) ~ generation

/

The system also verifies if there exists an exclusion relation between [Main_road]
other v-oriented concept types in the instantiation graph of [Road:RN9].

Fig. 8. Example of interaction

180

4.2 Interaction for Conceptual Graph Construction

The support allows to build a conceptual graph without viewpoint. Using both the
instantiation base and the support permits conceptual graph construction with view-
points. All the instantiation through viewpoints made in a graph, must be stored in the
instantiation base before their use (we choose the first methodology described in the
section 3.2.2).

4.3 Rules on Conceptual Graph and Viewpoints

The integration of viewpoints has an influence on the definition rules on CG.
There are four canonical formation rules: Copy, Restrict, Join and Simplify [13], that
can normally be used for the formation of classic CG. But we can define rules derived
from them and specific for the viewpoint management: in particular the Restrict and
Join rules can be redefined according to a viewpoint. So we created a new rule, based
on Sowa's Restrict rule:

Definition: Restrict w.r.t, a given viewpoint
Let v a viewpoint. The restriction w.r.t, the viewpoint v is obtained by replacement of
the concept label with a more specific label: replacement of a generic referent with an
individual referent and/or replacement of the concept type with a subtype according to
the viewpoint v (the conformity relation must be verified).

Sowa's Join rule is based on the identity of concept. As we have defined an equiva-
lence relation on concept types, this relation helps us to define a new join relation with
respect to the equivalence relation in the viewpoint base:

Definition: Join w.r.t the equivalence relation inter-viewpoints
Let Cl=[Cl:ref] a v-oriented concept of a graph G 1 and c2=[C2:ref] a v-oriented con-

cept of a graph G 2. If there exists an <~equiv>> relation between C 1 and C 2, then we can

join G 1 and G 2 by identification of c 1 and c 2. A relevant concept among c 1 and c 2 must

be chosen for the join.

4.4 Projection Operation and Viewpoints

The projection of a graph G into a graph G' is not really modified, but we can also
focus the projection according to a viewpoint v:

Definition: projection operation w.r.t, a viewpoint
Let G and G' two conceptual graphs. The viewpoint projection according to a view-
point v, of G into G' is an application n : G ~ G ' , where rcG is a subgraph of G', such
that:
- For each concept c in G, nc is a concept in G' and type(rcc) is a subtype of type(c)
according to the viewpoint v.
- For each conceptual relation r in G, type(rcr)=type(r). If the ith arc of r is linked to a
concept c in G, the ith arc of rtr must be linked to ~c in G'.

After a classic projection operation, we can also verify whether the result of this clas-

181

sic projection corresponds in fact to a projection w.r.t, a viewpoint: if there exists a
viewpoint v such that for each concept c of G, type(~c) is a subtype of type(c) accord-
ing to this viewpoint v, then rcG is a subgraph of G' according to the viewpoint v.
This precision allows to know if two different experts say the same thing in different
viewpoints. They can describe the same thing with their own concepts that depend on
their knowledge, competence domain, and perception of the situation or the object to
describe.
This projection operation with the viewpoint notion permits comparison of expertise
through the conceptual graph formalism. So it is very interesting to know how to repre-
sent those different representations and perceptions.

5. Conclusion

In this paper, we described the interest of viewpoints in knowledge representation and
we proposed an introduction of viewpoints in conceptual graph formalism.

5.1 Comparison with TROPES and ROME

The creation of the viewpoint base relies on several elements in TROPES model like
the class arborescence and bidirectional, unidirectional bridges. Indeed our viewpoint
base contains conceptual graphs that describe partially the class arborescence of TRO-
PES thanks to the introduction of the viewpoint relation. Our equivalence and inclu-
sion relations play the same role as bidirectional and unidirectional bridges. Therefore
our instantiation base uses the simple instantiation of ROME and the description of
multi-representations via a representation relation like in ROME.

5.2 Related Work and Perspectives

The view notion was already used in [4], but instead of introducing viewpoints in con-
ceptual graphs, the aim was rather to use conceptual graph formalism as a meta-lan-
guage to analyze and compare different specifications of requirements with respect to
each other. The multiple views were in fact multiple schemas of representation.
In [8], Martin associates concepts or conceptual graphs to elements of structured docu-
ments. He uses viewpoints to permit different representations of the same document
element in a knowledge base in order to compare them. Our aim is to define viewpoints
to help knowledge representation for multi-expert knowledge acquisition and also to
have an accessible and evolutive knowledge base through viewpoints. Our approach is
also aimed at making comparison of expertises.

We can notice the interest of exploiting second order relations, with an associated
behaviour, as suggested in a previous work [11]. Other relations can be exploited. Our
perspective is to extend the viewpoint management to the <<composed-of>> relation, and
to test all the viewpoint management on an application.

References
1. D.G. Bobrow, T. Winograd, An overview of KRL, a Knowledge Representation

Language, Cognitive Science, vol. 1 n ~ 1, p. 3-45, 1977.

182

2. B. Carrt, L. Dekker and J-M. Geib. Multiple and Evolutive Representation in the
ROME Language. Towards an integrated Corporate Information System. In Proc.
TOOLS' 90, Paris, 26-29 June 1990.

3. L. Dekker and B. Carrt. Multiple and Dynamic Representation of frames with
Points of View in FROME. In Proc. RPO'92. La Grande Motte, France, 22-23 Ju-
ne, 1992.

4. H. Delugach, Specifying Multiple-Viewed Software Requirements With Concep-
tual Graphs, Jour. Systems and Software, vol. 19, p. 207-224, 1992.

5. G.Ellis, Object-Oriented ConceptuaIs Graphs, In Ellis et al eds, Conceptual
Structures: Applications, Implementation and Theory. Proc. of ICCS'95. Springer
Verlag. Santa Cruz, CA, USA, Aug. 1995, p. 144-172.

6. J. Esch, Contexts, Canons and Coreferent Types. In Terpfenhart &al eds, Con-
ceptual Structures: Current Practices: Proc. of the ICCS'94. College Park, Ma-
ryland, USA, August 1994, Springer Verlag, LNAI n. 835, p. 185-195.

7. O. Marino, F. Rechenmann, P. Uvietta, Multiple perspectives and classification
mechanism in Object-oriented Representation, Proc. 9th ECAI, Stockholm, Swe-
den, p. 425-430, Pitman Publishing, London, August 1990.

8. P. Martin, Exploitation de graphes conceptuels et de documents structurds et hy-
pertextes pour l' acquisition de connaissances et la recherche d'information, PhD
Thesis, University of Nice-Sophia-Antipolis, October 1996.

9. M. Minsky, A Framework for Representing Knowledge, in The psychology of
Computer Vision, McGrawHill, New York, P.H. Winston (ed), Chap. 6, p. 156-
189, 1975.

10. G.T. Nguyen, D. Rieu, J. Escamilla, An Object Model for Engineering Design, in
Proc. of ECOOP'92, Utrecht, The Netherlands, June/July 1992, Springer-Veflag,
p. 232-251.

11. M. Ribi~re, R. Dieng, M. Blay-Fornarino, A-M. Pinna-Dery, Link-based Reaso-
ning on Conceptual Graphs, in Suppl. Proceedings of ICCS'96, Sydney, Austra-
lia, August 1996, p 146-160.

t2. M. Stefik, D.G. Bobrow, Object-Oriented Programming: Theme and Variations.
The A.I. Magazine, vol. 6, n ~ 4, p 40-62, 1985.

13. J.F. Sowa. Conceptual Structures, Information Processing in Mind and Machine.
Reading, Addison-Wesley, 1984.

14. J.F. Sowa. Relating Diagrams to Logic. In Mineau & al eds, Conceptual Graphs
for Knowledge Representation: Proc. of ICCS'93. Springer Verlag, LNAI n. 699.
Quebec City, Canada, August 1993, p. 1-35.

15. M. Wermelinger. Conceptual Structures and First-Order Logic. In Ellis et al eds,
Conceptual Structures: Applications, Implementation and Theory. Proc. of
ICCS'95. Springer Verlag. Santa Cruz, CA, USA, Aug. 1995, p. 323-337.

