
Introduction to Active Automata Learning from

a Practical Perspective⋆

Bernhard Steffen, Falk Howar, and Maik Merten

TU Dortmund University, Chair for Programming Systems, Dortmund, D-44227,
Germany

{steffen|falk.howar|maik.merten}@cs.tu-dortmund.de

Abstract. In this chapter we give an introduction to active learning
of Mealy machines, an automata model particularly suited for modeling
the behavior of realistic reactive systems. Active learning is characterized
by its alternation of an exploration phase and a testing phase. During
exploration phases so-called membership queries are used to construct
hypothesis models of a system under learning. In testing phases so-called
equivalence queries are used to compare respective hypothesis models to
the actual system. These two phases are iterated until a valid model of
the target system is produced.
We will step-wisely elaborate on this simple algorithmic pattern, its un-
derlying correctness arguments, its limitations, and, in particular, ways
to overcome apparent hurdles for practical application. This should pro-
vide students and outsiders of the field with an intuitive account of the
high potential of this challenging research area in particular concerning
the control and validation of evolving reactive systems.

1 Motivation

Interoperability remains a fundamental challenge when connecting heteroge-
neous systems [10]. The Connect Integrated Project [35] aims at overcoming
the interoperability barrier by synthesizing required Connectors on the fly in
five steps [5, 21]: (i) extracting knowledge from, (ii) learning about and (iii) rea-
soning about the interaction behavior of networked systems, as a basis for (iv)
synthesizing Connectors [33, 34], and subsequently (v) generating and deploy-
ing them for immediate use [9].

This chapter focuses on the foundations for step (ii), namely on techniques for
leveraging and enriching the extracted knowledge by means of experimentation
with the targeted components. Central are here advanced techniques for active
automata learning [3, 38, 4, 31, 50], which are designed for optimally aggregating,
and where necessary completing, the observed behavior.

Characteristic for active learning automata learning is its iterative alternation
between a “testing” phase for completing the transitions relation of the model ag-
gregated from the observed behavior, and an equivalence checking phase, which

⋆ This work is supported by the European FP 7 project CONNECT (IST 231167).

either signals success or provides a counterexample, i.e., a behavior that distin-
guishes the current aggregate (called hypothesis) from the system to be learned.
In practice, this second phase must typically be (approximately) realized via
testing. This is the reason for the learning approach neither to be correct nor
complete in practice. However, it can be proven that it optimally aggregates the
behavior optimal in the following sense: hypothesis models are guaranteed to
be the most concise (state-minimal) consistent representation of the observed
behavior.

This technique, which originally has been introduced for dealing with formal
languages, works very well also for reactive systems, whenever the chosen inter-
pretation of the stimuli and reactions leads to a deterministic language. For such
systems, active automata learning can be regarded as regular extrapolation, i.e.,
as a technique to construct the “best” regular model being consistent with the
observations made. This is similar to the well-known polynomial extrapolation,
where polynomials are used instead of finite automata, and functions instead
of reactive systems. And like there, the quality, not the applicability, of extrap-
olation depends on the structure of the considered system behavior. However,
due to the enormous degree of freedom inherent in reactive systems, automata
learning is computationally much more expensive than polynomial extrapola-
tion. Thus the success of automata learning in practice very much depends on
the optimizations employed to exploit the specific profile of the system to be
learned [31, 50]. One important step in the direction was the generalization of
the modeling structure from deterministic automata to Mealy machines [31, 45,
32, 52]. We will therefore consider this setup throughout this chapter.

Outline: In this chapter we will review the foundations of active learning for
Mealy machines, which have proven to be an adequate modeling formalism for
reactive systems in practice.

We will start in Section 2 by formally introducing Mealy machines and trans-
ferring the idea of the Nerode-relation from languages to the world of Mealy
machines. This will provide us with a mechanism for distinguishing states of
an unknown system under learning. Finally, we will revisit the idea of partition
refinement, using a simple minimization algorithm for Mealy machines as an
example.

In Section 3 we will then exactly define the scenario of active learning and
discuss how the ideas from Section 2 can be put together conceptually in order
to infer models from black-box systems. This scheme will be used in Section 4
when we present an intuitive algorithm that uses a direct on-the-fly construction
approach to learning. In Section 5 we present a modified L∗ learning algorithm
for Mealy machines that uses the data-structures and building blocks usually
used in active learning literature.

Finally, we will discuss briefly the challenges to be faced when using active
learning in real-world scenarios in Section 6 and present a framework for au-
tomata learning in Section 7, before we conclude in Section 8. A more detailed
account of practical challenges is given in [30, 36]. Section 9 contains pointers to

literature for the interested reader and in Section 10 you will find some exercises
based on the concepts presented in this chapter.

2 Modeling Reactive Systems

In this section we will discuss how to model reactive systems formally and intro-
duce Mealy machines as an adequate formalism for modeling systems with input
and output. We will see that Mealy machines can be given semantics in terms of
runs in the same way as finite automata are interpreted as representations of for-
mal languages. Subsequently, we exploit this similarity to a Myhill/Nerode-like
theorem for the Mealy scenario. This will allow us to define canonical models
and provides us with a handle to construct Mealy machines from sets of runs. Fi-
nally, we will present a minimization algorithm for Mealy machines and thereby
revisit the concept of partition refinement, the characteristic algorithmic pattern
underlying active learning.

Most of the systems we are using every day – imagine a telephony system
– can be seen as reactive systems: These systems usually (almost) never termi-
nate and interact with their environment, e.g., with a user or another system.
They expose a set of input actions to their environment and on a specific in-
put these systems will produce some output: In a telephony system, e.g., after
dialing a number, you may hear a ringing tone. Alternatively, you might also
hear a busy tone. From a user’s perspective this behavior of the system is not
(input) deterministic, (i.e., the reaction to the same input (sequence) leads to
two different reactions (outputs)) although, from a more detailed perspective it
is not: including additional information on the “state” of the system will expose
the causal prerequisites of hearing a ringing tone or busy tone. In this particular
case, we even know the causal connections: when we attempt to call someone
who is in a call already, we will hear the busy tone. Thus the apparent (input)
non-determinism can be overcome by considering the larger context including
the activities that led to the called party being already on a call.

Active automata learning very much depends on the system under learning to
be (input) deterministic. Usually this is not too much of a restriction as indicated
above: apparently non-deterministic practical (man made) systems can usually
be “made” deterministic by adding detail (refinement). Otherwise, the system
would not be controllable, which often is considered a reliability problem.

Example 1 (A coffee machine). Let us consider a very simple reactive system: a
coffee machine. This machine has an assessable user interface, namely a button
which starts the production of delicious coffee. However, before the production
of this precious fluid can commence, a water tank (filled with water) and a coffee
pod have to be put in place. After every cup of coffee produced, the machine has
to be cleaned, which involves the removal of all expendables. Thus the operations
possible on the machine are “water” (fill the water tank), “pod” (provide a fresh
coffee pod), “clean” (remove all expendables) and “button” (start the production
of coffee).

(a) empty (b) with pod (c) with water

(d) with pod and water (e) success (f) error

Fig. 1. The illustrated state space of the coffee machine

One single flaw that escaped product testing, however, is that the machine
will immediately enter an error state on any mishandling. If, e.g., the button for
coffee production is pressed before a complete set of expendables is filled in, an
error will be signaled that cannot be overcome using the conventional interaction
operations described above. This explains the lukewarm reception by consumers
and in turn the affordable price of the machine.

The state space of the machine is readily observable (see Fig. 1), as is the
output produced: the machine can be “OK” (“X”) with a user interaction, pro-
duce coffee (“K”), or express its dissatisfaction with the way it is operated by
signaling an error (“✷”). ⊓⊔

2.1 Mealy machines

Mealy machines are a variant of automata which distinguish between an input
alphabet and an output alphabet. Characteristic for Mealy machines is that in-
puts are always enabled (in other words the transition function is totally defined
for all input symbols), and that their response to an input (sequence) is uniquely

determined (this property is called input determinism). Both properties fit the
requirements of a large class of (reactive) systems very well.

We will use Mealy machines throughout this chapter. It should, however,
be noted that there is a very close relationship between Mealy machines and
deterministic finite automata: Mealy machines can be regarded as deterministic
finite automata over the union of the input alphabet and an output alphabet
with just one rejection state, which is a sink, or more elegantly, with a partially
defined transition relation. In fact, considering partially defined transition rela-
tions provides a close analogy, as Mealy machines do not distinguish between
accepting and rejecting states. They distinguish runs according to their output.
Semantically this means that these automata define prefix closed languages, an
adequate choice when modeling the reactive behavior of a system, because one
cannot observe a long run without first seeing its prefixes.

More formally, we assume a set of input actions Σ and a set of outputs Ω,
and we refer as usual to sequences of inputs (or outputs) w = α1 . . . αn, where
αi ∈ Σ, as words, which can be concatenated, as well as split into prefixes and
suffixes in the same way as known from language theory: we write w = uv to
denote that w can be split into a prefix u and a suffix v, or – reversely – that
u and v can be concatenated to w. Sometimes, when we want to emphasize the
concatenation, we write u · v, and we denote the empty word by ǫ.

Let us now define a Mealy machine:

Definition 1. A Mealy machine is defined as a tuple M = 〈S, s0, Σ,Ω, δ, λ〉
where

– S is a finite nonempty set of states (be n = |S| the size of the Mealy ma-
chine),

– s0 ∈ S is the initial state,
– Σ is a finite input alphabet,
– Ω is a finite output alphabet,
– δ : S ×Σ → S is the transition function, and
– λ : S ×Σ → Ω is the output function.

Intuitively, a Mealy machine evolves through states s ∈ S, and whenever one
applies an input symbol (or action) α ∈ Σ, the machine moves to a new state
according to δ (s, α) and produces an output according to λ(s, α). ⊓⊔

We write s
α/o
−→ s′ to denote that on input symbol α the Mealy machine moves

from state s to state s′ producing output symbol o. We will denote the straight-
forward inductive extensions of δ : S ×Σ → S and λ : S ×Σ → Ω to deal with
words in the second component with δ∗ and λ∗, respectively. δ∗ : S × Σ∗ → S

and λ∗ : S × Σ∗ → Ω are formally defined by δ∗(s, ǫ) = s and δ∗(s, αw) =
δ∗(δ(s, α), w); by λ∗(s, ǫ) = ∅ and λ∗(s, wα) = λ(δ∗(s, w), α) respectively.

Example 2 (Modeling the coffee machine). We can specify the behavior of the
coffee machine from Example 1 as the Mealy machine Mcm = 〈S, s0, Σ,Ω, δ, λ〉,
where

a

b c

d d′e

f

pod/X
water/X

clean/X
button/✷

water/X

pod/X

button/✷

pod/X

water/X

button/✷

button/K

{water, pod}/X

button/K

{water, pod}/X

clean/X

Σ \ {clean}/✷

Σ/✷

Fig. 2. Mealy specification of the coffee machine

– S = {a, b, c, d, d′, e, f}
– s0 = a

– Σ = {water, pod, button, clean}
– Ω = {X,K,✷}

The transition- and output-function are defined according to the model shown
in Fig. 2. In this example specification, we use two states d and d′ differing wrt.
the order in which water and pod have been filled into the machine. ⊓⊔

The concrete behavior of a Mealy machine when processing a sequence of inputs
α1α2 . . . αn has the pattern of an alternating sequence of input and output sym-
bols α1o1α2o2 . . . αnon. It turns out, however, that Mealy machines can be fully
characterized in terms of their runs, which abstract from all the intermediate
outputs and simply record the the final output. This means that the follow-
ing semantic functional JMK : Σ∗ → Ω defined by JMK(w) = λ∗(s0, w) faithfully
captures the behavioral semantics of Mealy machines (see Theorem 1). In partic-
ular, we will see that the corresponding notion of semantic equivalence M ≡ M′

defined by JMK = JM′K is the leading notion in the following development.

Example 3 (Runs of Mealy machines). The run

〈water pod button clean button, ✷〉

is in JMcmK, while the run

〈water button clean, X〉

is not, because in Mcm, once a run passes state f no other output than ✷ will
be produced. ⊓⊔

2.2 Regularity

In this section we will characterize which functionals P : Σ∗ → Ω are the
semantics of some Mealy machine. Key to this characterization is the following
notion of equivalence induced by P on input words which resembles the well-
known Nerode relation for formal languages [44]:

Definition 2 (Equivalence of words wrt. P). Two words u, u′ ∈ Σ∗ are
equivalent wrt. ≡P , iff for all continuations v ∈ Σ∗, the concatenated words uv

and u′v are mapped to the same output by P :

u ≡P u′ ⇔ (∀v ∈ Σ∗. P (uv) = P (u′v)).

We write [u] to denote the equivalence class of u wrt. ≡P . ⊓⊔

Obviously, ≡P is an equivalence relation: equality is reflexive, symmetric, and
transitive. Also, we observe that every Mealy machine M for P refines such a
relation ≡P : Two words u, u′ ∈ Σ∗ leading to the same state have to be in the
same class of ≡P as the future behavior of M for both words is identical.

Example 4 (Equivalence of words wrt. P). In our example model of Mcm from
Example 2 and Figure 2, the following three words (among others) are equivalent
wrt. ≡JMcmK:

water pod (1)

≡JMcmK water water pod (2)

≡JMcmK pod pod water (3)

For (1) and (2) it is obvious, because (1) and (2) lead to the same state (d). The
word (3), on the other hand, leads to a different state (d′). However, we defined
the equivalence relation on Σ∗, and not on Mcm. We leave it to the reader to
retrace that there does not exists a possible continuation of (1) and (3) in Σ∗,
which proves both words inequivalent. ⊓⊔

This is already sufficient to prove our Characterization Theorem as a straight-
forward adaption of the Myhill/Nerode theorem for regular languages and de-
terministic finite automata (DFA) [26, 44].

Theorem 1 (Characterization Theorem). A mapping P : Σ∗ → Ω is
a semantic functional for some Mealy machine iff ≡P has only finitely many
equivalence classes (finite index).

Proof. (⇒): Let M be an arbitrary Mealy machine. Then we must show that
≡JMK has finite index. This follows directly from that fact that all input words
that lead to the same state of the M are obviously equivalent, which limits the
index by the number of state of M.
(⇐): Consider the following definition of Mealy machineMP = 〈S, s0, Σ,Ω, δ, λ〉:

– S is given by the classes of ≡P .
– s0 is given by [ǫ].
– the transition function is defined by δ([w], α) = [wα].
– the output function can be defined as λ([w], α) = o, where P (wα) = o.

Then it is straightforward to verify that MP is a well-defined Mealy machine
with semantic functional P , i.e., with JMP K = P .

⊓⊔

In analogy to classical language theory, we will call a mapping P : Σ∗ → Ω

regular whenever there exists a corresponding Mealy machine MP , or, equiv-
alently, whenever ≡P has finite index. In this situation it is easy to establish
a corresponding variant of the famous Pumping Lemma (cf. [26]), again in full
analogy to classical language theory:

Proposition 1 (Bounded reachability). Every state of a minimal Mealy ma-
chine with n states has an access sequence, i.e., a path from the initial state to
this state, of length at most n − 1. Every transition of this Mealy machine can
be covered by a sequence of length at most n from the initial state.

A more careful look at the Mealy machine MP constructed above reveals that
it is indeed the up to isomorphism unique state-minimal Mealy machine with
semantic functional P , as two input words can obviously only lead to the same
state if they are equivalent wrt. ≡P . This makes MP the canonical model for
representing P .

Example 4 shows that a Mealy machine can have more than one state per
class of ≡JMK. In the following, we will investigate when and how we can effec-
tively transform such Mealy machines into canonical form. Please note that the
construction in the proof of the Characterization Theorem is not effective as it
is in general not possible to compute ≡P just from P . We will see that there is
a smooth transition from variants of minimization algorithms to the underlying
pattern of L∗, Angluin’s seminal active learning algorithm.

2.3 Canonical Mealy Machines

For an arbitrary Mealy machine, we will usually have no information about the
index of ≡JMK, the classes of ≡JMK, or how single states correspond to classes
of ≡JMK. From Theorem 1 we know, however, that all words leading to the

same state, have to be in the same class of ≡JMK, and that there exists a Mealy
machine whose states directly correspond to the equivalence classes of ≡JMK.
Unfortunately, trying the minimize a given Mealy machine by merging some
states whose access sequences are ≡JMK-equivalent has two drawbacks:

– it may destroy the well-definedness of the transitions function δ (which could
be overcome by generalizing the notion for Mealy automaton to allow for
transitions relations), and, much worse,

– proving the equivalence of access sequences is in general quite hard. In the
setting of active learning of black box system (cf. Section 6) it is even unde-
cidable in general.

However there is an alternative way, which in addition to its elegance and effi-
ciency, paves the way to active automata learning: partition refinement. Rather
than collapsing a too fine partition on access sequences (given here by the states
of a Mealy machine), partition refinement works by iteratively refining too coarse
partitions (initially typically the partition with just one class) based on so called
distinguishing suffixes, i.e., suffixes that witness the difference of two access se-
quences.

Remark: Both approaches, the collapsing-based approach and the refinement-
based approach, iteratively compute fixed points on the basis of JMK: collapsing
the smallest, and refining the greatest. As the fixed point is unique in this case,
both approaches would lead to the same result.

Theorem 1 and its underlying construction of MP provide the conceptual back-
bone for all the following variants of partition refinement algorithms. The fol-
lowing notion is important:

Definition 3 (k-distinguishability). Two states s, s′ ∈ S of some Mealy ma-
chine M are k-distinguishable, iff there is a word w ∈ Σ∗ of length k or shorter,
for which λ∗(s, w) 6= λ∗(s′, w). ⊓⊔

Intuitively, two states are k-distinguishable, if starting from both states we
can produce different outputs when processing the same suffix within k steps.
To ease readability, we introduce exact k-distinguishability, denoted by k=, for
states that are k-distinguishable, but not (k − 1)-distinguishable.

As a general prerequisite for the following developments, we will assume that
we can effectively ask so-called membership queries (a central notion in active
learning), i.e., that there is a so-called membership oracle which returns JMK(w)
in constant time, whenever it is asked for w, and we will measure the efficiency
of the following approaches to constructing canonical Mealy machines just in the
number of required membership queries. We denote the canonical representation
of some Mealy machine M by C(JMK).

Constructing JMK for words of sufficient length: Knowing an upper approxima-
tion N of the index of ≡JMK is already sufficient to effectively construct C(JMK)
in exponential time. Due to Proposition 1

– all states of C(JMK) are N -distinguishable, and
– the set ΣN of all words of length up to N is guaranteed to contain an access

sequence to every state and to cover every transition of C(JMK).

With this knowledge, C(JMK) can be constructed along the lines presented in

the proof of Theorem 1, leading to a combinatorial O(|Σ|
2N

) algorithm.

Using access sequences from M: If we now, additionally, take advantage of the
knowledge of the n states of the Mealy machine to be minimized, the complexity
of the algorithm sketched above immediately reduces to O(n|Σ| · |Σ|

N
), as we

are able to access every state and to cover every transition of C(JMK) just by
looking at the n states and the n|Σ| transitions of that Mealy machine.

Using access sequences and suffixes from M: This naive algorithm can be dras-
tically improved based on the following elementary observation: Whenever two
states s1 and s2 are (k + 1)-distinguishable then they each have a α-successor
s′1 respectively s′2 (for some α ∈ Σ) such that s′1 and s′2 are k-distinguishable.
This suggests the following inductive characterization of k-distinguishability:

– no states are 0-distinguishable, and
– two states s1 and s2 are (k + 1)-distinguishable iff there exists an input

symbol α ∈ Σ such that λ(s1, α) 6= λ(s2, α) or δ(s1, α) and δ(s2, α) are
k-distinguishable.

which directly leads to an algorithm that iteratively computes k-distinguishability
for increasing k until stability, i.e., until the set of exactly k-distinguishable states
is empty, in analogy to the original algorithm by Hopcroft for minimizing deter-
ministic finite automata [25]. It is straightforward to deduce that each level of
k-distinguishability can be done in O(n|Σ|), i.e., by processing every transition
once, and that k will never exceed n. Thus we arrived at an O(n2|Σ|) algorithm,
for which corresponding pseudocode is shown in Algorithm 1.

Example 5 (Partition refinement). Assume the Mealy machine from Figure 2 as
an input to Algorithm 1. We start by computing the initial partition P1:

P1 = {a, b, c}, {d, d′}, {e}, {f}

where “clean” distinguishes e from f , and “button” distinguishes, e.g., a from
d. In the second step, we will generate:

P2 = {a}, {b}, {c}, {d, d′}, {e}, {f}

where “water” and “pod” distinguish a, b and c: The “water”-successor of a and
c is c, while for b it is d. The “pod”-successor of a and b is b, while for c it is d′.

Then, however, in the next step, we will not be able to further refine P2. We
can merge d and d′ and get the Mealy machine depicted in Figure 3. ⊓⊔

The correctness of this algorithm follows a very well-known three-step proof
pattern:

– Invariance: The number of equivalence classes obtained during the partition
refinement process never exceeds the index of ≡JMK. This follows from the
fact that only distinguishable states are split.

– Progress: Before the final partition is reached, it is guaranteed that the in-
vestigation of all transitions of M will suffice to split at least one equivalence
class. This follows from the inductive characterization of distinguishability
in terms of k-distinguishability.

– Termination: The partition refinement process terminates after at most
index of ≡JMK many steps. This is a direct consequence of the just described
properties invariance and progress.

In oder to better understand the essential difference between minimization and
active learning, let M = 〈S, s0, Σ,Ω, δ, λ〉 and M′ = 〈S′, s′0, Σ,Ω, δ′, λ′〉 be
two Mealy machines with shared alphabets. Then we call a surjective function
fk : S → S′ existential k-epimorphism between M and M′, if for all s′ ∈ S′,
s ∈ S with fk(s) = s′, and α ∈ Σ we have: fk(δ(s, α)) = δ′(s′, α) and all state
that are mapped by fk to the same state of M′ are not k-distinguishable.

It is straightforward to establish that all intermediate models arising during
the partition refinement process are images of the considered Mealy machine
under a k-epimorphism, where k is the number of times all transitions have been
investigated. In the next section, we will establish a similar notion of epimor-
phism which fits the active learning scenario. Its difference to k-epimorphism
will help us to maintain as much of the argument discussed here as possible
and to formally pinpoint some essentially differences between minimization and
learning.

More generally, the pattern of this algorithm and its correctness proof will
guide us in the following sections, where we are going to develop an algorithm
to infer a canonical Mealy machine from black box systems by experimenta-
tion/testing. In contrast to this section, where we exploited knowledge in terms
of a given realizing Mealy machine, or at least of the number of states of such a
machine, we will start by assuming an ideal, indeed quite unrealistic, but in the
community accepted operation: the so-called equivalence oracles. They can be
queried in terms of so-called equivalence queries asking for the semantic equiv-
alence of the already computed hypothesis model and the black box systems,
and in case of failure provide evidence in terms of a counterexample. We will
see that under these assumption it is possible to also learn the canonical Mealy
machine for regular black box systems with polynomial complexity measured in
membership and equivalence queries.

3 Construction of models from black-box systems

In principle, we are concerned with the same problem as in the previous section:
the construction of a canonical model for some Mealy machine M . Only the
frame conditions changed. Rather than having M = 〈S, s0, Σ,Ω, δ, λ〉 at hand,
we only have limited access to the resources: active learning algorithms classically
use two kinds of queries to gather information about a black-box system under

Algorithm 1 Compute partition on set of states

Input: A Mealy machine M = 〈S, s0, Σ,Ω, δ, λ〉
Output: A partition P on S, the set of states of the Mealy machine
1: i := 1
2: put all s ∈ S with the same λ valuation into the same class p of partition Pi

3: loop

4: for all p ∈ Pi do

5: for all s ∈ p do

6: construct mapping sig : Σ → Pi:
7: sig(α) = p′ such that δ(s, α) ∈ p′

8: Ssig := Ssig ∪ s
9: end for

10: Pi+1 :=
⋃

sig
Ssig

11: end for

12: if Pi = Pi+1 then

13: return Pi

14: end if

15: i := i+ 1
16: end loop

learning (SUL) – the notion is meant to remind of the term System Under Test
(SUT) used by the testing community – which are assumed to be realized via
two corresponding oracles, resembling a “teacher” who is capable of answering
these queries appropriately and correctly according to the minimally adequate
teacher (MAT) model [3]. These queries, which have been sketched already in
the previous section, are the so-called:

Membership Queries retrieving behavioral information about the target sys-
tem. Consisting of sequences of system inputs, they actively trigger behav-
ioral outputs which are collected and analyzed by the learning algorithm.
Membership queries are used to construct a hypothesis model, which is then
subject to validation by means of the second kind of queries, the equivalence
queries.
We write mq(w) = o to denote that executing the query w ∈ Σ∗ on SUL leads
to the output o, meaning that λ∗

SUL(q0, w) = o. In practice, membership
queries correspond to single test runs executed on a system to be learned.

Equivalence Queries determining whether the learned hypothesis is a faithful
representation of the target system. If the equivalence oracle handling the
equivalence query finds diverging behavior between the learned hypothesis
and the SUL, a counterexample will be produced, which is used to refine the
hypothesis model with a next iteration of the learning algorithm.
We write eq(H) = c̄ to denote that the equivalence query for H returned
a counterexample c̄ ∈ Σ∗ with λ∗

H
(s0, c̄) 6= mq(c̄). In practice, equiva-

lence queries can typically not be realized. We will discuss this problem and
possible solutions in Section 6. Equivalence queries are, however, an elegant
concept for structuring active learning algorithms.

a

b c

d e

f

pod/X
water/X

clean/X
button/✷

water/X

pod/X

button/✷

pod/X

water/X

button/✷

button/K

{water, pod}/X

clean/X

Σ \ {clean}/✷

Σ/✷

Fig. 3. Minimal Mealy machine of the coffee machine

In the following, we will study this classical active learning scenario, before we
will discuss its limitations, associated problems and ways to reach practicality in
Section 6. In particular we will see that based on these two kinds of queries active
learning algorithms such as L∗

M effectively create canonical automata models of
the SUL, whenever the SUL is regular (cf. Section 2.2).

The high-level algorithmic patterns underlying most active learning algo-
rithms is shown in Fig. 4: active learning proceeds in rounds, generating a se-
quence of so-called hypothesis models by alternating test-based exploration on
the basis of membership queries and equivalence checking using the equivalence
oracle. Counterexamples resulting from failing equivalence checks are used to
steer the next round of local exploration. The first step shown in Fig. 4, the
setup of a learning algorithm from some input requirements, will briefly be dis-
cussed in Section 6.

Following the partition-refinement pattern we used in Section 2.3 to minimize
Mealy machines, inference starts with the one state hypothesis automaton that
treats all words over the considered alphabet (of elementary observations) alike
and refines this automaton on the basis of the query results, iterating test-based

Fig. 4. Structure of Extrapolation Algorithms (modeled in XPDD [37]). Square boxes
on the left hand side denote inputs, on the right hand side they denote outputs.

exploration steps and the equivalence checking steps. Here, the dual way of how
states are characterized (and distinguished) is central:

– by words reaching them. A prefix-closed set Sp of words, reaching each state
exactly once, defines a spanning tree of the automaton. This characterization
aims at providing exactly one representative element from each class of ≡P

on the SUL. Active learning algorithms incrementally construct such a set
Sp.

Prefix-closedness will guarantee that the constructed set is a “spanning tree”
of the unknown Mealy machine. Extending this spanning tree to contain also
all one-letter continuations of words in Sp will result in a tree covering all
the transitions of the Mealy machine. We will denote the set of all one-letter
continuations that are not already contained in Sp by Lp.

– by their future behavior wrt. a dynamically increasing vector of strings from
Σ∗. This vector 〈d1 . . . dk〉 will be denoted by D, for “distinguishing suffixes”.
The corresponding future behavior of a state, here given in terms of its access
sequence u ∈ Sp, is the output vector 〈mq(u · d1) . . .mq(u · dk)〉 ∈ Ωk, which
leads to an upper approximation of the classes of ≡JSULK. Active learning
incrementally refines this approximation by extending the vector until the
approximation is precise.

Whereas the second characterization directly defines the states of a hypothesis
automaton, each occurring output vector corresponds to one state in the hypoth-
esis automaton, the spanning tree on Lp is used to determine the corresponding
transitions.

In order to characterize the relation between hypothesis models and a corre-
sponding SUL let M = 〈S, s0, Σ,Ω, δ, λ〉 and M′ = 〈S′, s′0, Σ,Ω, δ′, λ′〉 be two
Mealy machines with shared alphabets and D be a set of words in Σ∗. Then we
call a surjective function fD : S → S′ existential D-epimorphism between M
and M′, if for all s′ ∈ S′ there exists an s ∈ S with fD(s) = s′ such that for all
α ∈ Σ and all d ∈ D: fD(δ(s, α)) = δ′(s′, α) and λ∗(s, d) = λ′∗(s′, d).

Please note that active learning conceptually deals with the canonical Mealy
machine C(JSULK) for a given SUL, and not with the perhaps much larger
Mealing machine of the SUL itself. This reflects the fact that it is not possible
to observe the difference of these two Mealy machines.

Exploiting the fact that all the algorithms considered in the following main-
tain a successively growing extended spanning tree for the arising hypothesis
automaton H = 〈SH , h0, Σ,Ω, δH , λH〉, i.e., a prefix-closed set of word reaching
all its states and covering all transitions, it is quite straightforward to establish
that all these hypothesis models are images of C(JSULK) under a canonical exis-
tential D-epimorphism, where D is the set of distinctive futures underlying the
hypothesis construction.

– define fD : SSUL → SH by fD(s) = h in the following fashion: if there exists
a w ∈ Sp ∪ Lp with δ(s0, w) = s, then h = δH(h0, w). Otherwise h may be
chosen arbitrarily.

– In order to establish the defining properties of fD, it suffices to consider
the states reached by words in the spanning tree. For all the considered
hypothesis construction algorithms this straightforwardly yields:

• fD(δ(s, α)) = δH(h, α) for all α ∈ Σ, which reflects the characterization
from below.

• λ∗(s, d) = λ∗
H(h, d) for all d ∈ D, which follows from the maintained

characterization from above.

This also shows that canonical, existential D-epimorphisms quite faithfully re-
flect all the knowledge maintained during active learning.

However, please note the difference between the k-epimorphisms introduced
in the previous section and (canonical) existential D-epimorphisms considered
here:

– whereas the difference of k and D is not crucial, as one could have used
also D-epimorphisms in the previous sections, with D = Σk instead of k.
However, it is important for complexity reasons. Black box systems do not
support the polynomial time inductive construction of k-distinguishability.
Rather they require the explicit construction of distinguishing futures. We
will see that it is possible to limit the size of D to the index of ≡JSULK.

– the role of “existential” is crucial: it reflects the fact that fD must deal with
unknown states, i.e., state that not yet have been encountered. Thus the
characterization can only be valid for the already encountered states.

Most active learning algorithms, and all the variants we are considering in the
following, can be proven correct using a variant of the three-step proof pattern
introduced in the previous section:

– Invariance: The number of states of each hypothesis automaton never ex-
ceeds the index of ≡JSULK. This follows from the fact that only distinguish-
able states are split (cf. definition of canonical Mealy machines).

– Progress: Before the final partition is reached, it is guaranteed that the
Equivalence Oracle provides a counterexample, i.e., an input word which
leads to a different output on the SUL and on the hypothesis. As the algo-
rithms maintain a spanning tree for the states of H, this difference can only
be resolved by splitting at least one state, thus increasing the state count.

– Termination: The partition refinement process terminates after at most
index of≡JSULK many steps. This is a direct consequence of the just described
properties invariance and progress.

4 First Variant: Direct Hypothesis Construction

The DHC (Direct Hypothesis Construction) algorithm, whose kernel is outlined
in Algorithm 2, follows the idea of a breadth-first search for states for an au-
tomaton being constructed on-the-fly. It is particularly intuitive, as each step
can be followed on the (intermediate) hypothesis models which, at any time,
visualizes the state of knowledge.

The algorithm uses a queue of states to be explored, which is initialized with
the states of the spanning tree to be maintained (line 2 in Algorithm 2). Explored
states are removed from the queue, while the successors of discovered, provably
new states (states with a new extended output signature which is defined by not
only comprising one step futures, but also the increasing set of distinguishing
futures produced by the algorithm) are enqueued (line 14 in Algorithm 2).

The DHC algorithm starts with a one-state hypothesis, which just includes
the initial state, reached by the empty word and with D = Σ. Then it tries to
complete the hypothesis, which means that for every state the extended signa-
ture, i.e., its behavior under D, is determined (lines 6-8 in Algorithm 2). States
with a new extended signature are provably new states, which need to be fur-
ther investigated. This is guaranteed by enqueuing all their successors (line 14

Algorithm 2 Hypothesis construction of the DHC algorithm

Input: A set of access sequences Sp, a set of suffixes D, a set of inputs Σ
Output: A Mealy machine H = 〈S, s0, Σ,Ω, δ, λ〉
1: create states in hypothesis H for all access sequences
2: add states of H into queue Q
3: while Q is not empty do

4: s := dequeued state from Q
5: u := access sequence to s
6: for d ∈ D do

7: o := mq(u · d)
8: set λ(s, d) = o
9: end for

10: if exists state s′ with same output signature (i.e., λ) as s then

11: reroute all transitions in H that lead to s to s′

12: remove s from H
13: else

14: create and enqueue successors for all inputs in Σ of s into Q
15: that are not in Sp
16: end if

17: end while

18: Remove information about d ∈ D \Σ from λ
19: return H

in Algorithm 2). As initially D = Σ, only 1=-distinguishable states can be re-
vealed during the first iteration. The initially one-state spanning tree is this way
straightforwardly extended to comprise a prefix closed set of access sequences to
all revealed states (cf. Fig. 5 and 6).

After the termination of the while loop, we easily obtain a well-formed hy-
pothesis by eliminating from λ all symbols of D that are not in Σ. This step is
unnecessary after the first iteration, as D at first only contains elements of Σ.
The hypothesis automaton is then handed over to the equivalence oracle, which
either signals success, in which case the learning procedure successfully termi-
nates, or it produces a counterexample, i.e., a word c̄ with λ∗(s0, c̄) 6= mq(c̄). In
the latter case, D is enlarged by all suffixes of c̄ (Sect. 4.1), and a new iteration of
completion begins, this time starting with the just enlarged set D of suffixes and
with all access sequences of all the states revealed in the previous iteration (the
current spanning tree). As we will see, this procedure is guaranteed to eventually
terminate with an hypothesis model equivalent to the SUL.

4.1 Counterexamples

In this section we address the dominant case where the current hypothesis and
the SUL are not yet equivalent and the equivalence query therefore returns a
counterexample, i.e., a word c̄ ∈ Σ∗ with λ∗

H
(s0, c̄) 6= mq(c̄). This counterex-

ample can be used to enlarge both

s0

(a) incomplete starting state

s0

s1 s2 s3 s4

pod/X

water/X button/✷

clean/X

(b) starting state completed

s0

s1 s2 s3 s4

s5 s6 s7 s8

pod/X

water/X button/✷

clean/X

pod/X water/X button/✷ clean/X

(c) state s1 completed

s0

s1 s2 s3

pod/X

water/X button/✷

clean/X

(d) former state s1 merged with starting state

Fig. 5. First steps of DHC hypothesis construction: The hypothesis at first only consists
of the incomplete starting state, which is completed using membership queries. This
results in new incomplete states, that are completed using additional queries. In this
example the first successor of the starting state shows the same output behavior after
completition, which results in this state being merged with the starting state.

s0

s1 s2 s3 s4 f1

s5 s6 s7 s8 f2

pod/X
water/X button/✷ clean/X

[water, button]/[X,✷]

pod/X
water/X button/✷

clean/X
[water, button]/[X,K]

Fig. 6. An early stage of the DHC hypothesis construction, corresponding to Fig. 5(c),
with the distinguishing suffix “water button”. The diverging output for the distinguish-
ing suffix at the states s0 and s1 prevents the merging of those two states, in contrast
to what happens without a distinguishing suffix in Fig. 5. The states reached by distin-
guishing suffix transitions are named with a diverging scheme so that the state names
in Fig. 5(c) are also valid in this figure for quick comparison. The letter “f” is used to
express that the distinguishing suffixes reveal peeks into future behavior.

– the maintained prefix-closed set of access sequences Sp (the spanning tree),
and

– the current set of distinguishing suffixes D

and therefore the size of the hypothesis automaton.
A very simple strategy has been proposed in [40] for deterministic finite

automata, where simply all suffixes of a counterexample are added to D. As we
will see, this strategy is guaranteed to realize the above extension of Sp without
requiring any analysis of the counterexample, however at the prize of a fast
growth of D. A slightly improved version for Mealy machines has been proposed
in [52].

In order to establish that the simple methods of [40] really works, let us
introduce the following notation: for a u ∈ Σ∗ let [u]

H
be the unique word in Sp

that reaches δ∗(s0, u) in the hypothesis model. Then we are able to prove:

Theorem 2 (Counterexample Decomposition). For every counterexample
c̄ there exists a decomposition c̄ = uαv into a prefix u, an action α, and a suffix
v such that mq([u]

H
αv) 6= mq([uα]

H
v).

Proof. Define u as the longest prefix of c̄ and v′ as its corresponding suffix such
that mq([u]

H
v′) = mq(c̄). As mq([c̄]

H
) = λ∗

H
(s0, c̄), c̄ being a counterexample

guarantees that v′ has length greater than one, and that it therefore can be
decomposed in αv, which concludes the proof. ⊓⊔

Thus adding all suffixes of counterexample c̄ would also add v and therefore the
means to separate [u]

H
α from all states of Sp. As a consequence, [u]

H
α must be

added to Sp, which due to this construction even maintains the structure of a
spanning tree.

More concretely, by adding v to the signature, the hypothesis construction of
Algorithm 2 will automatically move [u]

H
α from Lp to Sp, and add all one-letter

extensions of [u]
H
α to the queue of to be investigated words.

At the same time, Theorem 2 also suggests that it would suffice to simply
extend D by v. We will see in the next section that this does not only require
to simply decompose the counterexamples (cf. Algorithm 4), but that there are
some additional complications.

Example 6 (Analyzing a counterexample). We are learning the coffee machine
from Example 2 and have produced the hypothesis in Figure 7. An equivalence
query returns

c̄ = pod water pod water button

as a counterexample. We have λ∗
H
(qo, c̄) = ✷ 6= K = mq(c̄). Table 1 shows

the decomposition of the counterexample into prefix, symbol, and suffix for all
indices of the counterexample. The output “flips” from “K” to “✷” between
prefixes “pod water” and “pod water pod”. Both prefixes have the empty word
as access sequence in the hypothesis. We have

mq([pod water]
H

pod · water button) 6= mq([pod water pod]
H
· water button).

Adding “water button” to the set of suffixes will result in discovering a new
state, reached by “pod”, in the next round of hypothesis construction. The effect
of adding this suffix is illustrated in Fig. 6. ⊓⊔

Table 1. Analysis of counterexample from Example 6

Index u [u]
H

α v Output

1 ǫ ǫ pod water pod water button K

2 pod ǫ water pod water button K

3 pod water ǫ pod water button K

4 pod water pod ǫ water button ✷

5 pod water pod water ǫ button ǫ ✷

4.2 Putting it together

We have discussed how to construct a hypothesis incrementally and how to
treat counterexamples in the previous two sections. Iterating these two phases
will eventually lead to a hypothesis that is behaviorally equivalent to the system
under learning:

Theorem 3 (Correctness and Termination of DHC). Iterating the DHC
hypothesis construction and adding all suffixes of counterexamples to the set of
suffixes D will lead a model that is behaviorally equivalent to the SUL with less
than index of ≡JSULK equivalence queries.

The proof follows the three step pattern introduced in Section 2.3:

– Invariance: The state construction via the equivalence induced by D guar-
antees that the number of states of the hypothesis automaton can never
exceed the number of states of C(JSULK).
The number of states of each hypothesis automaton never exceeds the index
of ≡JSULK. This follows from the fact that only distinguishable states are
split (cf. definition of canonical Mealy machines).

– Progress: The equivalence oracle provides new counterexamples as long as
the behavior of the hypothesis does not match the behavior of C(JSULK),
and the treatment of counterexamples guarantees that at least one additional
state is added to the hypothesis automaton for each counterexample.

– Termination: The partition refinement process terminates after at most
index of≡JSULK many steps. This is a direct consequence of the just described
properties invariance and progress.

Finally, let us consider the complexity of the DHC approach. The complexity
of learning algorithms is usually measured by the number of membership resp.
equivalence queries required to produce a final model. Let n denote the number
of states in the final hypothesis, k the size of the set of inputs, and m the length
of the longest counterexample. Then we have:

Theorem 4 (Complexity of DHC). The DHC algorithm terminates after at
most n3mk + n2k2 membership queries and n equivalence queries.

From Theorem 3 we know that the DHC algorithm will never require more
than n equivalence queries, and therefore at most n iterations of the DHC kernel
(Algorithm 2). In each of these iterations at most m new suffixes are added to
D, which is initialized with the k elements of Σ. Thus the size of D is bound by
k +mn. Moreover, the number of transitions that need to be considered in an
iteration never exceeds nk, which limits the number of membership queries per
iteration to O(n2mk + nk2) membership queries per round. The theorem now
follows from the fact that there will never be more than n such iterations.

The DHC algorithm is a fully-functional learning algorithm for Mealy machines,
which, due to its simplicity and its intuitive hypothesis construction, eases an ini-
tial understanding. Moreover, as the DHC algorithms is guaranteed to maintain

a suffix closed set of distinguishing futures D, one can prove that all intermediate
hypothesis automata are guaranteed to be canonical, which means in particular
that each iteration produces a new set of accepted runs.

The DHC algorithm leaves room for a number of optimizations, some of which
were already covered by L∗, the first active learning algorithm. The following
section describes an adaptation of L∗ for Mealy machines, which, due to the
L∗-specific data structure, avoids a factor n in the complexity. Additionally,
following [51], we will show how also the factor m can be almost fully avoided
in order to arrive at an O(n2k + nk2 + n log(m)) algorithm. The algorithm of
[51], however, no longer guarantees that the intermediate hypothesis automata
are canonical. In the next section we will see that also this problem can be
overcome.

5 The L
∗

M
algorithm

The DHC algorithm has two major shortcomings: hypothesis automata are con-
structed from scratch in each round and all suffixes of each found counterexample
are added to D before starting the next iteration. This leads to many unneces-
sary membership queries, which, in practice, may be rather expensive, as they
may involve, e.g., communication over the network, in order to access remote
resources. In this section, we present a modified L∗ learning algorithm for Mealy
machines that is also optimized to avoid these sources of inefficiency.

First, we introduce observation tables, the characteristic data structure of
the original L∗ algorithm [3], which support the incremental construction of hy-
pothesis models and thus avoids the first source of inefficiency. The second source
of inefficiency is then overcome in Section 5.2, where an optimized treatment of
counterexamples is presented. Subsequently, Section 5.3 provides an estimate of
the worst-case complexity of the L∗

M algorithm, as usually measured in required
queries, before the algorithm is illustrated along on our running example, the
coffee machine.

5.1 Observation Table

The DHC algorithm directly operates on the hypothesis model, which it recon-
structs during each iteration. In this section we will present the commonly used
observation tables, which are essentially mappings Obs(U ,D) : U × D → Ω,
where U = Sp ∪ Lp is as set of prefixes and D the considered set of suffixes.
Observation tables represent the outcome of membership queries for words ud,
with u ∈ U and d ∈ D. This can be visualized in table form: rows are la-
beled by prefixes and columns by suffixes. The table cells contain the result of
the corresponding membership query. Table 2 shows an observation table that
corresponds to continuing the first steps of hypothesis construction from the
example presented in Fig. 5.

In Section 4.2, we have merged states with identical signatures. In observa-
tion tables, we identify prefixes with identical rows. We write Obsu to denote

Algorithm 3 Close table

Input: An observation table Obs(U ,D)
Output: A hypothesis H
1: repeat

2: fill table by mq(uv) for all pairs u ∈ U and v ∈ D, where Obs(u, v) = ∅.
3: if ∃u ∈ Lp ∀u′ ∈ Sp. Obsu 6= Obsu′ then

4: Sp := Sp ∪ {u}
5: Lp := (Lp ∩ {u}) ∪ {uα | α ∈ Σ}
6: end if

7: until closedness is established
8: return hypothesis for Obs(U ,D)

the mapping from D to Ω that is represented by the row labeled with u. In ob-
servation tables the part representing the access sequences from Sp are collected
in the upper part, whereas the not yet covered one-letter extensions (Lp), which
complete the information about the transitions, are collected below.

The breadth-first search pattern we used in Section 4.2 to find new states
is reflected here by establishing the closedness of the observation table: a table
is closed if all transitions lead to already established states, i.e., if for every
u ∈ Lp there exists a u′ ∈ Sp with Obsu = Obsu′ . Closedness is established by
successively adding each u ∈ Lp which does not yet have a matching state in Sp
yet to Sp, combined with adding all its one letter continuations to Lp. Please
note that this directly corresponds to the enqueuing process in line 14 of the
DHC algorithm.

The resulting procedure is shown in Algorithm 3. We extend Sp and fill
table cells until closedness is established on the table. As we extend Sp only by
elements of Lp, the set of access sequences will be prefix closed at any point. It
represents an extended spanning tree for the hypothesis that can be constructed
from the observation table.

From a closed observation table we can construct a hypothesis in a straight-
forward way. We construct H = 〈S, s0, Σ,Ω, δ, λ〉 from Obs(U ,D) as follows:

– Every state in S corresponds to one word in Sp.
– the initial state s0 will correspond to the the empty word ǫ.
– the transition function is defined by δ(u, α) = u′ where u′ ∈ Sp with

Obsuα = Obsu′ .
– the output function is defined as λ(u, α) = Obs(u, α).

It is easy to establish that this automaton is well defined: the closedness of the
observation table guarantees that the transition function is well defined, and
D ⊇ Σ that the output function is well defined.

Example 7 (Observation tables). We are learning the coffee machine from Ex-
ample 2. Initializing Sp as {ǫ} and D as Σ results in the observation table in
Table 2. This observation table, however, is not closed since the row for the
prefix “button” does not match the row of ǫ. Extending Sp by “button” and Lp

Algorithm 4 Process counterexample

Input: counterexample c̄ = c̄1 . . . c̄m, hypothesis H.
Output: new suffix for D
1: oc̄ := mq(c̄)
2: // binary search
3: lower := 2, upper := m− 1
4: loop

5: mid := ⌊(lower + upper) / 2⌋
6: // prepare membership query for current index
7: s := c̄1 . . . c̄mid−1, s′ := [s]

H
, d := c̄mid . . . c̄m

8: omid := mq(s′d)
9: if omid = oc̄ then

10: lower := mid+ 1 // same as reference output: move right
11: if upper < lower then

12: // since omid = oc̄ and (provably) omid+1 6= oc̄
13: return c̄mid+1 . . . c̄m
14: end if

15: else

16: upper := mid− 1 // not same as reference output: move left
17: if upper < lower then

18: // since omid 6= oc̄ and (provably) omid−1 = oc̄
19: return c̄mid . . . c̄m
20: end if

21: end if

22: end loop

accordingly results in the closed table shown in Table 3. From this table we can
construct the hypothesis in Figure 7. ⊓⊔

5.2 Analyzing counterexamples

As discussed in Section 4.1, every counterexample contains at least one suffix
that, when added to D, leads to a violation of the closedness of the observa-
tion table, and therefore to proper progress in the hypothesis construction. In
the previous section, we captured this effect by simply adding all suffixes of a
counterexample to D.

This section presents an optimization of this approach which adds exactly one
suffix of each counterexample to D, following the “reduced observation table”
approach from [51]. The idea is to determine the decomposition

c̄ = uαv, such that mq([u]
H
αv) 6= mq([uα]

H
v)

guaranteed by Theorem 2 by means of binary search. See Algorithm 4 for details.

Example 8 (Binary search for suffixes). As in Example 6, let us assume that
we are learning the coffee machine from Example 2 and have produced the
hypothesis in Figure 7. An equivalence query returns

c̄ = pod water pod water button

as a counterexample. Table 1 shows all possible decompositions of the counterex-
ample. The decomposition for index 1 corresponds to the membership query for
the original counterexample. The decomposition for index 5 corresponds to the
output of hypothesis. Table 4 shows the progress of a binary search between
indices 2 and 4. For the first mid-point we get the same output as for the origi-
nal counterexample. Thus, we move right. For second mid-point we get an error
output. We would move left in the next step. Since the upper boundary becomes
smaller than the lower boundary, and since we are moving leftwards, we will
return “water button” as new suffix. ⊓⊔

Simply using the suffix provided by Algorithm 4 instead of all its suffixes, or
even worse, all the suffixes of the original counterexample, does already allow
to remove the factor m in the estimate of |D|. However, it comes with a defect,
which led some people to doubt its correctness: intermediate hypothesis models
may not be canonical. This has, e.g., been shown up when trying to use confor-
mance testing tools to approximate the equivalence oracle: these tools typically
require canonical models as input, which led them to fail on the non-canonical
hypothesis. Also, minimizing these hypotheses did not seem to be a proper way
out, as the minimization may, indeed, undo the achieved progress and therefore
seems to lead to a dead loop.

It turns out that this is not true. Remember that the decomposition of a
counterexample guaranteed in Theorem 2 and the subsequent extraction of a new
state does not depend on the underlying hypothesis automaton to be canonical.
Thus one can simply go ahead as usually. One should avoid to minimize the
arising hypotheses, however, as this would (partially) undo the gained progress.
A good heuristic is to simply reuse the same counterexample on the steadily
growing non-canonical hypothesis until it fails to serve as a counterexample. Of
course, canonicity is sacrificed for the intermediate hypothesis models, and can
only be guaranteed for the final result.

There is, however, a way to maintain that the intermediate hypothesis models
are canonical without impairing the complexity in terms of required membership
and equivalence queries. The solution is based on generalizing the notion of suffix
completeness. This is best understood by first considering the situation for suffix
closed suffix sets in more detail:

For suffix closed D, it is is easy to establish that for any two states u, u′ from
Sp with Obs(u, αv) 6= Obs(u′, αv) we also have Obs([uα]

H
, v) 6= Obs([u′α]

H
, v).

This property can be exploited to show that the underlying Mealy machine is
canonical by induction on the length of v. Please note, however, that after each
step uα and u′α must be replaced by the corresponding access sequence [uα]

H

resp. [u′α]
H

in order to maintain the applicability of the induction hypothesis.

Our new notion of semantic suffix closedness aims at the pattern of the
above-mentioned property of suffix closed suffix sets:

Definition 4 (Semantic Suffix Closedness). Let H be the hypothesis model
for Obs(U ,D) : (Sp∪Lp)×D → Ω. Then D is called semantically suffix closed

for H , if for any two states u, u′ ∈ Sp and any decomposition v1v2 ∈ D of any
suffix with Obs(u, v1v2) 6= Obs(u′, v1v2) we also have Obs[uv1]H 6= Obs[u′v1]H

.

Intuitively, semantic suffix closed means that the “duty” of the suffix v2 of v1v2
to split uv1 and u′v1 can be delegated to other members of D.

It turns out that this weaker property is already sufficient to guarantee that
H is canonical:

Theorem 5 (Semantic Suffix Closedness). Every hypothesis constructed
from an observation table with semantically suffix closed D is canonical.

Theorem 5 can be proven analogously to the case of suffix closedness. One only
has to change from an induction on the length of v to an induction on the sum
of the lengths of all the suffixes required to cover the roles of all suffixes of v1v2.

We will see that this notion allows us to select “missing” suffixes which are
guaranteed to enlarge the size of the hypothesis automaton without posing any
membership queries. Rather, when applicable, they replace equivalence queries,
and having iteratively established semantic suffix closedness, we are guaranteed
to have a canonical hypothesis. In particular, this allows us to apply standard
conformance testing tools to approximate the equivalence oracle.

Algorithm 5 provides a new suffix d ∈ D that leads to a proper refinement
of the hypothesis H whenever H is not canonical. Thus “standard” equivalence
queries need only be applied in cases when H is canonical.

It starts from a point of canonicity violation, i.e., two states, represented by
their access sequences u, u′ ∈ Sp, that can be distinguished by a suffix d ∈ D,
but which cannot be distinguished in the current topology of H (lines 5 and 6).
As u and u′ are not separated by the topology of H, there must be a prefix of
d which leads u and u′ to the same state v of H. Lines 8 to 12 determine the
shortest such prefix p. Now, by definition, the suffix of d resulting from cutting
of p is guaranteed to split v and therefore to refine H. This guarantees that with
each element added to d the hypothesis will grow by a least one state.

5.3 The resulting algorithm

Combining the algorithms presented in the previous sections, we construct the
L∗
M learning algorithm, shown in Algorithm 6: we loop hypothesis construction

and processing of counterexamples as we did already in Section 3. For hypothesis
construction, we repeat closing the table and enforcing semantic suffix-closedness
until the table is closed and semantically suffix-closed.

The correctness of the overall algorithm follows from the same three argu-
ments that were used to prove Theorem 3 together with the arguments estab-
lishing the correctness of the single steps given in the this section.

Theorem 6 (Correctness and Termination of L∗
M). L∗

M will learn a model
that is behaviorally equivalent to the system under learning with less than index
of ≡JSULK equivalence queries.

Algorithm 5 Closing canonicity defects by refinement

Input: An observation table Obs(U ,D), a hypothesis H
Output: A new suffix for D or ’ok’
1: P := Partition on Sp, computed by Algorithm 1
2: if H canonical, i.e., |pi| = 1 for all pi ∈ P then

3: return ’ok’
4: end if

5: Let u 6= u′ ∈ pi
6: Let d = α1 . . . αm ∈ D, such that Obs(u, d) 6= Obs(u′, d)
7: i := 0
8: while u 6= u′ do

9: i := i+ 1
10: u := [uαi]H
11: u′ := [u′αi]H
12: end while

13: return αi+1 . . . αm

Let us now consider the complexity of L∗
M . Let n denote the number of states

in the final hypothesis, i.e., the index of ≡JSULK, k the size of the set of inputs,
and m the length of the longest counterexample.

As D is initialized with Σ and every suffix d that is added to D guarantees
a state size increase of at least one, the number of columns of the observation
table is bounded by n+k. The number of rows is bounded by kn+1: one row for
the empty word and k rows for every state. Thus the table will never have more
than n2k+ k2n elements, and can therefore be filled out by means of n2k+ k2n

membership queries. We also need membership queries for the processing of the
at most n counterexamples arising from the at most n equivalence queries. Using
binary search lets us estimate this number by log(m). One easily establishes that
this comprises the repetitive treatment of counterexamples until they are fully
exploited. Thus, altogether, we have:

Theorem 7 (Complexity of L∗
M). The L∗

M algorithm terminates after at most
n2k + k2n+ n · log(m) membership queries and n equivalence queries.

Remark: Maintaining the output of the transitions separately, allows for starting
with an initially empty D and therefore reduces the number of required mem-
bership queries to n2k + n · log(m). This optimization is rarely done, as k is
often considered to be a small constant. This will change, because even in the
already treated case studies we observed input alphabets with hundreds of sym-
bols. Some of this complexity can of course be overcome by adequate abstraction
(see also Section 6), and there are other powerful optimizations to reduce the
data structures and the number of membership queries to maintain them. Pop-
ular is the introduction of observation packs which maintain suffix sets tailored
to every state [4].

Finally, let us point out that all computation that is required on the table
and the construction of hypothesis models is polynomial in the size of the final
observation table.

Algorithm 6 L∗
M

Input: A set of inputs Σ
Output: A Mealy machine H = 〈S, s0, Σ,Ω, δ, λ〉
1: loop

2: repeat

3: construct H by Algorithm Close table
4: check semantic suffix-closedness by Algorithm Check semantic suffix-

closedness
5: if Algorithm Check semantic suffix-closedness returns new suffix d then

6: D := D ∪ {d}
7: end if

8: until semantic suffix-closedness is established
9: c̄ := eq(H)
10: if c̄ = ’ok’ then
11: return H
12: else

13: get suffix d from c̄ by Algorithm Process counterexample
14: D := D ∪ {d}
15: end if

16: end loop

5.4 Using L
∗

M
on the coffee machine example

In this section we will apply the algorithm developed during the previous sections
to the coffee machine. Assume that the SUL we are using to learn a model of
the coffee machine equals the model from Figure 2.

Table 2. Not yet closed observation table, first round

D

water pod button clean

Sp ǫ X X ✷ X

Lp
water X X ✷ X

pod X X ✷ X

button ✷ ✷ ✷ ✷

clean X X ✷ X

We initialize the observation table by Sp = {ǫ}, and Lp = D = Σ. The resulting
observation table is shown in Table 2. This table, however, is not closed. Adding
“button” to the set of access sequences and extending Lp accordingly will result
in the table from Table 3.
This table is closed and we can construct a hypothesis from this table. The
words from Sp become the access sequences to the states of the hypothesis. The
transition function will be defined according to the characterization of states

Table 3. Observation table, end of first round

D

water pod button clean

Sp
ǫ X X ✷ X

button ✷ ✷ ✷ ✷

Lp

water X X ✷ X

pod X X ✷ X

clean X X ✷ X

button · water ✷ ✷ ✷ ✷

button · pod ✷ ✷ ✷ ✷

button · button ✷ ✷ ✷ ✷

button · clean ✷ ✷ ✷ ✷

a fΣ \ {button}/X
button/X

Σ/✷

Fig. 7. H1 of the coffee machine

in terms of the rows of the observation table. The output function will be con-
structed from the corresponding entries in the table for prefixes from Sp and
suffixes from Σ using membership queries. The resulting hypothesis is shown in
Figure 7.
As discussed already in Example 8, an equivalence query returns

c̄ = pod water pod water button

as a counterexample. Table 1 shows all possible decompositions of the counterex-
ample. The decomposition for index 1 corresponds to the membership query for
the original counterexample. The decomposition for index 5 corresponds to the
output of hypothesis. Table 4 shows the progress of a binary search between
indices 2 and 4. For the first mid-point we get the same output as for the origi-
nal counterexample. Thus, we move right. For second mid-point we get an error
output. We would move left in the next step. Since the upper boundary becomes
smaller than the lower boundary, and since we are moving leftwards, we will
return “water button” as new suffix.
Adding “water button” to the set of suffixes will eventually result in the obser-
vation table in Table 5 from which we can construct the second hypothesis. The
hypothesis is shown in Figure 8. Comparing the hypothesis with the minimal
model for the coffee machine from Figure 3, we see that only one state is missing
in the current hypothesis. The missing state is the state that is reached by the

Table 4. Analysis of first counterexample

u [u]
H

lower mid upper 1 2 3 4 5

ǫ ǫ K

pod water pod water ǫ ✷

pod water ǫ 2 3 4 K

pod water pod ǫ 3+1 4 4 ✷

- 4 - 4-1

access sequence “water” and that could be distinguished from the initial state
by the suffix “pod button”.

Let us assume that the second equivalence query returns

c̄ = water pod button

as a counterexample. The decomposition for index 1 corresponds to the mem-
bership query for the original counterexample. The decomposition for index 3
corresponds to the output of hypothesis. Table 6 shows the (trivial) progress of
a binary search between indices 2 and 2. For the first mid-point we get the same
output as from the hypothesis. Thus, we move left. Since the upper boundary
becomes smaller than the lower boundary, and since we are moving leftwards,
we will return “pod button” as the second new suffix.
Using this second new suffix, we can produce an observation table from which
we can construct as a hypothesis the model that is shown in Figure 3. We do not
show this table here, but leave its construction as an exercise to the reader. The
next equivalence query would then return positive, indicating that we arrived at
a correct model of the systems behavior.

The final table would have 25 rows and 6 columns, which could be filled
by 150 membership queries. An additional 3 + 2 = 5 membership queries were
used for the processing of counterexamples. In total, we used 155 membership
queries, which is much less than 258 queries, which is the estimate we get from
Theorem 7. Also, we used only 3 equivalence queries instead of the worst case
of 6 equivalence queries. This is typical for real systems that usually are more
“talkative” than the assumed worst case from Theorem 7.

6 Challenges in practical applications

In the previous sections we have developed a learning algorithm for reactive in-
put/output systems that can be modeled as Mealy machines. We have assumed a
scenario in which the learning algorithm can use membership queries and equiv-
alence queries as resources. However, in practice it will not always be obvious
how to realize the required resources on an actual SUL. In this section we will
briefly discuss challenges to be faced when using active learning in real-world
scenarios and present common solutions and approaches to these challenges.

Table 5. Observation table, end of second round

D

water pod button clean water · button

Sp

ǫ X X ✷ X ✷

button ✷ ✷ ✷ ✷ ✷

pod X X ✷ X K

pod · water X X K X K

pod · water · button ✷ ✷ ✷ X ✷

Lp

water X X ✷ X ✷

clean X X ✷ X ✷

button · water ✷ ✷ ✷ ✷ ✷

button · pod ✷ ✷ ✷ ✷ ✷

button · button ✷ ✷ ✷ ✷ ✷

button · clean ✷ ✷ ✷ ✷ ✷

pod · pod X X ✷ X K

pod · button ✷ ✷ ✷ ✷ ✷

pod · clean X X ✷ X ✷

pod · water · water X X K X K

pod · water · pod X X K X K

pod · water · clean X X ✷ X ✷

pod · water · button · water ✷ ✷ ✷ ✷ ✷

pod · water · button · pod ✷ ✷ ✷ ✷ ✷

pod · water · button · button ✷ ✷ ✷ ✷ ✷

pod · water · button · clean X X ✷ X ✷

Table 6. Analysis of second counterexample

u [u]
H

lower mid upper 1 2 3

ǫ ǫ K

water pod pod ✷

water ǫ 2 2 2 ✷

- 2 - 2-1

a

b

d e

f

pod/X

{clean,water}/X
button/✷

water/X

pod/X

button/✷

button/K

{water, pod}/X

clean/X

Σ \ {clean}/✷

Σ/✷

Fig. 8. H2 of the coffee machine

Whereas membership queries may often be realized via testing in practice,
equivalence queries are typically unrealistic, in particular when one has to deal
with black box systems.

Equivalence queries compare a learned hypothesis model with the target
system for language equivalence and, in case of failure, return a counterexample
exposing a difference. Their realization is rather simple in simulation scenarios:
if the target system is a model, equivalence can be tested explicitly. In practice,
however, the SUL will typically be some kind of black box and equivalence queries
will have to be approximated using membership queries. Without assuming any
extra knowledge, e.g., about the number of states of the SUL (cf. Section 2.3),
such equivalence tests are in general not decidable: the possibility of having not
tested extensively enough will always remain.

Model-based testing methods [14, 57] have been used to simulate equivalence
queries. If, e.g., an upper bound on the number of states the target system can
have is known, the W-method [15] or the Wp-method [20] can be applied. Both
methods have an exponential complexity (in the size of the target system and
measured in the number of membership queries needed – cf. Section 2.3). The

relationship between regular extrapolation and conformance testing methods is
discussed in [6].

If one does not have reliable extra knowledge one can build upon, one has
to resort to approximative solutions of equivalence queries, which are typically
based on membership queries. In this case, conformance testing methods may not
always be a wise choice. It has turned out that changing the view from “trying
to proof equivalence”, e.g., by using conformance testing techniques, to “finding
counterexamples fast” may drastically improve performance, in particular in the
early learning phases. A recent attempt to intensify research in this direction
is taken by the ZULU challenge [17]. The winning solution is discussed in [28].
Key to the success here was a new approach to finding counterexamples fast,
together with a new interpretation of equivalence queries as one incremental
model construction rather than as a number of unrelated queries. In the ZULU
scenario, which considers learning of randomly generated automata just on the
basis of membership queries, this led to a surprisingly efficient realization of
equivalence queries: in average, only 3 to 4 membership queries where required.
It will be a major challenge to achieve similar success also in other learning
scenarios.

Besides the realization of equivalence queries, which are obviously problematic in
practice, there are a number of more hidden challenges which need to be resolved
in a practical environment. The following paragraphs discuss such challenges
according to the various characteristics of application scenarios, and illustrate
that “black does not equal black” in real-life black box scenarios:

A: Interacting with real systems

The interaction with a realistic target system comes with two problems: a
merely technical problem of establishing an adequate interface that allows
one to apply test cases for realizing membership queries, and a conceptual
problem of bridging the gap between the abstract learned model and the
concrete runtime scenario.

The first problem is rather simple for systems designed for connectivity (e.g.,
web services or code libraries) which have a native concept of being invoked
from the outside and come with documentation on how to accomplish this.
Establishing connectivity may be arbitrarily complicated, however, for, e.g.,
some embedded systems which work within well-concealed environments and
are only accessible via some proprietary GUI.

The second problem is conceptually more challenging. It concerns establish-
ing an adequate abstraction level in terms of a communication alphabet,
which on one hand leads to a useful model structure, but on the other hand
also allows for an automatic back and forth translation between the abstract
model level and the concrete target system level.

There is some recent work focusing on the use of abstraction in learning [1,
36] and even first steps in the direction of automatic abstraction refinement
[29].

B: Membership Queries

Whereas small learning experiments typically require only a few hundred
membership queries, learning realistic systems may easily require several or-
ders of magnitude more. This directly shows that the speed of the target
system when processing membership queries, or as in most practical settings
the corresponding test cases, is of utmost importance. In contrast to simu-
lation environments, which typically process several thousand of queries per
second, real systems may well need many seconds or sometimes even min-
utes per test case. In such a case, rather than parallelization, minimizing the
number of required test cases is the key to success.
In [28, 52] optimizations are discussed to classic learning algorithms that aim
at saving membership queries in practical scenarios. Additionally, the use of
filters (exploiting domain specific expert knowledge) has been proven as a
practical solution to the problem [42].

C: Parameters and value domains
Active learning classically is based on abstract communication alphabets.
Parameters and interpreted values are only treated to an extent expressible
within the abstract alphabet. In practice, this typically is not sufficient, not
even for systems as simple as communication protocols, where, e.g., increas-
ing sequence numbers must be handled, or where authentication requires
matching user/password combinations. Due to the complexity of this prob-
lem, we do not expect any comprehensive solutions here. We rather think
that domain- and problem-specific approaches must be developed in order
to produce dedicated solutions.
First attempts to deal with parameters range from case studies with proto-
typical solutions [1, 53, 27] to smaller extensions of the basic learning algo-
rithms that can deal with boolean parameters [7, 8]. One big future challenge
will be extending active learning to models with state variables and arbitrary
data parameters in a general way.

D: Reset
Active learning requires membership queries to be independent. Whereas
this is no problem for simulated system, this may be quite problematic in
practice. Solutions range here from reset mechanisms via homing sequences
[51] or snapshots of the system state to the generation of independent fresh
system scenarios. Indeed, in certain situations, executing each membership
query with a separate independent user scenario may be the best one can
do. Besides the overhead of establishing these scenarios, this also requires an
adequate aggregation of the query results. E.g., the different user password
combinations of the various used scenarios must be abstractly identified.

Due to the above problems and requirements, active learning, in practice, is in-
herently neither correct nor complete, e.g., due to the lack of equivalence queries.
However, there does not seem to be a good alternative for dealing with black-box
systems, and there are some very promising experiences: already in the project
reported in [23], where the learned models had only very few states, these mod-
els helped to reorganize the corresponding test suites in order to allow a much
improved test selection. In this scenario it did not harm that learned models

were neither correct nor complete. They revealed parts that were ignored by the
existing test suites.

In the meantime, learning technology has much improved, and we are con-
fident to be able to extrapolate high quality behavioral models for specific ap-
plication scenarios, like in the case of the Connect project [35], which focuses
on connectors and protocols, i.e., on systems, where domain-specific information
can be used to support regular extrapolation. In this application domain we do
not expect any scalability problems, as we are in the meantime able to learn
systems of tens of thousands of states and millions of transitions [49].

7 The LearnLib framework

LearnLib [50, 43] is a framework for automata learning, which includes imple-
mentations for many algorithms related to automata learning, including those
presented in this chapter.

The foundation of LearnLib is an extensive Java framework of data structures
and utilities, based on a set of interface agreements extensively covering concerns
of active learning from constructing alphabets to tethering target systems. This
supports the development of new learning components with little boilerplate
code.

The component model of the LearnLib extends into the core of the learning
algorithms, enabling application-fit tailoring of learning algorithms, at design-
as well as at runtime. In particular, it is unique in

– comprising features for addressing real-world or legacy systems, like instru-
mentation, abstraction, and resetting,

– resolving abstraction-based non-determinism by alphabet abstraction refine-
ment, which would otherwise lead to the failure of learning attempts [29],

– supporting execution and systematic experimentation and evaluation, even
including remote learning and evaluation components, and, most notably, in

– its high-level modeling approach described in the next section.

7.1 Modeling Learning Solutions

LearnLib Studio, which is based on jABC [55], our service-oriented framework
for the modeling, development, and execution of complex applications and pro-
cesses, is LearnLib’s graphical interface for designing and executing learning and
experimentation setups.

A complete learning solution is usually composed of several components,
some of which are optional: learning algorithms for various model types, system
adapters, query filters and caches, model exporters, statistical probes, abstrac-
tion providers, handlers for counterexamples etc.. Many of these components are
reusable in nature. LearnLib makes them available as easy-to-use building blocks
for the graphical composition of application-fit learning experiments.

Figure 9 illustrates the graphical modeling style typical for LearnLib Studio
along a very basic learning scenario. One easily identifies a common three phase

Fig. 9. Executable model of a simple learning experiment in LearnLib Studio.

pattern recurring in most learning solutions: The learning process starts with
a configuration phase, where in particular the considered alphabet and the sys-
tem connector are selected, before the learner itself is created and started. The
subsequent central learning phase is characterized by the L∗-typical iterations,
which organize the test-based interrogation of the SUL. As described in detail
in the previous sections, these iterations are structured in phases of exploration,
which end with the construction of a hypothesis automaton, and the (approxi-
mate) realization of the so-called equivalence query, which in practice searches
for counterexamples separating the hypothesis automaton from the SUL. If this
search is successful, a new phase of exploration is started in order to take care
of all the consequences implied by the counterexample. Otherwise the learning
process terminates after some postprocessing in the third phase, e.g., to produce
statistical data.

Most learning experiments follow this pattern, usually enriched by application-
specific refinements. Our graphical modeling environment is designed for devel-
oping such kinds of refinements by supporting, e.g., component reuse, versioning,
optimization and evaluation.

8 Conclusions

In this chapter we have given an introduction to active learning of Mealy ma-
chines, an automata model particularly suited for modeling the behavior of
realistic reactive systems. We have tried to build on the readers intuition by
establishing links to classical automata theory, in particular concerning the min-
imization of finite automata based on Myhill/Nerode’s famous theorem [44]. We
have also discussed practical concerns, most importantly the concept of an equiv-
alence query classical active learning depends upon, but also a number of other
issues arising when trying to put learning technology into practice. All these
considerations lead into the direction of model-based testing [56, 57], where ac-
cessibility of a system, system reset, and conformance are major concerns. In
fact, model-based testing provides perhaps the best practical solution to the re-
alization of equivalence queries. In this light automata learning can be seen as a
method to overcome the central hurdle of model-based testing, the availability
of a model: being able to aggregate testing knowledge in an optimal fashion in
terms of models enables “model-based testing without requiring models”.

9 Bibliographic notes & further reading

Bibliographic notes: In this chapter we have presented some basic results for
Mealy machines along with an efficient learning algorithm for Mealy machines.
We have tried to follow in presentation the style that is usually used in intro-
ductions to automata theory (cf. [26]). Especially Theorem 1 is a one-to-one
adaptation of the Myhill/Nerode theorem [44].

For the learning algorithms, these follow the general pattern introduced by
Dana Angluin [3] for deterministic finite automata. We have presented a straight-
forward adaption of this algorithm to Mealy machines in [41, 45].

The simple pattern for handling counterexamples presented in Section 4.1 has
been introduced for DFA in [40]. A slightly improved version for Mealy machines
has been presented in [52]. The binary search for counterexamples was presented
in [51] for DFA.

In Section 5.2, we have introduced the concept of semantic suffix-closedness.
Our definition of semantic suffix-closedness in some respect is similar to the
concept of consistency, introduced in [3]. While consistency is used to extend
the set of suffixes by longer words, we use semantic suffix-closedness to extend
the set of suffixes by shorter words. Intuitively, we propagate information in
forward direction along transitions, while in Angluin’s L∗ it is propagated in
backward direction.

Further reading: Automata learning has grown to be a wide research area in
the past decades. Automata are widely used to represent knowledge gathered by
learning methods. Only one branch of the field is concerned with active learning
by queries (i.e., questions that the learner can ask some “teacher”). A wider
perspective on the field of automata learning is given in [38, 18].

The particular queries we use are membership queries, which correspond to
a single test run on a SUL, and equivalence queries that compare a current
hypothesis model with the actual system. The first algorithm for this scenario
(called L∗) is due to Dana Angluin [3]. Using the underlying concept of query
learning a number of optimizations and akin algorithms have been proposed [51,
38], [4] gives a unifying overview.

We proved the practical relevance of automata learning in the context of
the documentation and verification of telecommunication systems [24, 23]. To
meet the requirements in practical scenarios, we transferred automata learning
to Mealy machines [41]. Mealy machines are widely used models of determinis-
tic reactive systems and the development of new learning algorithms for Mealy
machines is still an active field of research [52, 50]. In fact, Mealy machine learn-
ing seems to dominate for practical and larger-scale applications. Examples are
the learning of behavioral models for Web Services [48], communication protocol
entities [11], or software components [53, 49].

Recent extensions to inference methods focus on capturing further phenom-
ena that occur in real systems. On the basis of inference algorithms for Mealy
machines, inference algorithms for I/O-automata [2], timed automata [22], Petri
Nets [19], and Message Sequence Charts [12, 13] have been developed. With the
I/O-automata model, the wide range of systems that comprise quiescence is made
accessible for query learning. Timed automata model explicitly time dependent
behavior. With Petri Nets, systems with explicit parallelism and distributed
states are addressed.

First extensions that use complex interface alphabets with data parameters
are presented in [7, 54]. In [8] active learning is applied to systems with complex
actions with parameters over infinite domains comprising an infinite state space.

A key enabler for dealing with infinite parameter domains and real systems
is abstraction, which, however, usually is also the cause of a major problem: the
introduction of non-determinism. In [29], we introduce a method for refining a
given abstraction on the inputs to automatically regain a deterministic behavior
on-the-fly during the learning process. Thus the control over abstraction becomes
part of the learning process, with the effect that detected non-determinism does
not lead to failure, but to a dynamic alphabet abstraction refinement. Like au-
tomata learning itself, this method in general is neither sound nor complete, but
it also enjoys similar convergence properties even for infinite systems as long
as the concrete system itself behaves deterministically, as illustrated along a
concrete example.

Besides the extension of learning algorithms to cover a wider range of phe-
nomena, the application of active learning in model checking (especially in
assume-guarantee-style compositional verification) is an active field of research
[16, 46, 39, 47]. The moderate style of exploration that is used in learning is used
here to ease the problem of state space explosion.

10 Exercises

1. The coffee machine presented in Example 1 has an error state that cannot
be overcome by conventional operations on the machine. The manufacturer’s
support hotline, however, informs that it is possible to reset the machine into
a working state by removing all expendables, disconnecting the machine from
the power grid, waiting several minutes, and then restoring power to the
machine. This procedure is called “hardreset”. How can the Mealy machine
specification from Example 2 be adapted to include this operation?

2. In Section 2.3 we have given very roughly two ideas for finding canonical
Mealy machines from runs without using partition refinement. Develop im-
plementations of both approaches and relate your ideas to Theorem 1 and
Proposition 1.

3. Algorithm 1 computes a canonical Mealy machine for an arbitrary Mealy
machine. It is based on partition refinement. One could argue that it im-
plicitly uses distinguishing suffixes. Make this usage explicit by extending
the algorithm to construct a set of distinguishing suffixes while refining the
partition on the set of states. Can you keep the size of the suffix set below
n?

4. Complete the construction of the hypothesis begun in Fig. 5. What does the
result look like?

5. Are there other counterexamples for the hypothesis in Fig. 7 than the one
used in Example 6? If so, repeat the analysis done in Example 6 with the
counterexample you discovered.

6. The manufacturer of the coffee machine has issued an updated product that
can detect when a “clean” operation has been performed. Now, when being
in the error state, the machine will return to the initial state when perform-
ing the “clean” procedure. What updates to the tables in Section 5.4 are
necessary?

7. Elaborate the proof sketch for Theorem 5. Is semantic suffix closedness also
necessary for the canonicity of a corresponding hypothesis? Try to prove or
disprove.

8. Elaborate the proof sketch for the correctness of Algorithm 5.
9. Algorithm 5 finds a discriminating suffix without querying the SUL whenever

the hypothesis is not canonical. Give an example of a learning process in
which Algorithm 5 actually leads to an extension of the set of suffixes, and
therefore to a refinement of the hypothesis automaton.

References

1. Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating Models of Infinite-State
Communication Protocols Using Regular Inference with Abstraction. In ICTSS,
pages 188–204, 2010.

2. Fides Aarts and Frits Vaandrager. Learning I/O Automata. In Paul Gastin and
François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, volume 6269
of Lecture Notes in Computer Science, pages 71–85. Springer Berlin / Heidelberg,
2010.

3. Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Infor-
mation and Computation, 75(2):87–106, 1987.

4. José L. Balcázar, Josep Dı́az, and Ricard Gavaldà. Algorithms for Learning Finite
Automata from Queries: A Unified View. In Advances in Algorithms, Languages,
and Complexity, pages 53–72, 1997.

5. Amel Bennaceur, Gordon S. Blair, Franck Chauvel, Nikolaos Georgantas, Paul
Grace, Falk Howar, Paola Inverardi, Valérie Issarny, Massimo Paolucci, Animesh
Pathak, Romina Spalazzese, Bernhard Steffen, and Bertrand Souville. Towards an
Architecture for Runtime Interoperability. In Proceedings of ISoLA 2010, 2010.

6. Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Harald Raffelt,
and Bernhard Steffen. On the Correspondence Between Conformance Testing and
Regular Inference. In Maura Cerioli, editor, Proc. FASE ’05, 8th Int. Conf. on
Fundamental Approaches to Software Engineering, volume 3442 of Lecture Notes
in Computer Science, pages 175–189. Springer Verlag, April 4-8 2005.

7. Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular Inference for State
Machines with Parameters. In Luciano Baresi and Reiko Heckel, editors, Proc.
FASE ’10, 13th Int. Conf. on Fundamental Approaches to Software Engineering,
volume 3922 of Lecture Notes in Computer Science, pages 107–121. Springer Verlag,
2006.

8. Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular Inference for State
Machines Using Domains with Equality Tests. In José Luiz Fiadeiro and Paola
Inverardi, editors, Proc. FASE ’08, 11th Int. Conf. on Fundamental Approaches to
Software Engineering, volume 4961 of Lecture Notes in Computer Science, pages
317–331. Springer Verlag, 2008.

9. Antonia Bertolino, Antonello Calabro, Felicita Di Giandomenico, and Nicola Nos-
tro. Dependability and Performance Assessment of Dynamic CONNECTed Sys-
tems, volume Formal Methods for Eternal Networked Software Systems. Springer,
2011.

10. Gordon S. Blair, Massimo Paolucci, Paul Grace, and Nikolaos Georgantas. Inter-
operability in Complex Distributed Systems, volume Formal Methods for Eternal
Networked Software Systems. Springer, 2011.

11. Therese Bohlin and Bengt Jonsson. Regular Inference for Communication Pro-
tocol Entities. Technical report, Department of Information Technology, Uppsala
University, Schweden, 2009.

12. Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin Leucker. Replay-
ing Play In and Play Out: Synthesis of Design Models from Scenarios by Learning.
In Orna Grumberg and Michael Huth, editors, Proc. of 13th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS ’07), Held
as Part of the Joint European Conferences on Theory and Practice of Software
(ETAPS ’07) Braga, Portugal, volume 4424 of Lecture Notes in Computer Science,
pages 435–450. Springer, 2007.

13. Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin Leucker. Smyle:
A Tool for Synthesizing Distributed Models from Scenarios by Learning. In Franck
van Breugel and Marsha Chechik, editors, Proc. of 19th Int. Conf. on Concurrency
Theory (CONCUR ’08), Toronto, Canada, August 19-22, 2008, volume 5201 of
Lecture Notes in Computer Science, pages 162–166. Springer, 2008.

14. Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexan-
der Pretschner. Model-Based Testing of Reactive Systems:, volume 3472 of Lecture
Notes in Computer Science. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

15. Tsun S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE
Trans. on Software Engineering, 4(3):178–187, May 1978.

16. Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learn-
ing assumptions for compositional verification. In Proc. TACAS ’03, 9th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems, volume
2619 of Lecture Notes in Computer Science, pages 331–346. Springer Verlag, 2003.

17. David Combe, Colin de la Higuera, and Jean-Christophe Janodet. Zulu: an Inter-
active Learning Competition. In Proceedings of FSMNLP 2009, 2010. to appear.

18. Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA, 2010.

19. Javier Esparza, Martin Leucker, and Maximilian Schlund. Learning Workflow
Petri Nets. In Proceedings of the 31st International Conference on Application and
Theory of Petri Nets and Other Models of Concurrency (Petri Nets’10), Lecture
Notes in Computer Science. Springer, 2010. to appear.

20. Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou, and
Abderrazak Ghedamsi. Test Selection Based on Finite State Models. IEEE Trans.
on Software Engineering, 17(6):591–603, 1991.

21. Paul Grace, Nikolaos Georgantas, Amel Bennaceur, Gordon Blair, Franck Chau-
vel, Valerie Issarny, Massimo Paolucci, Rachid Saadi, Betrand Souville, and Daniel
Sykes. The CONNECT Architecture, volume Formal Methods for Eternal Net-
worked Software Systems. Springer, 2011.

22. Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of Event-
Recording Automata Using Timed Decision Trees. In Proc. CONCUR 2006, 17th

Int. Conf. on Concurrency Theory, pages 435–449, 2006.
23. Andreas Hagerer, Hardi Hungar, Oliver Niese, and Bernhard Steffen. Model gen-

eration by moderated regular extrapolation. Lecture Notes in Computer Science,
pages 80–95, 2002.

24. Andreas Hagerer, Tiziana Margaria, Oliver Niese, Bernhard Steffen, Georg Brune,
and Hans-Dieter Ide. Efficient regression testing of CTI-systems: Testing a complex
call-center solution. Annual review of communication, Int.Engineering Consortium
(IEC), 55:1033–1040, 2001.

25. John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
Technical report, Stanford, CA, USA, 1971.

26. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to au-
tomata theory, languages, and computation - (2. ed.). Addison-Wesley series in
computer science. Addison-Wesley-Longman, 2001.

27. Falk Howar, Bengt Jonsson, Maik Merten, Bernhard Steffen, and Sofia Cassel.
On Handling Data in Automata Learning - Considerations from the CONNECT
Perspective. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA (2), volume
6416 of Lecture Notes in Computer Science, pages 221–235. Springer, 2010.

28. Falk Howar, Bernhard Steffen, and Maik Merten. From ZULU to RERS - Lessons
Learned in the ZULU Challenge. In Tiziana Margaria and Bernhard Steffen, edi-
tors, ISoLA (1), volume 6415 of Lecture Notes in Computer Science, pages 687–704.
Springer, 2010.

29. Falk Howar, Bernhard Steffen, and Maik Merten. Automata Learning with Auto-
mated Alphabet Abstraction Refinement. In Twelfth International Conference on
Verification, Model Checking, and Abstract Interpretation, 2011.

30. Falk Howar, Bernhard Steffen, Maik Merten, and Tiziana Margaria. Practical As-
pects of Active Learning, volume FMICS Handbook on Industrial Critical Systems.
Wiley, to appear in 2011.

31. Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-Specific Optimization
in Automata Learning. In Warren A. Hunt Jr. and Fabio Somenzi, editors, Proc.
15th Int. Conf. on Computer Aided Verification, volume 2725 of Lecture Notes in
Computer Science, pages 315–327. Springer Verlag, July 2003.

32. Hardi Hungar and Bernhard Steffen. Behavior-based model construction. Int. J.
Softw. Tools Technol. Transf., 6(1):4–14, 2004.

33. Paola Inverardi, Romina Spalazzese, , and Massimo Tivoli. Application-layer Con-
nector Synthesis, volume Formal Methods for Eternal Networked Software Systems.
Springer, 2011.

34. Valerie Issarny, Amel Bennaceur, and Yerom-David Bromberg. Middleware-layer
Connector Synthesis, volume Formal Methods for Eternal Networked Software Sys-
tems. Springer, 2011.

35. Valérie Issarny, Bernhard Steffen, Bengt Jonsson, Gordon S. Blair, Paul Grace,
Marta Z. Kwiatkowska, Radu Calinescu, Paola Inverardi, Massimo Tivoli, Anto-
nia Bertolino, and Antonino Sabetta. CONNECT Challenges: Towards Emergent
Connectors for Eternal Networked Systems. In ICECCS, pages 154–161, 2009.

36. Bengt Jonsson. Machine Learning and Data, volume Formal Methods for Eternal
Networked Software Systems. Springer, 2011.

37. Georg Jung, Tiziana Margaria, Christian Wagner, and Marco Bakera. Formalizing
a Methodology for Design- and Runtime Self-Healing. Engineering of Autonomic
and Autonomous Systems, IEEE International Workshop on, 0:106–115, 2010.

38. Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, Cambridge, MA, USA, 1994.

39. Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.
Assume-Guarantee Verification for Probabilistic Systems. In TACAS, pages 23–37,
2010.

40. Oded Maler and Amir Pnueli. On the Learnability of Infinitary Regular Sets.
Information and Computation, 118(2):316–326, 1995.

41. Tiziana Margaria, Oliver Niese, Harald Raffelt, and Bernhard Steffen. Efficient
test-based model generation for legacy reactive systems. In HLDVT ’04: Proceed-
ings of the High-Level Design Validation and Test Workshop, 2004. Ninth IEEE
International, pages 95–100, Washington, DC, USA, 2004. IEEE Computer Society.

42. Tiziana Margaria, Harald Raffelt, and Bernhard Steffen. Knowledge-based rele-
vance filtering for efficient system-level test-based model generation. Innovations
in Systems and Software Engineering, 1(2):147–156, July 2005.

43. Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. Next Gener-
ation LearnLib. In Parosh Abdulla and K. Leino, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 6605 of Lecture Notes in
Computer Science, pages 220–223. Springer Berlin / Heidelberg, 2011.

44. A. Nerode. Linear Automaton Transformations. Proceedings of the American
Mathematical Society, 9(4):541–544, 1958.

45. Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD thesis,
University of Dortmund, Germany, 2003.

46. Corina S. Pasareanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bobaru,
Jamieson M. Cobleigh, and Howard Barringer. Learning to divide and conquer: ap-
plying the L* algorithm to automate assume-guarantee reasoning. Formal Methods
in System Design, 32(3):175–205, 2008.

47. Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black Box Checking. In
Jianping Wu, Samuel T. Chanson, and Qiang Gao, editors, Proc. FORTE ’99,
pages 225–240. Kluwer Academic, 1999.

48. Harald Raffelt, Tiziana Margaria, Bernhard Steffen, and Maik Merten. Hybrid
test of web applications with webtest. In TAV-WEB ’08: Proceedings of the 2008
workshop on Testing, analysis, and verification of web services and applications,
pages 1–7, New York, NY, USA, 2008. ACM.

49. Harald Raffelt, Maik Merten, Bernhard Steffen, and Tiziana Margaria. Dynamic
testing via automata learning. Int. J. Softw. Tools Technol. Transf., 11(4):307–324,
2009.

50. Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria. LearnLib:
a framework for extrapolating behavioral models. Int. J. Softw. Tools Technol.
Transf., 11(5):393–407, 2009.

51. Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using
homing sequences. Inf. Comput., 103(2):299–347, 1993.

52. Muzammil Shahbaz and Roland Groz. Inferring Mealy Machines. In FM ’09:
Proceedings of the 2nd World Congress on Formal Methods, pages 207–222, Berlin,
Heidelberg, 2009. Springer Verlag.

53. Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning and Integration of
Parameterized Components Through Testing. In TestCom/FATES, pages 319–
334. Springer Verlag, 2007.

54. Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning Parameterized State
Machine Model for Integration Testing. In Proc. 31st Annual Int. Computer Soft-
ware and Applications Conf., volume 2, pages 755–760, Washington, DC, USA,
2007. IEEE Computer Society.

55. Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Jörges, and Christian
Kubczak. Model-Driven Development with the jABC. In Haifa Verification Con-
ference, pages 92–108, 2006.

56. Jan Tretmans. Model Based Testing with Labelled Transition Systems. In Formal
Methods and Testing, pages 1–38. Springer Verlag, 2008.

57. Jan Tretmans. Testing Supported by Learning, volume Formal Methods for Eternal
Networked Software Systems. Springer, 2011.

