
Introduction to a System for Distributed
Databases (SDD-1)

J. B. R~THNIE, JR., P. A. BERNSTEIN, s. FOX, N. GOODMAN, M. HAMMER,

T. A. LANDERS, C. REEVE, D. W. SHIPMAN, and E. WONG

Computer Corporation of America

The declining cost of computer hardware and the increasing data processing needs of geographically

dispersed organizations have led to substantial interest in distributed data management. SDD-1 is a

distributed database management system currently being developed by Computer Corporation of

America. Users interact with SDD-1 precisely as if it were a nondistributed database system because

SDD-1 handles all issues arising from the distribution of data. These issues include distributed

concurrency control, distributed query processing, resiliency to component failure, and distributed

directory management. This paper presents an overview of the SDD-1 design and its solutions to the

above problems.
This paper is the first of a series of companion papers on SDD-1 (Bernstein and Shipman [2],

Bernstein et al. [4], and Hammer and Shipman [14]).

Key Words and Phrases: distributed database system, relational data model, concurrency control,

query processing, database reliability

CR Categories: 3.5,4.33

1. INTRODUCTION

SDD-1 is a distributed database management system under development by
Computer Corporation of America. SDD-1 is a system for managing databases
whose storage is distributed over a network of computers. Functionally, SDD-1

provides the same capabilities that one expects of any modern database manage-
ment system (DBMS), and users interact with it precisely as if it were not

distributed.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

This research was supported by the Advanced Research Projects Agency of the Department of

Defense under Contract NOOO39-77-C-0674, ARPA Order No. 3175-6. The views and conclusions

contained in this document are those of the authors and should not be interpreted as necessarily

representing the official policies, either expressed or implied, of the Advanced Research Projects

Agency or the U.S. Government.

Authors’ present addresses: J. B. Rothnie, Jr., S. Fox, T. A. Landers, C. Reeve, and D. W. Shipman,

Computer Corporation of America, 575 Technology Square, Cambridge, MA 02139; P. A. Bernstein

and N. Goodman, Center for Research in Computing Technology, Aiken Computation Laboratory,

Harvard University, Cambridge, MA 02138; M. Hammer, Massachusetts Institute of Technology,
Laboratory for Computing Science, 545 Technology Square, Cambridge, MA 02139; E. Wong,

Department of Electrical Engineering and Computer Sciences, University of California at Berkeley,
Berkeley, CA 94720.
0 1980 ACM 0362-5915/80/0300-01$00.75

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980, Pages l-17.

2 - J. 6. Rothnie et al.

Systems like SDD-1 are appropriate for applications which exhibit two char-
acteristics: First, the activity requires an integrated database. That is, the activity

entails access to a single pool of information by multiple persons, organizations,

or programs. And second, either the users of the information or its sources are
distributed geographically. Many data processing applications have these char-
acteristics, including

(1) inventory control, accounting, personnel information, and similar data pro-

cessing systems in large companies;
(2) point-of-sale accounting systems, electronic banking, and other consumer-

oriented on-line processing systems;

(3) large-scale data resources, e.g., census, climatology, toxicology, and similar

databases;
(4) military intelligence databases, and command and control systems;
(5) report-generating systems for businesses with multiple data processing cen-

ters; and so forth.

Decentralized processing is desirable in these applications for reasons of

performance, reliability, and flexibility of function. Centralized control is needed
to ensure operation in accordance with overall policy and goals. By meeting both
these goals in one system, distributed database management offers unique bene-
fits.

However, distributed database systems pose new technical challenges owing to
their inherent requirements for data communication and their inherent potential
for parallel processing. The principal bottleneck in these systems is data com-
munication. All economically feasible long-distance communication media incur
lengthy delays and/or low bandwidth. Moreover, the cost of moving data through

a network is comparable to the cost of storing the data locally for many days.
Parallel processing is also an inherent aspect of distributed systems and mitigates

to some extent the communication factor. However, it is often difficult to
construct algorithms that can exploit parallelism.

For these reasons, the techniques used to implement centralized DBMSs must

be reexamined in the distributed DBMS context. We have done this in developing
SDD-1, and this paper outlines our main results.

Section 2 describes SDD-l’s overah architecture and the flow of events in
processing transactions. Sections 3 through 5 then introduce the techniques used

by SDD-1 for solving the most difficult problems in distributed data management:
concurrency control, query processing, and reliability. Detailed discussions of
these techniques are presented in [2-4, 12, 14, 251. Section 6 explains how these
techniques are used to handle the management of system directories. The paper
concludes with a brief history of SDD-1 and a summary of its principal contri-
butions to the field.

2. SYSTEM ORGANIZATION

2.1 Data Model

SDD-1 supports a relational data model [S]. Users interact with SDD-1 in a high-
level language called Datalanguage [9] which is illustrated in Figure 1. Datalan-
guage differs from relational languages such as QUEL [15] or SEQUEL [7]

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Introduction to a System for Distributed Databases 3

Relation: CUSTOMER (Name, Branch, Acct #, SavBal, ChkBal, LoanBal)

Command: Update C in CUSTOMER with C.Name = “Adams”

Begin

C.SavBal = C.SavBal - 100

CChkBal = C.ChkBal + 100

End;

Fig. 1. A Datalanguage command.

primarily in its use of “declared” variables. This construct and related control
structures expand the power of Datalanguage to that of a general-purpose
programming language. For purposes of this paper, the differences between

Datalanguage and QUEL or SEQUEL are not important, and for pedagogic ease,

we adopt QUEL terminology.
Datalanguage may be used as a query language for end-users but is more

typically invoked by host programs. Datalanguage is embedded in host programs
in essentially the same manner as QUEL or SEQUEL. That is, the host program
issues self-contained Datalanguage commands to SDD-1, which processes these

commands exactly as if entered by an end-user.
A single Datalanguage command is called a transaction (e.g., the command

shown in Figure 1 is a transaction). Transactions are the units of atomic inter-
action between SDD-1 and the external world. This concept of transaction is
similar to that of INGRES [151 and System R [11.

An SDD-1 database consists of (logical) relations. Each SDD-1 relation is
partitioned into subrelations called logical fragments, which are the units of data
distribution. Logical fragments are defined in two steps. First, the relation is
partitioned horizontally into subsets defined by “simple” restrictions.’ Then each
horizontal subset is partitioned into subrelations defined by projections (see
Figures 2 and 3). To reconstruct the logical relation from its fragments, a unique
tuple identifier is appended to each tuple and included in every fragment
[lo, 211.

Logical fragments are the units of data distribution, meaning that each may be
stored at any one or several sites in the system. Logical fragments are defined
and the assignment of fragments to sites is made when the database is designed.

A stored copy of a logical fragment is called a stored fragment.
Note that user transactions are unaware of data distribution or redundancy.

They reference only relations, not fragments. It is SDD-l’s responsibility to
translate from relations to logical fragments, and then to select the stored
fragments to access in processing any given transaction.

2.2 General Architecture

SDD-1 is a collection of three types of virtual machines [16]-Transaction
Modules (TMs), Data Modules (DMs), and a Reliable Network (RelNet)-
configured as in Figure 4.

’ A simple restriction is a Boolean expression whose clauses are of the form (attribute) (rel-op),

(constant), where (rel-op) is =, #, >, c, etc.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

4 - J. B. Rothnie et al.

CUSTOMER (Name, Branch, Acct.#, SavBal, ChkBal, LoanBaI)

CUST-1

CUST-2

CUST-3a

CUST-3b

CUST-1 = CUSTOMER where Branch = 1
CUST-2 = CUSTOMER where Branch = 2
CUST-3a = CUSTOMER where Branch = 3 and LoanBal f 0
CUST-3b = CUSTOMER where Branch = 3 and LoanBal = 0

Fig. 2. Horizontal partitioning.

CUSTOMER (Name, Branch, Acct#, SavBal, ChkBal, LoanBal)

CUST-1
I

CUST-I.1
I

CUST-1.2
I

CUST-2

CUST-1.1 = CUST-1 [Name, Branch]

CUST-1.2 = CUST-1 [Acct#, SavBal, ChkBal, LoanBal]
etc.

Fig. 3. Vertical partitioning. In order to reconstruct CUSTOMER from its fragments, a

unique tuple identifier is appended to each tuple and included in euery fragment [21].

Fig. 4. SDD-1 configuration.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Introduction to a System for Distributed Databases 5

All data managed by SDD-1 are stored by Data Modules (DMs). DMs are, in
effect, back-end DBMSs that respond to commands from Transaction Modules.
DMs respond to four types of commands: (1) read part of the DM’s database into
a local workspace at that DM; (2) moue part of a local workspace from this DM
to another DM; (3) manipulate data in a local workspace at the DM; (4) write
part of the local workspace into the permanent database stored at the DM.

Transaction Modules (TMs) plan and control the distributed execution of
transactions. Each transaction processed by SDD-1 is supervised by some TM
which performs the following tasks:

(1) Fragmentation. The TM translates queries on relations into queries on
logical fragments and decides which instances of stored fragments to access.

(2) Concurrency control. The TM synchronizes the transaction with all other

active transactions in the system.
(3) Accessplunning. The TM compiles the transaction into a parallel program

which can be executed cooperatively by several DMs.

(4) Distributed query execution. The TM coordinates execution of the com-
piled access plan, exploiting parallelism whenever possible.

The third SDD-1 virtual machine is the Reliable Network (RelNet) which
interconnects TMs and DMs in a robust fashion. The RelNet provides four

services:

(1) guaranteed deliuery, allowing messages to be delivered even if the recipient
is down at the time the message is sent, and even if the sender and receiver

are never up simultaneously;
(2) transaction control, a mechanism for posting updates at multiple DMs,

guaranteeing that either all DMs post the update or none do;

(3) site monitoring, to keep track of which sites have failed, and to inform sites
impacted by failures;

(4) network clock, a virtual clock kept approximately synchronized at all sites.

This architecture divides the distributed DBMS problem into three pieces:
database management, management of distributed transactions, and distributed

DBMS reliability. By implementing each of these pieces as a self-contained
virtual machine, the overall SDD-1 design is substantially simplified.

2.3 Run-Time Structure

Among the functions required to execute a transaction in a distributed DBMS,
three are especially difficult: concurrency control, distributed query processing,
and reliable posting of updates. SDD-1 handles each of these problems in a
distinct processing phase, so that each can be solved independently. Consider
transaction T of Figure 1. When T is submitted to SDD-1 for processing, the
system invokes a three-phase processing procedure. The phases are called Read,
Execute, and Write.

The fast phase is the Read phase and exists for purposes of concurrency
control. The TM that is supervising T analyzes it to determine which portions of
the (logical) database it reads, called its read-set. In this case the TM would

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

6 - J. B. Rothnie et al.

Page Map for T

Page # storage lot

Page Map for T ’

.

.

.

Fig. 5. Version to storage mapping. T and T’ share each page until one transaction

or the other modifies the page.

determine that T’s read-set is

{CSavBal, C.ChkBal 1 C.Name = “Adams”}.

In addition, the TM decides which stored fragments to access to obtain that
data. Then the TM issues Read commands to the DMs that house those
fragments, instructing each DM to set aside a private copy of that fragment for
use during subsequent processing phases.

The private copies obtained by the Read phase are guaranteed to be consistent
even though the copies reside at distributed sites. The techniques for guaranteeing
consistency are described in Section 3. Since the data are consistent when read,
and since the copies are private, subsequent phases can operate freely on these
data without fear of interference from other transactions.

We emphasize that no data are actually transferred between sites during the
Read phase. Each DM simply sets aside the specified data in a workspace at the
DM. Moreover, in each DM, the private workspace is implemented using a
differential file mechanism [22], so data are not actually copied. This mechanism

operates as follows. The primary organization of a stored fragment is a paged
file, much like a UNIX [20] or TENEX [6] file. Apage is a unit of logical storage;
a page map is a function that associates a physical storage location with each
page (see Figure 5). The “private copy” set aside by a Read command is in reality
a page map. Page maps behave like private copies because pages are never
updated in place; if page P is modified on behalf of transaction T’, say, a new
block of secondary storage is allocated, and the modified page is written there. T’
is able to access the modified page because its page map is also modified to reflect

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Introduction to a System for Distributed Databases - 7

P’s new storage location. Other transactions are unaffected because their page
maps remain unchanged. A similar mechanism is described in [181.

The second phase, called the Execute phase, implements distributed query
processing. At this time, the TM compiles T into a distributed program that takes

as input the distributed workspace created by the Read phase. This compilation
procedure is described in Section 4. The compiled program consists of Move and
Manipulate commands which cause the DMs to perform the intent of T in a
distributed fashion. The compiled program is supervised by the TM to ensure

that commands are sent to DMs in the correct order and to handle run-time
errors.

The output of the program is a list of data items to be written into the database
(in the case of update transactions) or displayed to the user (in the case of
retrievals). In our example, this output list would contain a unique tuple identifier

for Adams’ tuple, identifiers for the field names SavBal and ChkBal, and the new
values for these fields. This output list is produced in a workspace (i.e., temporary

file) at one DM, and is not yet installed into the permanent database. Conse-
quently, problems of concurrency control and reliable writing are irrelevant
during this phase.

The final phase, called the Write phase, installs data modified by T into the
permanent database and/or displays data retrieved by T to the user. For each

entry in the output list, the TM determines which DM(s) contain copies of that
data item. The TM orders the final DM that holds the output list to send the
appropriate entries of the output list to each DM; it then issues Write commands
to each of these DMs thereby causing the new values to be installed into the
database. Techniques described in Section 5 are used during the Write phase to
ensure that partial results are not installed or displayed even if multiple sites or
communication links fail in midstream. This is the most difficult aspect of

distributed DBMS reliability, and by separating it into a distinct phase, we
simplify both it and the other phases.

The three-phase processing of transactions in SDD-1 neatly partitions the key
technical problems of distributed database management. The next sections of this
paper explain how SDD-1 solves each of these independent problems.

3. CONCURRENCY CONTROL

The problems that arise when multiple users access a shared database are well
known. Generically there are two types of problems: (1) If transaction Tl is
reading a portion of the database while transaction T2 is updating it, Tl might
read inconsistent data (see Figure 6). (2) If transactions T3 and T4 are both
updating the database, race conditions can produce erroneous results (see Figure
7). These problems arise in all shared databases-centralized or distributed-and
are conventionally solved using database locking. However, we have developed
a new technique for SDD-1.

3.1 Methodology

SDD-1, like most other DBMSs, adopts serializability as its criterion for concur-
rent correctness. Serializability requires that whenever transactions execute con-
currently, their effect must be identical to some serial (i.e., noninterleaved)

ACM Transactions on Database Systems, Vol. 5, No. 1. March 1980.

0 * J. 8. Rothnie et al.

Consider the database of Figures 2 and 3, and assume fragments CUST-3a.2, CUST-3a.3, are stored
at different DMs:

Let transaction Tl be
Range of C is CUSTOMER;
Retrieve C (SavBal + ChkBal) where C.Name = “Adams”;

Let transaction T2 be
Range of C is CUSTOMER;
Replace C(SavBal = SavBal - $100, ChkBal = ChkBal + $100) where C.Name = “Adams”;

And suppose Tl and T2 execute in the following concurrent order
Tl reads Adams’ SavBal (= $looO) from fragment CUST-3a.2
T2 writes Adams’ SavBal (= $900) into fragment CUST-3a.2
T2 writes Adams’ ChkBal (= $100) into fragment CUST-3a.3
Tl reads Adams’ ChkBal (= $100) from fragment CUST-3a.3

Tl’s output will be $lOJ.IO + $100 = $1100, which is incorrect.

Fig. 6. Reading inconsistent data.

Given the database of Figures 2 and 3.

Let transaction T3 be
Range of C is CUSTOMER;
Replace C (ChkBal = ChkBal + $100) where C.Name = “Monroe”;

Let transaction T4 be
Range of C is CUSTOMER;
Replace C (ChkBal = ChkBal - $50) where CName = “Monroe”;

And suppose T3 and T4 execute in the following concurrent order
T3 reads Monroe’s ChkBal (= $50)
T4 reads Monroe’s ChkBal (= $50)
T4 writes Monroe’s ChkBal (= $0)
T3 writes Monroe’s ChkBal (= $50 + $100 = $150)

The value of ChkBai left in the database is $150, which is incorrect. The final balance should be $50
- $50 + $100 = $100.

Fig. 7. Race condition producing erroneous update.

execution of those same transactions. This criterion is based on the assumption
that each transaction maps a consistent database state into another consistent
state. Given this assumption, every serial execution preserves consistency. Since
a serializable execution is equivalent to a serial one, it too preserves database
consistency.

Most DBMS ensure serializability through database locking. By locking, we
mean a synchronization method in which transactions dynamically reserve data

before accessing them [111.
SDD-1 uses two synchronization mechanisms that are distinctly different from

locking [5]. The first mechanism, called conflict graph analysis, is a technique

for analyzing “classes” of transactions to detect those transactions that require
little or no synchronization. The second mechanism consists of a set of synchro-
nization protocols based on “timestamps,” which synchronize those transactions
that need it.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Introduction to a System for Distributed Databases 9

Define transactions Tl and T2 as in Figure 6
read-set (Tl) = {C.SavBal, C.ChkBal where C.Name = “Adams”}
write-set(T1) = {}
read-set (T2) = read-set(T1)
write-set(T2) = read-set(T1)

Tl T2

‘1 ‘2

w1 N
Note: nodes ri and Wi
denote the read-set
and write-set of

W2
transaction Ti

Define transaction T3 and T4 as in Figure 7
read-set (T3) = {C.ChkBal, where C.Name = “Monroe”}
write-set(T3) = read-set(T3)
read-set (T4) = read-set(T3)
write-set(T4) = read-set(T3)

T3 T4

‘3 ‘4

W3 lxl
w4

Fig. 8. Conflict graphs.

3.2 Conflict Graph Analysis

The read-set of a transaction is the portion of the database it reads and its write-
set is the portion of the database it updates. Two transactions conflict if the read-
set or write-set of one intersects the write-set of the other. In a system that uses
locking, each transaction locks data before accessing them, so conflicting trans-
actions never run concurrently. However, not all conflicts violate serializability;
that is, some conflicting transactions can safely be run concurrently. More
concurrency can be attained by checking whether or not a given conflict is

troublesome, and only synchronizing those that are. Conflict graph analysis is a
technique for doing this.

The nodes of a conflict graph represent the read-sets and write-sets of trans-
actions, and edges represent conflicts among these sets. (There is also an edge
between the read-set and write-set of each transaction.) Figure 8 shows sample

conflict graphs. The important property is that different kinds of edges require
different levels of synclironization, and that synchronization as strong as locking
is required only for edges that participate in cycles [2]. In Figure 8, for example,
transactions Tl and T2 do not require synchronization as strong as locking,
whereas T3 and T4 do.

It is impractical to use conflict graph analysis at run-time because too much
intersite communication would be required to exchange information about con-
flicts. Instead, during database design we apply the technique off-line as follows:
The database administrator defines transaction classes, which are named groups
of commonly executed transactions. Each class is defined by its name, a read-set,
a write-set, and the TM at which it runs; a transaction is a member of a class if

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

10 . J. B. Rothnie et al.

the transaction’s read-set and write-set are contained in the class’s read-set and
write-set, respectively. Conflict graph analysis is actually performed on these
transaction classes, not on individual transactions as in Figure 8. (Notice that
transactions from different classes can conflict only if their classes conflict.) The
output of the analysis is a table which tells (a) for each class, which other classes
it conflicts with, and (b) for each such conflict, how much synchronization (if
any) is required to ensure serializability.

It is convenient to assume that each TM is only permitted to supervise
transactions from one class, and vice versa.’ At run-time, when transaction T is
submitted, the system determines which class(es) T is a member of, and sends T
to the TM that supervises one of these classes. The TM synchronizes T against
other transactions in its class using a local mechanism similar to locking. To
synchronize T against transactions in other classes, the TM uses the synchroni-
zation method(s) specified by the conflict graph analysis. These methods are
called “protocols” and are described below.

3.3 Time&-Based Protocols

To synchronize two transactions that conflict dangerously, one must be run first,
and the other delayed until it can safely proceed. In locking systems, the execution
order is determined by the order in which transactions request conflicting locks.
In SDD-1, the order is determined by a total ordering of transactions induced by
timestamps. Each transaction submitted to SDD-1 is assigned a globally unique
timestamp by its TM. Timestamps are generated by concatenating a TM iden-
tifier to the right of the network clock time, so that time&s from different
TMs always differ in their low-order bits. This means of generating unique
timestamps was proposed in [23].

The timestamp of a transaction is attached to all Read and Write commands
sent to DMs on the behalf of that transaction. In addition, each Read command
contains a list of classes that conflict dangerously with the transaction issuing the
Read (this list was determined by the conflict graph analysis). When a DM
receives a Read command, it defers the command until it has processed all
earlier Write commands (i.e., those with smaller timestamps) and no later Write
commands (i.e., those with larger ones) from the TMs for the specified classes.
The DM can determine how long to wait because of a DM-TM communication
discipline called piping.

Piping requires that each TM send its Write commands to DMs in timestamp
order. In addition, the Reliable Network guarantees that messages are received
in the order sent. Thus when a DM receives a Write from (say) TMx timestamped
(say) TSx, the DM knows it has received all Write commands from TMx with
timestamps less than TSx. So, to process a Read command with timestamp TSR,
the DM proceeds as follows:

For each class specified in the Read command, the DM processes all Write
commands from that class’s TM up to (but not beyond) TSR. If, however,

* This assumption engenders no loss of generality since several TMs can be multiprogrammed at one
site, and several classes can be defined with identical read-sets and write-sets.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Introduction to a System for Distributed Databases 11

the DM has already processed a Write command with timestamp beyond
TSR from one of these TMs, the Read is rejected.

To avoid excessive delays in waiting for Write commands, idle TMs periodically
send null (empty) timestamped Write commands; also, an impatient DM can
explicitly request a null Write from a TM that is slow in sending them.

The synchronization protocol we have just described roughly corresponds to
locking and is designed to avoid “race conditions” [5]. However, there are several

variations of this protocol, depending on the type of timestamp attached to Read

commands and the interpretation of the timestamps by DMs. For example, read-
only transactions can use a less expensive protocol in which the DM selects the

timestamp, thereby avoiding the possibility of rejection and reducing delay. The
variety of available synchronization protocols is an important feature of SDD-l’s

concurrency control.
The SDD-1 concurrency control mechanism is described in greater detail in

[3, 41; its correctness is formally proved in [2].

When all Read commands have been processed, consistent private copies of
the read-set have been set aside at all necessary DMs. At this point, the Read
phase is complete.

4. DISTRIBUTED QUERY PROCESSING

Having obtained a consistent copy of a transaction’s read-set, the next step is to
compile the transaction into a parallel program and execute it. The key part of
the compilation is access planning, an optimization procedure that minimizes
the object program’s intersite communication needs while maximizing its paral-
lelism. Access planning is discussed in Section 4.1, and execution of compiled
transactions is explained in Section 4.2.

4.1 Access Planning

Perhaps the simplest way to execute a distributed transaction T is to move all of

T’s read-set to a single DM, and then execute T at that DM (see Figure 9). This
approach works but suffers two drawbacks: (1) T’s read-set might be very large,

and moving it between sites could be exorbitantly expensive; (2) little use is made
of parallel processing. Access planning overcomes these drawbacks.

The access planner produces object programs with two phases, called reduction
and final processing. The reduction phase eliminates from T’s read-set as much
data as is economically feasible without changing T’s answer. Then, during final
processing, the reduced read-set is moved to a designated “final” DM where T is
executed. This structure mirrors the simple approach described above but lowers
communication cost and increases parallelism via reduction.

Reduction employs the familiar restriction and projection operators, plus an

operator called semi-join, defined as follows: let R(A, B) and S(C, D) be relations;
the semi-join of R by S on a qualification q (e.g., R.B = S.C) equals the join of R
and S on q, projected back onto the attributes of R (see Figure 10). If R and S are
stored at different DMs, this semi-join is computed by projecting S onto the
attributes of q (i.e., S.C), and moving the result to R’s DM.

We define the cost of an operation to be the amount of data (e.g., number of

ACM Transactions on Database Systems, Vol. 5, No. 1, M&h 1980.

12 - J. B. Rothnie et al.

Given the database of Figures 2 and 3.

Let transaction T5 be

Range of C is CUSTOMER;

Replace C (ChkBal = ChkBal + LoanBal) where LoanBal < 0;

(The effect of T5 is to credit loan overpayments to customers’ checking accounts.)

Simple strategy

Move every fragment that could potentially contribute to T5’s result to a designated site. Process

T5 locally at that site.

Fig. 9. Simple execution strategy.

Given:

CUST (Name, ChkBal, LoanBal) AUTO-PAY (Name, Amount)

Jeff. $399 $3oooo Jeff. $399
Adams $100 $2~ Adams $2@3
Polk $250 $2oooo Polk @@J
Tyler $lf)o $15ooo Tyler $150

Buchanan $799 $4oooo Buchanan $499
Johnson $2c@ @oooo Johnson $200

Example (i)

The semi-join of

CUST by AUTO-PAY on CUSTChkEal = AUTO-PAY.Amount

equals the join of

CUST and AUTO-PAY on CUST.ChkBal = AUTO-PAY.Amount

(Name, ChkBal, LoanBal, Name, Amount)

Jeff. $309 $3oooo Jeff. $309
Johnson $200 $2oooo Adams $200
Johnson $200 $2oooo Polk $200
Johnson $200 woo00 Johnson $200

projected onto

PJame, ChkBal, LoanBal)

Jeff. $399 $3oooo
Johnson $2W $2oooo.

Example (ii)

The semi-join of

CUST by AUTO-PAY on CUST.ChkBal < AUTO-PAY.Amount

and CUST.Name = AUTO-PAY.Name

equals:

(Name, ChkBal, LoanBal)

Adams $100 $2oooo
Tyler $100 $15900

(These are customers whose balances are insufficient for their automatic loan payments.)

Fig. 10. Semi-join examples.

bytes) that must be sent between sites to execute it, while its benefit is the
amount by which it reduces the size of its operand.3 Restrictions and projections
can be computed with no intersite data transfer,4 and always produce monotoni-
cally smaller relations. So, under our cost definition, such operations are always

’ This definition is appropriate because communications is the bottleneck in a distributed DBMS.

*We ignore the cost of sending the restriction or projection command from TM to DM. In practice
this cost is negligible.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Introduction to a System for Distributed Databases 13

cost beneficial. Semi-joins, on the other hand, require intersite data movement

whenever their operands are stored at different sites. Hence the cost effectiveness
of a semi-join depends on the database state. The problem of access planning is
to construct a program of cost-beneficial semi-joins, given a transaction and a

database state.
The procedure we employ uses a hill-climbing discipline, starting from an initial

feasible program and iteratively improving it. The initial program is essentially
the simple approach described at the beginning of this section. The access planner
improves this program by first adding all restrictions and projections permitted
by T, and then iteratively incorporating cost-beneficial semi-joins. This process

terminates when no further cost-beneficial semi-joins can be found. A final stage
reorders the semi-joins to take maximal advantage of their reductive power, since

the order in which semi-joins are selected may be suboptimal for execution.

4.2 Distributed Execution

The programs produced by the access planner are nonlooping parallel programs
and can be represented as data flowgraphs [17]. To execute the program, the TM
issues commands to the DMs involved in each operation as soon as all predeces-

sors of the operation are ready to produce output.
The effect of execution is to create at the fmal DM a temporary file to be

written into the database (if T is an update) or displayed to the user (if T is a
retrieval). At this point, the Execute phase has completed.

5. RELIABLE WRITING

To complete transaction processing, the temporary file at the final DM must be
installed in the permanent database and/or displayed to the user. Since the
database is distributed, the temporary file is first split into a set of temporary

fiIes F1, . . . , F, that list the updates to be performed at each of DMi, . . . , DM,,
respectively; if any results must be displayed to the user, let us treat the user as

one of the DMs.
Each of these temporary files is transmitted to the appropriate DM as a Write

command. The problem is to ensure that failures cannot cause some DMs to

install updates while causing others not to. We must protect against two types of
failures: failure of a receiving DM, and failure of the sender; the former is handled

by reliable delivery and the latter by transaction control, described in Sections
5.1 and 5.2, respectively. In addition, it is necessary to ensure that updates from
different transactions are installed in the same “effective” order at all DMs. This
problem is addressed in Section 5.3.

Ideally one would like 100 percent protection against failures, but this goal is
theoretically unattainable [13]. Instead our goal is to attain acceptably high levels
of protection and, moreover, to make the level of protection a database design

parameter.

5.1 Guaranteed Delivery

Techniques for reliable message delivery are well known in the communication
field as long as both sites are up. For example, in ARPANET errors due to

duplicate messages, missing messages, and damaged messages are detected and
corrected by the network software. SDD-l’s guaranteed delivery mechanism

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

14 * J. B. Rothnie et al.

addresses the additional threat that the sender and receiver are not up simulta-
neously to exchange messages.

To solve this problem, the RelNet employs a mechanism called spooler. A
spooler is a process with access to secondary storage that serves as a first-in, first-
out message queue for a failed site. Any message sent to a failed DM is delivered

to its spooler instead. Each spooler manages its secondary storage using conven-
tional DBMS reliability techniques [24] to guarantee the integrity of these
messages. In addition, protection against spooler site failures is attained by
employing multiple spoolers; as long as one spooler is up and running correctly,

messages can be reliably stored.
With the use of reliable delivery, WRITE messages can be sent to failed DMs.

When a failed DM recovers, it can receive its (spooled) WRITE messages to bring
its database up to date.

5.2 Transaction Control

Transaction control addresses failures of the final DM that occur during the

Write phase. Suppose the final DM fails after sending files F1, . . . , Fk-l, but
before sending Fk, . . . , F,. At this point the database is inconsistent because DMI,

. . .) DMKmI reflects the effects of the transaction, while DMk, . . . , DM, do not.
Transaction control ensures that inconsistencies of this type are rectified in a

timely fashion.
The basic technique employed is a variant of “two-phase commit” [13]. During

phase 1, the final DM transmits F1, . . . , F,, but the receiving DMs do not install
them yet. During phase 2, the final DM sends Commit messages to DMI, . . . ,

DM,, whereupon each DMi does the installation. If some DM, DMk say, has
received Fk, but not a Commit, and the final DM has failed, DMk consults the
other DMs. If any have received a Commit, DMk does the installation; if none

have received Commits, none do the installation, thereby aborting the transaction.
This technique offers complete protection against failures of the final DM but

is susceptible to multisite failures. Enhancements that offer arbitrarily high
protection against multiple failures are described in [14].

5.3. The Write Rule

If transactions Tl and T2 complete execution at approximately the same time
and have intersecting write-sets, a mechanism is needed to ensure that their

updates are installed “in the same order” at all DMs. One way to do this is to
attach the transaction’s timestamp to each Write command and require that
DMs process Write commands in timestamp order. This technique introduces
unnecessary delays, however. It is possible to do better by timestamping the
database as well as Write commands.

Every physical data item in the database is timestamped with the time of the
most recent transaction that updated it. In addition, each Write command carries
the timestamp of the transaction that generated it. When an update is committed
at a DM, the following Write rule is applied: For each data item, X, in the Write
command, the value of X is modified at the DM if and only if X’s stored
timestamp is less than the timestamp of the Write command. Thus “recent”
updates (ones with big timestamps) are never overwritten by “older” ones. The

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Introduction to a System for Distributed Databases 15

net effect is the same as processing Write commands in timestamp order. This

technique was originally suggested by [23].
A principal objection to this technique is the apparent high cost of storing

timestamps for every data item in the database. However this cost is reduced to

acceptable levels by caching the timestamps (see [4]).
When updates are installed at all DMs, the Write phase is completed. At this

point the transaction has been fully processed.

6. DIRECTORY MANAGEMENT

SDD-1 maintains directories containing relation and fragment definitions, frag-

ment locations, and usage statistics. Since TMs use directories for every trans-
action, efficient and flexible directory management is important. The main issues

in directory management are whether or not to store directories redundantly and
whether directory updates should be centralized or decentralized. We have made

these issues a matter of database design by treating directories as ordinary user
data. This approach allows directories to be fragmented, distributed with arbi-

trary redundancy, and updated from arbitrary TMs.

But there are some problems. First, performance could be degraded by requiring
that every directory access incur general transaction overhead, and by requiring

that every access to remotely stored directories incur communication delays. We
avoid these performance problems by caching recently referenced directory
fragments at each TM, discarding them if rendered obsolete by directory updates.
Since directories are relatively static, this solution is appropriate.

A second problem is that we now need a directory that tells where each
directory fragment is stored. This directory is called the directory locator, and a
copy of it is stored at every DM. This solution is appropriate because directory
locators are relatively small and quite static.

7. HISTORY

SDD-1 is the first general-purpose distributed DBMS ever developed. Its design
was initiated in 1976 and completed in 1978. The first version of the system,
which included distributed query processing, was released in mid-1978; a complete

prototype system, including concurrency control and reliable writing, was released
in autumn 1979. SDD-1 is implemented for DEC-10 and DEC-20 computers
running the TENEX and TOPS-20 operating systems; its communication medium
is the ARPA network. SDD-1 is built on top of existing software to the extent
possible; most notably it employs an existing DBMS, called Datacomputer [19],
to handle all database management issues. The current system is configured with
four sites, although the software can support any reasonable number.

The complete SDD-1 software consists of 25,000 lines of BCPL code. The
compiled DM has 47K 36-bit words of code; the compiled TM has 120K 36-bit
words of code, of which 45K words are “borrowed” from Datacomputer’s object
code. The design and implementation represents about 10 man-years of effort.

8. CONCLUSION

SDD-1 is a general-purpose distributed DBMS, integrating database manage-
ment, distributed processing, and reliable communication technologies into a

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

16 - J. B. Rothnie et al.

cohesive system. This integration offers substantial benefits by combining the
advantages of distributed processing with the advantages of centralized database

management. At the same time it introduces new technical problems, of which
the most critical are concurrency control, query processing, and reliable writing.
This paper has outlined the SDD-1 solutions to each of these problems. The
existence of SDD-1 as a system demonstrates that these problems can be solved

in an integrated software system, and that distributed database management is
indeed a feasible technology. For in-depth presentations of our techniques we
refer the reader to [2-4, 12, 141.

ACKNOWLEDGMENTS

The authors thank Carolyn Carleton, Emy Dickey, and Nancy Wolfe for their
editorial assistance in preparing this and the companion SDD-1 papers.

REFERENCES

1. ASTRAHAN, M.M., ET AL. System R: Relational approach to database management. ACM Trans.

Database Syst. 1,2 (June 1976), 97-137.

2. BERNSTEIN, P.A., AND SHIPMAN, D.W. The correctness of concurrency control mechanisms in

a system for distributed databases (SDD-1). ACM Trans. Database Syst. 5, 1 (March 1980),

52-66.

3. BERNSTEIN, P.A., ROTHNIE, J.B., GOODMAN, N., AND PAPADIMITRIOU, C.A. The concurrency

control mechanism of SDD-1: A system for distributed databases (the fuIIy redundant case).

IEEE Trans. Software Eng. SE-4,3 (May 1978), 154-168.
4. BERNSTEIN, P.A., SHIPMAN, D.W., AND ROTHNIE, J.B. JR. Concurrency control iu a system for

distributed databases (SDD-1). ACM Trans. Database Syst. 5,1 (March 1980) 18-51.

5. BERNSTEIN, P.A., SHIPMAN, D.W., AND WONG, W.S. Formal aspects of seriahzabihty in database
concurrency control. ZEEE Trans. Software Eng. SE-5,3 (May 1979), 203-215.

6. BOBROW, D.G., BURCHFIEL, J.D., MURPHY, D.L., AND TOMLINSON, R.S. TENEX, a paged time

sharing system for the PDP-10. Comm. ACM 15,3 (March 1972), 135-143.

7. CHAMBEFUN, D.D., ET AL. SEQUEL 2: A unified approach to data definition, manipulation,
and control. IBM J. Res. and Deuelop. 20,6 (Nov. 1976), 560-575.

8. CODD, E.F. A relational model of data for large shared data banks. Comm. ACM 13, 6 (June

1970), 377-387.

9. COMPUTER CORPORATION OF AMERICA. Datacomputer Version 5 User Manual, Cambridge,

Mass., July 1978.

10. DAYAL, U., AND BERNSTEIN, P.A. The fragmentation problem: Los-sless decomposition of

relations into files. Tech. Rep. CCA-78-13, Computer Corporation of America, Cambridge, Mass.,

Nov. 1978.

11. ESWARAN, K.P., GRAY, J.N., L~RIE, R.A., AND TRAIGER, I.L. The notions of consistency and

predicate locks in a database system. &mm. ACM 19, 11 (Nov. 1976), 624-633.

12. GOODMAN, N., BERNSTEIN, P.A., REEVE, C. L., ROTHNIE, J.B., AND WONG, E. Query processing

in SDD-I: A system for distributed databases. Submitted for publication.

13. GRAY, J.N. Notes on data base operating systems. In Operating Systems: An Advanced Course,

Vol. 60 of Lecture Notes in Computer Science, Springer-Verlag, 1978, pp. 393-481.

14. HAMMER, M.M., AND SHIPMAN, D.W. The reliability mechanisms of SDD-1: A system for

distributed databases. Submitted for publication.

15. HELD, G., STONEBRAKER, M., AND WONG, E. INGRES: A relational data base system. Proc.

AFIPS 1975 NCC, Vol. 44, AFIPS Press, Arlington, Va., pp. 409-416.

16. HORNING, J.J., AND RANDELL, B. Process structuring. ACM Computing Surveys 5, 1 (March

1973), 5-30.

17. KARP, R.M., AND MILLER, R.E. Properties of a model for parallel computation: Determinacy,

termination, queueing. SIAM J. Appl. Math. 14 (Nov. 1966), 1390-1411.

18. LORIE, R.A. Physical integrity in a large segmented database. ACM Trans. Database Syst. 2, 1

(March 1977), 91-104.

ACM Transsctions on Database Systems, Vol. 5, No. 1, March 1980.

Introduction to a System for Distributed Databases 17

19. MARILL, T., AND STERN, D.H. The datacomputer: A network data utility. Proc. AFIPS 1975
NCC, Vol. 44, AFIPS Press, Arlington, Va., pp. 389-395.

20. RITCHIE, D.M., AND THOMPSON, K. The UNIX time-sharing system. Comm. ACM f7, 7 (July
1974), 365-375.

21. ROTHNIE, J.B., AND GOODMAN, N. An overview of the preliminary design of SDD-1: A system
for distributed databases. Proc. 1977 Berkeley Workshop on Distributed Data Management and
Computer Networks, Lawrence Berkeley Lab., U. of California, Berkeley, Calif., May 1977,39-57.

22. SEVERANCE, D.G., AND LOHMAN, G.M. Differential files: Their application to the maintenance
of large databases. ACM Trans. Database Syst. I, 3 (Sept. 1976), 256-267.

23. THOMAS, R.H. A majority consensus approach to concurrency control for multiple copy data-
bases. ACM Trans. Database Syst. 4,2 (June 1979), 180-209.

24. VERHOFSTAD, J.S.M. Recovery techniques for database systems. ACM Computing Surveys 10,

2 (June 1978), 167-196.
25. WONG, E. Retrieving dispersed data from SDD-1: A system for distributed databases. Proc. 1977

Berkeley Workshop on Distributed Data Management and Computer Networks, Lawrence
Berkeley Lab., U. of California, Berkeley, Calif., May 1977, 217-235.

Received December 1978; revised August 1979

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

