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INTRODUCTION TO A GRAM-SCHMIDT-TYPE
BIORTHOGONALIZATION METHOD

L. KOHAUPT

ABSTRACT. The aim of this expository/pedagogical pa-
per is to describe a Gram-Schmidt biorthogonalization
method in such a way that it can be used as an intro-
duction to the subject for undergraduate presentation. The
task of biorthogonalization naturally arises when the scalar
product of vectors formed are linear combinations of two
sets of linearly independent vectors, as the case may be. If
one wants the scalar product to have the usual form, the
two sets of basis vectors should be biorthogonal. If they
are not, the question of biorthogonalization arises. New is
the detailed description of the biorthogonalzation method for
teaching purposes as well as the comparison of this method
with Schmidt’s orthogonalization method in the case when
the sets of linearly independent vectors are identical.

1. Introduction.

1.1. Aim of this article. The aim of this expository/pedagogical
paper is to describe a Gram-Schmidt biorthogonalization method such
that it is suitable for undergraduate classroom teaching and/or research
as well as for undergraduate textbooks. In its intention, it is similar to
the author’s papers [10, 11, 12, 14].

To motivate with simple words the need to have a biorthogonaliza-
tion method available, the following can be said. The task of biorthogo-
nalization naturally arises when the scalar product of vectors are formed
that are linear combinations of two sets of linearly independent vectors,
as the case may be. If one wants the scalar product to have the usual
form, the two sets of basis vectors should be biorthogonal. If they are
not, the question of biorthogonalization arises.
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New is:

• a somewhat different proof that the version of the biortho-
gonalization method given in [15, Section 2] does not stop
abnormally before the end of the procedure,

• the detailed description of the biorthogonalzation method for
teaching purposes, as well as

• the comparison of this method with Schmidt’s orthogonaliza-
tion method in the case when the sets of linearly independent
vectors are identical.

The following information is for the advanced reader. The author
came across the problem of biorthogonalization in the context of linear
functionals in finite-dimensional spaces, see [20, page 37, formula
(1.61-3)]. There, the question arises as how to biorthogonalize a set
of linearly independent functionals and a set of linearly independent
vectors. Since, in a finite-dimensional spaceX with scalar product (·, ·),
every functional f may be represented in the form f(u) = (u, v), u ∈ X,
with an element v ∈ X that is uniquely determined by the functional
f (see [8, Chapter III, Section 3, (4)]), this leads to the question
of biorthogonalization of two sets of linearly independent vectors.
This last problem is more elementary and thus more appropriate for
undergraduate teaching than the original one.

1.2. Remarks on orthogonalization methods.

(i) On the history of orthogonalization methods. The Schmidt
orthogonalization method of linearly independent vectors, as it
is used nowadays, is first described in a paper on integral equa-
tions in 1907 (cf. [16, pages 442–443, Section 3]). In [16, page
442], Schmidt himself refers to an article of Gram [5] published
in 1883. Therefore, Schmidt’s orthogonalization method is also
called the Gram-Schmidt orthogonalization method in the liter-
ature, especially in English literature. We note, however, that
in [5], Gram describes the construction of an orthogonal sys-
tem of functions from linearly independent functions in a very
different form (see [5, pages 42–47, Chapter I]), and notably
[5, page 44, formula (8)]). Further, in [5, page 45, footnote],
Gram himself refers to an article of Chebyshev in Liouville’s
Journal, Sér. II, T. III. (1858), page 320. Moreover, in [24], on
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the Gram-Schmidt orthogonalizazion method, it is mentioned
that this method already appears in the works of Laplace and
Cauchy, but no references for this are given. The fundamental
articles of Schmidt [16] and Gram [5] are referred to, by the
way, in [8, Reference 96, Reference 176] as well as in [9, Refer-
ence 96, Reference 176], the article of Schmidt [16] is also cited
in [24]. The orthogonalization (unitarization) of matrices by
Schmidt’s method is discussed in [22].

(ii) Schmidt’s orthogonalization method in textbooks. Schmidt’s
orthogonalization method can be found in a large number of
textbooks on matrices, on linear algebra, and on numerical
analysis, cf., e.g., [1, subsection 2.5.2], [2, subsection 9.6], [4,
subsection 5.2.7], [6, Section 65], [13, subsection 5.3], [18,
subsection 7.1] and [19, subsection 7.1].

(iii) Other numerical orthogonalization methods. Nowadays, a
large number of other orthogonalization methods exist. First of
all, we mention the modified Gram-Schmidt method in [4, sub-
section 5.28], the method of Householder reflections (transfor-
mations) and the method of Givens rotations, cf., [4, subsection
5.1] and [17, subsection 7.2]. However, of all the orthogonaliza-
tion methods, the Gram-Schmidt orthogonalization method is
the simplest and thus especially appropriate for undergraduate
teaching and/or research.

1.3. Remarks on biorthogonalization methods.

(i) On the history of biorthogonalization methods. The earliest
article on biorthogonalization the author has found is that of
Unger [23] published in 1953, where the biorthogonalization of
the principal vectors of matrices A and A∗ is discussed. This
paper is cited in [25, subsection 9.1, page 102].

The earliest publication on a biorthogonalization method
for two general sets of linearly independent vectors the author
has found is that given by Hestenes [7] in 1958. There, a
biorthogonalization method is described for two set of linearly
independent vectors u1, . . . , un and v1, . . . , vn such that the
vectors u1, . . . , un remain unchanged. Hestenes uses his method
to compute the inverse of a matrix, and thus this method
cannot reproduce the results by Schmidt’s method in the case
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ui = vi, i = 1, . . . , n. Therefore, it cannot be called a Schmidt-
type biorthogonalization method.

The second article we want to mention is that by Parlett,
Taylor and Liu [15] in 1985 where, in Section 2, a Gram-
Schmidt biorthogonalization method is stated in a very concise
form and where another new Lanczos-type method for comput-
ing a biorthogonal set of vectors is described.

Many other biorthogonalization methods exist in the litera-
ture. We do not try to give a survey on all biorthogonalization
methods here.

(ii) Biorthogonalization methods in textbooks. The appearance of
biorthogonalization methods in textbooks is rare. No biorthog-
onalization method is found in the above textbooks on matri-
ces, linear algebra, or numerical analysis containing orthogo-
nalization methods, except in [21, Chapter 39], a reference to
[23] in [25, subsection 9.2] and the Lanczos-type method in
the newer textbook [1, subsection 4.7] that is downloadable
from the Internet.

1.4. Outline of the contents. Now, we outline the contents of the
present paper.

In Section 2, we review the classical Schmidt orthogonalization
method. In Section 3, Schmidt’s method is generalized to the biorthog-
onalization of two sets of linearly independent vectors that avoids
breakdown where the proof is not based on the Hahn-Banach theo-
rem. In Section 4, the special case when both sets are identical is
discussed. It will turn out that we then get essentially the same result
as that obtained by Schmidt’s orthogonalization method; more pre-
cisely, there is a close relationship between the results of both methods
in this special case. In Section 5, numerical examples follow illustrating
the Gram-Schmidt-type biorthogonalization method and comparing it
with Gram-Schmidt’s orthogonalization method in the case of two iden-
tical sets of linearly independent vectors. In Section 6, conclusions are
drawn.

2. Schmidt’s orthogonalization method. In this section, we
review Schmidt’s orthogonalization method since we want to use it
as a model for a biorthogonalization method.
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Let X be a vector space over the field F = R or F = C with scalar
product (·, ·). Let u1, . . . , un ∈ X be linearly independent vectors.
Further, let ∥ · ∥ be the norm on X induced by the scalar product.
Then, Schmidt’s orthogonalization method is given by

v1 := u1 ; w1 :=
v1
∥v1∥

vj := uj −
j−1∑
k=1

(uj , wk)wk ; wj :=
vj

∥vj∥
, j = 2, . . . , n

(see [18, subsection 7.1]), [6, Section 65], and [14]).

One has

M1 := [u1] = [v1] = [w1]

Mj := [u1, . . . , uj ] = [v1, . . . , vj ] = [w1, . . . , wj ], j = 2, . . . , n

and
(vj , vk) = 0, j ̸= k, j, k = 1, . . . , n

as well as
(wj , wk) = δjk, j, k = 1, . . . , n.

Remark 1. If ui, i = 1, . . . , n, is already an orthonormal system, then
we get wj = vj = uj , j = 1, . . . , n.

3. The Gram-Schmidt-type biorthogonalization method. In
this section, we describe in detail a biorthogonalization method. This
method is inspired by Schmidt’s orthogonalization method and is stated
in a very concise form in [15, Section 2]. The version presented is well
defined, that is, it does not stop before the procedure normally ends
since no division by zero occurs. Thus, breakdown (as it is termed in
[15, Section 2]) is avoided. The proof for this is somewhat different
from that in the above-mentioned paper.

Let X again be a vector space over the field F = R or F = C, and let
(·, ·) be a scalar product on X. Let a1, . . . , an ∈ X and e1, . . . , en ∈ X
be two sets of linearly independent vectors that span the space X, i.e.,
with [a1, . . . , an] = X and [e1, . . . , en] = X.
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We shall show that vectors c1, . . . , cn ∈ X and g1, . . . , gn ∈ X can
be constructed with the properties

(P1) (ci, gj) = δij , i, j = 1, . . . , n

and

(P2) [c1, . . . , cn] = [a1, . . . , an], [g1, . . . , gn] = [e1, . . . , en].

More generally, we obtain the following:

Algorithm for the biorthogonalization method :

First step. Set

b1 := a1

and f1 ∈ {e1, . . . , en} exists such that

(b1, f1) ̸= 0,

since otherwise (b1, f) = 0, f ∈ X. Then, the choice of f = b1 would
entail b1 = 0, which is not possible because b1 = a1 ̸= 0.

Define

c1 :=
1

(b1, f1)
b1.

This entails
(c1, f1) = 1.

Define
g1 := f1.

From this,
(c1, g1) = 1.

Further,

[c1] = [b1] = [a1] ,

[g1] = [f1] .

Step from k to k+1 with 1 ≤ k ≤ n−1. Let c1, . . . , ck and g1, . . . , gk
be constructed such that (ci, gj) = δi,j , i, j = 1, . . . , k with

[c1, . . . , ck] = [b1, . . . , bk] = [a1, . . . , ak] ,

[g1, . . . , gk] = [f1, . . . , fk] .
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Define

bk+1 := ak+1 −
k∑

i=1

(ak+1, gi) ci.

There exists an fk+1 ∈ {e1, . . . , en} such that

(bk+1, fk+1) ̸= 0,

for the same reason as above for (b1, f1) ̸= 0, from which we conclude

fk+1 ̸= fi, i = 1, . . . , k

since (bk+1, gl) = 0, l = 1, . . . , k, and thus (bk+1, fl) = 0, l = 1, . . . , k.
Set

ck+1 :=
1

(bk+1, fk+1)
bk+1.

This leads to
(ck+1, gi) = 0, i = 1, . . . , k

and
(ck+1, fk+1) = 1.

Define

gk+1 := fk+1 −
k∑

i=1

(fk+1, ci) gi = fk+1 −
k∑

i=1

(ci, fk+1) gi.

This implies

(ci, gk+1) = δi,k+1, i = k + 1, k, . . . , 2, 1.

Further,

[c1, . . . , ck+1] = [b1, . . . , bk+1] = [a1, . . . , ak+1] ,

[g1, . . . , gk+1] = [f1, . . . , fk+1] ,

k = 1, . . . , n− 1, as well as

[g1, . . . , gn] = [f1, . . . , fn] = [e1, . . . , en]. �
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Remark 2. For n = 3, one obtains

1 (c1, g1) = 1 4 (c1, g2) = 0 9 (c1, g3) = 0

2 (c2, g1) = 0 3 (c2, g2) = 1 8 (c2, g3) = 0

5 (c3, g1) = 0 6 (c3, g2) = 0 7 (c3, g3) = 1

Here, i indicates the ith step of the procedure. Further,

[c1] = [b1] = [a1] ; [g1] = [f1]

[c1, c2] = [b1, b2] = [a1, a2] ; [g1, g2] = [f1, f2]

[c1, c2, c3] = [b1, b2, b3] = [a1, a2, a3] ;

[g1, g2, g3] = [f1, f2, f3] = [e1, e2, e3] . �

Remark 3. If the systems {a1, . . . , an}, {e1, . . . , en} are already
biorthonormal, that is, (ai, ej) = δij , then we obtain cj = bj = aj ,
gj = fj = ej , j = 1, . . . , n. Another special case will be discussed in
the next section.

Remark 4. For the advanced reader, we mention that the proof
above that an element f1 ∈ {e1, . . . , en} exists such that (b1, f1) ̸= 0,
respectively an element fk+1 ∈ {e1, . . . , en}, such that (bk+1, fk+1) ̸= 0
could have also been based on the Hahn-Banach theorem, cf., [8,
Chapter IV, Section 2, Theorem 2 and Corollary 1] for F = R as
well as [8, Chapter IV, Section 2, Theorem 6] for F = C.

4. Special case: Biorthogonalization of identical systems.
In this section, we discuss an important special case, namely, the
biorthogonalization of two identical systems; it leads essentially to the
same result as Schmidt’s orthogonalization method.

As earlier, let X be a vector space over the field F = R or F = C
with scalar product (·, ·) and consider the case of identical systems,
that is,

ei = ai, i = 1, . . . , n.

We shall see that, in this case, we obtain essentially Schmidt’s orthog-
onalization method. Of course, this will be no surprise since the pre-
sented biorthogonalization method is inspired by Schmidt’s procedure.
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Let us demonstrate the biorthogonalization method in this special
case for n = 3. Here,

fi = ei = ai, i = 1, 2, 3.

We have
c1 = b1 =

a1
∥a1∥2

.

Further, with d1 :=
a1
∥a1∥

,

b2 = a2 − (a2, f1) c1 = a2 − (a2, a1)
a1

∥a1∥2

= a2 −
(
a2,

a1
∥a1∥

)
a1
∥a1∥

= a2 − (a2, d1) d1 ⊥ d1.

Moreover,

c2 =
1

(b2, f2)
b2 =

1

(b2, a2)
b2,

g2 = f2 − (f2, c1) g1 = a2 − (f2, c1) g1 = a2 − (a2, a1)
a1

∥a1∥2

= a2 −
(
a2,

a1
∥a1∥

)
a1

∥a1∥
= a2 − (a2, d1) d1 = b2

so that

g2 = b2, c2 =
1

(b2, a2)
b2.

This entails
(c2, g2) = 1.

Further, since g1 = f1 = a1 and g2 = b2,

b3 = a3−(a3, g1) c1−(a3, g2) c2 = a3−(a3, a1)
a1

∥a1∥2
−(a3, b2)

b2
(b2, a2)

.

Now, since b2 ⊥ d1,
b2

(b2, a2)
=

b2
∥b2∥2

so that

b3 = a3 −
(
a3,

a1
∥a1∥

)
a1
∥a1∥

−
(
a3,

b2
∥b2∥

)
b2

∥b2∥
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and thus, with d2 := b2/∥b2∥,

b3 = a3 − (a3, d1) d1 − (a3, d2) d2.

Consequently, since f3 = a3 and b3 ⊥ d1, d2,

c3 =
b3

(b3, f3)
=

b3
∥b3∥2

.

Moreover,

g3 = f3 − (f3, c1) g1 − (f3, c2) g2 = a3 − (a3, c1) g1 − (a3, c2) g2

= a3 −
(
a3,

a1
∥a1∥2

)
a1 −

(
a3,

b2
∥b2∥2

)
b2

= a3 − (a3, d1) d1 − (a3, d2) d2 = b3.

Since b3 ⊥ d1, d2, one has

c3 =
b3

(b3, f3)
=

b3
(b3, a3)

=
b3

∥b3∥2
.

This entails

(c3, g3) = (c3, b3) =

(
b3

∥b3∥2
, b3

)
=

(b3, b3)

∥b3∥2
= 1.

Define

d3 :=
b3
∥b3∥

.

Summarizing, we obtain

b1 = a1 ; d1 := b1
∥b1∥

b2 = a2 − (a2, d1) d1 ; d2 := b2
∥b2∥

b3 = a3 − (a3, d1) d1 − (a3, d2) d2 ; d3 := b3
∥b3∥

This is Schmidt’s orthogonalization method for a1, a2, a3, which we
obtain from the biorthogonalization method by using the normalized
vectors di := bi/∥bi∥ (with ∥di∥ = 1) instead of the normalized vectors
ci = bi/∥bi∥2 (with (ci, bi) = 1). �

5. Numerical examples. In this section, we present numerical ex-
amples for the biorthogonalization process and for Schmidt’s orthogo-
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nalization method. We have written three MATLAB programs, invoked
as follows:

1 [C,B,G, F ] = biorth (A,E)
2 [D] = biorthsm (A)
3 [W,V ] = schmidt (A)

The programs may be solicited from the author. The input and output
arguments are made up of n×nmatrices, whose columns are the vectors
of interest. For instance, in the program biorth, A = [a1, . . . , an] and
E = [e1, . . . , en] are the vectors to be biorthogonalized. In a similar way,
the matrices C, B, G, F, D, W, V have to be interpreted. The program
biorth generates biorthogonal vectors contained in the columns of the
matrices C, G. The program biorthosm delivers orthogonal vectors like
Schmidt’s orthogonalization method. However, the procedure is based
on the biorthogonalization method; it treats the special case E = A and
delivers numerically the same result D as the output W of the program
schmidt, which is based on Schmidt’s orthogonalization method.

Now, some numerical examples follow.

Example 5.1. For

A =

 1 1 1
0 1 1
0 0 1

 ,

the commands [W,V ] = schmidt (A) and [D] = biorthsm (A) deliver

W =

 1 0 0
0 1 0
0 0 1

 , V =

 1 0 0
0 1 0
0 0 1

 , D =

 1 0 0
0 1 0
0 0 1

 .

Example 5.2. For

A =

 1 0 0
1 1 0
1 1 1

 ,

the commands [W,V ] = schmidt (A), [D] = biorthsm (A), and
[C,B,G, F ] = biorth (A,A) generate

W =

[
0.57735026918963 −0.81649658092773 0.00000000000000
0.57735026918963 0.40824829046386 −0.70710678118655
0.57735026918963 0.40824829046386 0.70710678118655

]
,
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V =

[
1.00000000000000 −0.66666666666667 0.00000000000000
1.00000000000000 0.33333333333333 −0.50000000000000
1.00000000000000 0.33333333333333 0.50000000000000

]
,

D=

[
0.57735026918963 −0.81649658092773 0
0.57735026918963 0.40824829046386 −0.70710678118655
0.57735026918963 0.40824829046386 0.70710678118655

]
,

C=

[
0.33333333333333 −1.00000000000000 0
0.33333333333333 0.50000000000000 −1.00000000000000
0.33333333333333 0.50000000000000 1.00000000000000

]
,

B=

[
1.00000000000000 −0.66666666666667 0
1.00000000000000 0.33333333333333 −0.50000000000000
1.00000000000000 0.33333333333333 0.50000000000000

]
,

G=

[
1.00000000000000 −0.66666666666667 0
1.00000000000000 0.33333333333333 −0.50000000000000
1.00000000000000 0.33333333333333 0.50000000000000

]
,

F =

 1 0 0
1 1 0
1 1 1

 .

One verifies that numerically (cj , gk) = δjk. For instance, (c1, g1) = 1,
(c1, g2)

.
= 3.699839913606784e− 017 ≈ 0.

Example 5.3. For

A =

 1 0 0
1 1 0
1 1 1

 , E =

 1 1 1
0 1 1
0 0 1

 ,

the command [C,B,G, F ] = biorth (A,E) generates

C =

 1 0 0
1 1 0
1 1 1

 , B =

 1 0 0
1 1 0
1 1 1

 ,

G =

 1 −1 0
0 1 −1
0 0 1

 , F =

 1 1 1
0 1 1
0 0 1

 .
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Example 5.4. For

A =

 i 0 0
1 i 0
1 1 i

 , E =

 i 1 1
0 i 1
0 0 i

 ,

the command [C,B,G, F ] = biorth (A,E) generates

C =

 i 0 0
1 i 0
1 1 i

 , B =

 i 0 0
1 i 0
1 1 i

 ,

G =

 i 1 1− i
0 i 1
0 0 i

 , F =

 i 1 1
0 i 1
0 0 i

 .

Example 5.5. This example is taken from [15, Section 2, Example
2]. For

A =

 1 1 1
1 2 1
1 1 2

 , E =

 1 1 1
0 0 1
0 1 0

 ,

the command [C,B,G, F ] = biorth (A,E) generates

C =

 1 0 0
1 1 0
1 0 1

 , B =

 1 0 0
1 1 0
1 0 1

 ,

G =

 1 −1 −1
0 1 0
0 0 1

 , F =

 1 1 1
0 1 0
0 0 1

 ,

showing that breakdown is avoided as it is termed in [15, Section 2],
which means that the algorithm does not end abnormally and thus is
well defined.

6. Conclusion. In this paper, we first motivated the importance
of the question of the biorthogonalization of two sets of linearly inde-
pendent vectors and put the orthogonalization and biorthogonalization
methods in an historical and present time context. Then, Schmidt’s
classical orthogonalization method is reviewed. This is followed by a
detailed description of a Schmidt-type biorthogonalization method for
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two sets of linearly independent vectors which could serve as a possi-
ble template for the teaching of this method and for the presentation
in undergraduate textbooks where a proof is given that the method
does not end abnormally. The paper can also serve as a subject of
undergraduate research, similarly to the earlier papers [10]–[14]. The
relation to the classical Schmidt orthogonalization method is exhibited
for the special case of two identical sets of linearly independent vectors
showing that the results differ in the normalization of the orthogonal-
ized vectors. The Gram-Schmidt-type biorthogonalization method is
illustrated by several numerical examples. Three MATLAB programs
may be solicited from the author.

Acknowledgments. The author would like to give thanks to Pro-
fessor Moysey Brio and to anonymous referees for many suggestions
that improved the presentation of earlier drafts of the paper.
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