## Introduction to Analytic and Probabilistic Number Theory

Gérald Tenenbaum Professor at Université Henri Poincaré-Nancy I



## Contents

|              |                                                     | xiii |
|--------------|-----------------------------------------------------|------|
|              |                                                     | xv   |
| Part I       | Elementary methods                                  | 1    |
| Chapter I.   | 0 Some tools from real analysis                     | 3    |
| § <b>0.1</b> | Abel summation                                      | 3    |
| § 0.2        | The Euler–Maclaurin summation formula               | 5    |
|              | Exercises                                           | 7    |
| Chapter I.   | 1 Prime numbers                                     | 9    |
| § 1.1        | Introduction                                        | 9    |
| § 1.2        | Chebyshev's estimates                               | 10   |
| § 1.3        | p-adic valuation of $n!$                            | 13   |
| § 1.4        | Mertens' first theorem                              | 14   |
| § 1.5        | Two new asymptotic formulae                         | 15   |
| § <b>1.6</b> | Mertens' formula                                    | 17   |
| § 1.7        | Another theorem of Chebyshev                        | 19   |
|              | Notes                                               | 20   |
|              | Exercises                                           | 20   |
| Chapter I.   | 2 Arithmetic functions                              | 23   |
| § <b>2.1</b> | Definitions                                         | 23   |
| § <b>2.2</b> | Examples                                            | 23   |
| § <b>2.3</b> | Formal Dirichlet series                             | 25   |
| § <b>2.4</b> | The ring of arithmetic functions                    | 26   |
| § 2.5        | The Möbius inversion formulae                       | 28   |
| § <b>2.6</b> | Von Mangoldt's function                             | 30   |
| § 2.7        | Euler's totient function                            | 32   |
|              | Notes                                               | 33   |
|              | Exercises                                           | 34   |
| Chapter I.   | 3 Average orders                                    | 36   |
| § <b>3.1</b> | Introduction                                        | 36   |
| § <b>3.2</b> | Dirichlet's problem and the hyperbola method        | 36   |
| § <b>3.3</b> | The sum of divisors function                        | 39   |
| § <b>3.4</b> | Euler's totient function                            | 39   |
| § <b>3.5</b> | The functions $\omega$ and $\Omega$                 | 41   |
| § <b>3.6</b> | Mean value of the Möbius function and the summatory |      |
|              | functions of Chebyshev                              | 42   |
| δ <b>3.7</b> | Squarefree integers                                 | 46   |

| § <b>3.8</b> | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 48<br>50<br>53 |
|--------------|-------------------------------------------------------|----------------|
| Chapter I.   | 4 Sieve methods                                       | 56             |
| § <b>4.1</b> | The sieve of Eratosthenes                             | 56             |
| § 4.2        | Brun's combinatorial sieve                            | 57             |
| § <b>4.3</b> | Application to prime twins                            | 60             |
| § 4.4        | The large sieve – analytic form                       | 62             |
| § <b>4.5</b> | The large sieve – arithmetic form                     | 68             |
| § <b>4.6</b> | Applications                                          | 71             |
|              | Notes                                                 | 74             |
|              | Exercises                                             | 76             |
| Chapter I.   | 5 Extremal orders                                     | 80             |
| § <b>5.1</b> | Introduction and definitions                          | 80             |
| § <b>5.2</b> | The function $\tau(n)$                                | 81             |
| § <b>5.3</b> | The functions $\omega(n)$ and $\Omega(n)$             | 83             |
| § 5.4        | Euler's function $\varphi(n)$                         | 84             |
| § <b>5.5</b> | The functions $\sigma_{\kappa}(n), \kappa > 0$        | 85             |
| _            | Notes                                                 | 87             |
|              | Exercises                                             | 87             |
| Chapter I.   | 6 The method of van der Corput                        | 90             |
| § 6.1        | Introduction                                          | 90             |
| § <b>6.2</b> | Trigonometric integrals                               | 91             |
| § <b>6.3</b> | Trigonometric sums                                    | 92             |
| § <b>6.4</b> | Application to the theorem of Voronoï                 | 96             |
|              | Notes                                                 | 99             |
|              | Exercises                                             | 100            |
| Part II      | Methods of complex analysis                           | 103            |
| Chapter II   | I.1 Generating functions: Dirichlet series            | 105            |
| § 1.1        | Convergent Dirichlet series                           | 105            |
| § 1.2        | Dirichlet series of multiplicative functions          | 106            |
| § 1.3        | Fundamental analytic properties of Dirichlet series   | 107            |
| § 1.4        | Abscissa of convergence and mean value                | 114            |
| § 1.5        | An arithmetic application: the kernel of an integer   | 116            |
| § <b>1.6</b> | Order of magnitude in vertical strips                 | 118            |
|              | Notes                                                 | 122            |
|              | Description                                           | 105            |

Contents ix

| Chapter II    | I.2 Summation formulae                                 |
|---------------|--------------------------------------------------------|
| § <b>2.1</b>  | Perron formulae                                        |
| § <b>2.2</b>  | Application: a convergence theorem                     |
| § <b>2.3</b>  | The mean value formula                                 |
|               | Notes                                                  |
|               | Exercises                                              |
| Chapter I     | I.3 The Riemann zeta function                          |
| § <b>3.1</b>  | Introduction                                           |
| § <b>3.2</b>  | Analytic continuation                                  |
| § <b>3.3</b>  | Functional equation                                    |
| § <b>3.4</b>  | Approximations and bounds in the critical strip        |
| § <b>3.5</b>  | Initial localisation of zeros,                         |
| § <b>3.6</b>  | Lemmas from complex analysis                           |
| § <b>3.7</b>  | Global distribution of zeros                           |
| § <b>3.8</b>  | Expansion as a Hadamard product                        |
| § <b>3.9</b>  | Zero-free regions                                      |
| § <b>3.10</b> | Bounds for $\zeta'/\zeta$ , $1/\zeta$ and $\log \zeta$ |
|               | Notes                                                  |
|               | Exercises                                              |
| Chapter II    | I.4 The prime number theorem                           |
| onapor .      | and the Riemann hypothesis                             |
| § 4.1         | The prime number theorem                               |
| § <b>4.2</b>  | Minimal hypotheses                                     |
| § <b>4.3</b>  | The Riemann hypothesis                                 |
| 3 210         | Notes                                                  |
|               | Exercises                                              |
|               |                                                        |
|               | I.5 The Selberg-Delange method                         |
| § <b>5.1</b>  | Complex powers of $\zeta(s)$                           |
| § <b>5.2</b>  | Hankel's formula                                       |
| § <b>5.3</b>  | The main result                                        |
| § <b>5.4</b>  | Proof of Theorem 3                                     |
| § <b>5.5</b>  | A variant of the main theorem                          |
|               | Notes                                                  |
|               | Exercises                                              |
| Chapter I     | I.6 Two arithmetic applications                        |
| § <b>6.1</b>  | Integers having $k$ prime factors                      |
| § 6.2         | The average distribution of divisors: the arcsine law  |
| Ť             | Notes                                                  |
|               | Exercises                                              |

 $\mathbf{x}$ 

| Chapter II   | I.7 Tauberian theorems                                         | 217      |
|--------------|----------------------------------------------------------------|----------|
| § 7.1        | Introduction: Abelian/Tauberian theorems duality               | 217      |
| § 7.2        | Tauber's theorem                                               | 220      |
| § 7.3        | The theorems of Hardy–Littlewood and Karamata                  | 222      |
| § 7.4        | The remainder term in Karamata's theorem                       | 227      |
| § 7.5        | Ikehara's theorem                                              | 234      |
| § <b>7.6</b> | The Berry–Esseen inequality                                    | 240      |
| 3            | Notes                                                          | 242      |
|              | Exercises                                                      | 244      |
|              | j e e e e e e e e e e e e e e e e e e e                        |          |
|              | I.8 Prime numbers in arithmetic progressions                   | 248      |
| § <b>8.1</b> | Introduction: Dirichlet characters                             | 248      |
| § <b>8.2</b> | L-series. The prime number theorem for arithmetic              |          |
|              | progressions                                                   | 252      |
| § <b>8.3</b> | Lower bounds for $ L(s,\chi) $ when $\sigma \geq 1$ . Proof of |          |
|              | Theorem 4                                                      | 256      |
|              | Notes                                                          | 263      |
|              | Exercises                                                      | $26^{4}$ |
|              |                                                                |          |
| Part II      | I Probabilistic methods                                        | 26       |
| Chapter I    | II.1 Densities                                                 | 269      |
| § 1.1        | Definitions. Natural density                                   | 269      |
| § 1.2        | Logarithmic density                                            | 273      |
| § 1.3        | Analytic density                                               | 273      |
| § 1.4        | Probabilistic number theory                                    | 27       |
| J            | Notes                                                          | 27       |
|              | Exercises                                                      | 270      |
| C1 . T       |                                                                | 00       |
| -            | II.2 Limiting distribution of arithmetic functions.            | 28       |
| § 2.1        | Definition – distribution functions                            | 28       |
| § 2.2        | Characteristic functions                                       | 28       |
|              | Notes                                                          | 28       |
|              | Exercises                                                      | 29       |
| Chapter I    | II.3 Normal order                                              | 29       |
| § <b>3.1</b> | Definition                                                     | 299      |
| § 3.2        | The Turán-Kubilius inequality                                  | 30       |
| § <b>3.3</b> | Dual form of the Turán–Kubilius inequality                     | 304      |
| § <b>3.4</b> | The Hardy-Ramanujan theorem and other applications.            | 30       |
| § <b>3.5</b> | Effective mean value estimates for multiplicative functions    | 30       |
| § <b>3.6</b> | Normal structure of the set of prime factors of an integer     | 31       |
| 3 0.0        | Notes                                                          | 313      |
|              | Exercises                                                      | 319      |

| Chapter II   | 1.4 Distribution of additive functions and                 |
|--------------|------------------------------------------------------------|
|              | mean values of multiplicative functions                    |
| § <b>4.1</b> | The Erdős–Wintner theorem                                  |
| § <b>4.2</b> | Delange's theorem                                          |
| § <b>4.3</b> | Halász' theorem                                            |
| § <b>4.4</b> | The Erdős–Kac theorem                                      |
|              | Notes                                                      |
|              | Exercises                                                  |
| Chapter II   | II.5 Integers free of large prime factors.                 |
|              | The saddle-point method                                    |
| <b>§ 5.1</b> | Introduction. Rankin's method                              |
| § <b>5.2</b> | The geometric method                                       |
| § <b>5.3</b> | Functional equations                                       |
| § <b>5.4</b> | Dickman's function                                         |
| § <b>5.5</b> | Approximations to $\Psi(x,y)$ by the saddle-point method . |
| U            | Notes                                                      |
|              | Exercises                                                  |
| Chapter II   | II.6 Integers free of small prime factors                  |
| § <b>6.1</b> | Introduction                                               |
| § <b>6.2</b> | Functional equations                                       |
| § <b>6.3</b> | Buchstab's function                                        |
| § 6.4        | Approximations to $\Phi(x,y)$ by the saddle-point method   |
| ŭ            | Notes                                                      |
|              | Exercises                                                  |
| D:L1:        | L                                                          |
| Dibliograp   | hy                                                         |
|              |                                                            |