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ABSTRACT

The elementary spin excitations in strongly magnetic materials are collective spin deviations, or spin waves, whose quanta are called
magnons. Interest in the experimental and theoretical investigation of magnons attracted many groups worldwide about 4–6 decades ago
and then waned for some time. In recent years, with the advent of the field of spintronics, the area of magnonics has gained renewed atten-
tion. New phenomena have been discovered experimentally, and others have been predicted theoretically. In this tutorial, we briefly review
the basic concepts of magnons in antiferromagnetic (AF) materials. Initially, we present a semiclassical view of the equilibrium spin configu-
rations and of the antiferromagnetic resonance in AF materials with two types of magnetic anisotropy, easy-axis and easy-plane. Then, we
present a quantum theory of magnons for these materials and apply the results to two important AF insulators, MnF2 and NiO. Finally, we
introduce the concept of antiferromagnetic magnonic spin current that plays a key role in several phenomena in antiferromagnetic
spintronics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109132

I. INTRODUCTION

Antiferromagnets are magnetic materials that have no net
macroscopic magnetization and, therefore, are almost insensitive to
external magnetic fields. The existence of antiferromagnetism was
proposed by Louis Néel1 to account for the magnetic behavior of
some salts with complicated lattice structures. Néel first assumed
that the ordered magnetic arrangements could be described in
terms of “spin sublattices,” each having all spins aligned in the
same direction. Then, he considered that the interaction between
the spins in different sublattices could be negative so that they
would be aligned antiparallel. Now we know that the coupling
between spins originates mainly in the exchange interaction, with
magnitude represented by an exchange parameter J. The intra-
sublattice J is positive because it is due to direct exchange, while
the intersublattice J is negative because it arises from the super-
exchange that is mediated by ligand ions between the magnetic
ions. If the sublattices have different magnetizations, the materials
are called “ferrimagnets,” which have spontaneous net magnetiza-
tion below the ordering temperature Tc and in many respects
behave like ferromagnets. Materials with J , 0 that have sublattices
with the same magnetization are called “antiferromagnets.” In the
ordered phase, below a critical temperature called Néel temperature
TN , they are magnetic but have no net macroscopic magnetization.

In his 1970 Nobel lecture, Louis Néel2 stated that
“Antiferromagnetic materials are extremely interesting from the
theoretical viewpoint, but do not seem to have any application.”
This pessimistic view of antiferromagnets would change dramati-
cally a few decades later. Today, these materials have practical
applications and promise to deliver several more. The debut of
antiferromagnets in technology was made possible with the discov-
ery of the giant magnetoresistance effect (GMR) in 1988 by Albert
Fert3 and Peter Grünberg.4 They showed that in magnetic struc-
tures with nanometer thick multilayers, the electron transport
could be controlled by the spin instead of the electric charge as in
conventional electronics. This discovery triggered research in mag-
netic multilayers and gave birth to the field of spintronics, which
has revolutionized magnetic recording technologies and promises
new functionalities to electronic devices.

Antiferromagnetic materials proved to be essential in GMR
sensors for pinning the magnetization of a reference ferromagnetic
layer by means of the exchange bias phenomenon.5–7 Since the late
1990s, disk-drive magnetic read-heads are based on GMR sensors
that are much more sensitive to changes in magnetic fields than the
traditional induction heads. Although important, antiferromagnetic
(AF) materials have had a passive role in spintronic devices; the
active role is played by ferromagnetic materials. However, in recent
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years, this scenario began to change with new experimental and
theoretical results showing that antiferromagnets have several
advantages over ferromagnets in spintronic phenomena. One of
them is the fact that AF materials are insensitive to external mag-
netic perturbations. Another one is the ultrafast dynamics of anti-
ferromagnets that promise device operation in the terahertz frequency
range. These late developments gave rise to the field of antiferro-
magnetic spintronics.8–14

In this tutorial, we review the basic concepts and properties of
the collective spin excitations in antiferromagnets, the spin waves,
whose quanta are called magnons. Antiferromagnets are known to
exist with a great variety of crystalline structures and physical proper-
ties, and new materials continue to be discovered.13 Here, we will
restrict attention to simple AF insulators with only two sublattices,
one class with uniaxial magnetic anisotropy, also called easy-axis
anisotropy, such as the fluorides MnF2 and FeF2, and the other with
two anisotropy axes, or easy-plane anisotropy, such as the oxides
NiO and MnO.

II. SPIN CONFIGURATIONS IN SIMPLE
ANTIFERROMAGNETS

We consider initially two simple antiferromagnets with uniax-
ial, or easy-axis, anisotropy, MnF2 and FeF2. Both have the rutile
crystal structure, a body-centered tetragonal lattice with the mag-
netic ions occupying the corner and body-centered positions, as
shown in Fig. 1(a).15 Below the Néel temperature, 66.5 K for MnF2
and 78.4 K for FeF2, and in the absence of an external magnetic
field, the spins are arranged in two oppositely directed sublattices,
pointing along the easy anisotropy direction (c axis). The magnetic
properties are described very well by a Hamiltonian consisting of
contributions from Zeeman, exchange, and magnetic anisotropy
energies in the form16–19

H ¼ �γ �h
X

i

~H0 �~Si þ
X

i;i0=i

2Jii0~Si �~Si0 � D
X

i

(Szi )
2, (1)

where γ ¼ gμB=�h is the gyromagnetic ratio, g is the spectroscopic
splitting factor, μB is the Bohr magneton, �h is the reduced Plank
constant,~Si is the spin (in units of �h) at a generic lattice site i, ~H0

is the applied magnetic field, Jii0 is the exchange constant of the
interaction between spins~Si and~Si0 and D is the uniaxial anisotropy

constant. The important exchange interactions are illustrated in
Fig. 1(a). In MnF2, the exchange parameters determined by inelas-
tic neutron scattering measurements19 are J1 ¼ 0:028meV,
J2 ¼ �0:152meV, and J3 ¼ �0:004meV. Thus, the negative inter-
sublattice J2 is the dominant interaction and determines the antifer-
romagnetic arrangement of the sublattices.

In order to find the spin equilibrium configuration, we use a
macrospin approximation and associate to ~Si and ~Sj the uniform
sublattice magnetizations in sublattices 1 and 2, respectively, given
by ~M1,2 ¼ γ �hN~Si,j, where N is the number of spins per unit
volume. For T ¼ 0, the static sublattice magnetizations have the
same value, M1 ¼ M2 ¼ M. Considering a magnetic field H0

applied along the c axis, the z-direction of the system shown in
Fig. 1, from Eq. (1), we have the energy per unit volume

E ¼ �H0(M1z þM2z)þ
HE

M
~M1 � ~M2 �

HA

2M
(M2

1z þM2
2z), (2)

where HE and HA are the effective exchange and anisotropy fields
defined by

HE ¼ 2SzJ2=γ �h, HA ¼ 2SD=γ �h, (3)

where we have considered only intersublattice exchange interaction
between the z nearest neighbors. Due to the symmetry, the sublat-
tice magnetizations and the applied field are in the same plane so
that the energy in Eq. (2) becomes

E(θ1, θ2)

M
¼ �H0(cos θ1 þ cos θ2)þ HE cos(θ1 þ θ2)

� HA

2
(cos2 θ1 þ cos2 θ2), (4)

where θ1 and θ2 are the polar angles of the corresponding sublattice
magnetizations. The conditions @E=@θ1 ¼ @E=@θ2 ¼ 0 give two
possible equilibrium configurations. As illustrated in Fig. 1(b), θ1 ¼
0, θ2 ¼ π corresponds to the antiferromagnetic (AF) phase, while
θ1 ¼ θ2 ¼ cos�1[H0=(2HE �HA)] corresponds to the spin-flop
(SF) phase. Substitution of these angles in Eq. (4) shows that the AF
phase has lower energy for fields H0 , HSF , while the SF phase has
lower energy for H0 . HSF , where HSF ¼ (2HEHA � H2

A)
1=2

. For

FIG. 1. (a) Crystal structure of the easy-axis rutile antifer-
romagnets MnF2 and FeF2. The ions M represent Mn2+ or
Fe2+. (b) Spin configurations in the antiferromagnetic (AF)
and spin flop (SF) phases with the external field applied
along the easy axis.

Journal of
Applied Physics

TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 126, 151101 (2019); doi: 10.1063/1.5109132 126, 151101-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


small fields applied in the z-direction, the spins are along the c axis
in the AF phase. As the field intensity increases and reaches HSF ,
the system undergoes a first-order phase transition to the SF phase.

The magnetic interactions in MnF2 and FeF2 are dominated
by nearest-neighbor exchange, having comparable intersublattice
exchange fields, respectively, HE ¼ 526 kOe and HE ¼ 540 kOe.15

In MnF2, the ground state configuration of the magnetic Mn2+ ions
is 3d5(6S5/2), which has no orbital angular momentum so that it
has very small single-ion anisotropy. The origin of the magnetic
anisotropy of MnF2 relies mainly in the dipolar interaction, with a
relatively small effective anisotropy field HA ¼ 8:2 kOe19,20 so that
HSF � (2HEHA)

1=2 ¼ 93 kOe. The temperature dependence of the
spin-flop field has been measured by ultrasonic techniques,21 anti-
ferromagnetic resonance,22 and spin Seebeck effect.23 In FeF2, the
ground state configuration of the magnetic Fe2+ ions is 3d5(5D4),
which has a finite orbital angular momentum, resulting in a large
effective anisotropy field HA ¼ 200 kOe arising from the spin-orbit
coupling.24,25 Thus, the spin-flop field is large, HSF ¼ 505 kOe, and
can be attained only with pulsed magnetic fields.26

The other material we will investigate here is NiO, which,
due to its simple structure and spin interactions, is considered a
prototypical room-temperature antiferromagnetic insulator. Its
magnetic structure and spin interactions are similar to those in
MnO.27,28 This material has been extensively used in experimental
investigations of many phenomena, such as exchange bias,5–7,29–31

inelastic light scattering,32,33 and magnetic response at terahertz
frequencies.34–36 More recently, it has been shown that a thin
layer of NiO in spintronic devices can be used to transport a mag-
nonic spin current while blocking charge current.37–42 Also, NiO
has the potential to generate radiation with terahertz frequency in
spin-torque nano-oscillators,43 and under a thermal gradient it
exhibits the spin Seebeck effect at room temperature.44

In the paramagnetic phase, NiO has the face-centered cubic
structure of sodium chloride. Below the Néel temperature
TN � 523K, the Ni2+ spins are ordered ferromagnetically in {111}
planes, lying along h11�2i axes, with adjacent planes oppositely
magnetized due to a super-exchange AF interaction, as illustrated
in Fig. 2. It is characterized by two distinct anisotropies, a negative
one (hard) along h111i axes that forces the spins into the {111}
planes, and a positive (easy) in-plane one along h11�2i axes. The
spin Hamiltonian with Zeeman energy, exchange interaction
energy, and out-of-plane (x) and in-plane (z) anisotropy energies
can be written as28

H ¼ �γ �h
X

i,j

~H0 �~Si,jþ
X

i,j

2Jij~Si�~Sj þ
X

i,j

Dx(S
x
i,j)

2 � Dz(S
z0

i,j)
2

:

(5)

The difference to Eq. (1) is that the Hamiltonian now contains
two anisotropy terms, with anisotropy constants Dx and Dz . Both
are taken to be positive so that the signs in Eq. (5) imply that x is a
hard direction along a h111i axis, while z0 are easy directions along
h11�2i axes. Since there are three equivalent directions in the easy-
plane and four {111} planes, in bulk NiO crystals there are AF
domains with spins in 12 different directions, which complicates
the interpretation of some magnetic measurements.45,46

Considering the external field applied along one of the
z0-directions in the {111} plane, with Eq. (5), we obtain for the
energy per unit volume

E ¼ �H0(M1z0 þM2z0 )þ
HE

M
~M1 � ~M2 þ

HAx

2M
(M2

1x þM2
2x)

�HAz

2M
(M2

1z0 þM2
2z0 ), (6)

where, with the relevant intersublattice exchange constant, the
effective exchange field is given by the same expression as in
Eq. (3), but now we have two anisotropy fields

HAx ¼ 2SDx=γ �h, HAz ¼ 2SDz=γ �h: (7)

In order to simplify calculations, we assume a monodomain
sample with the field applied along an easy direction. In this case,
M1x ¼ M2x ¼ 0 and Eq. (6) reduces to Eq. (2) so that the result
previously obtained is valid here. In NiO, the effective fields are
HE ¼ 9 684 kOe, HAx ¼ 6:35 kOe, HAz ¼ 0:11 kOe so that the field
for the spin-flop transition HSF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2HEHAz

p
is 46.3 kOe.47

III. ANTIFERROMAGNETIC RESONANCE: THE k = 0
MAGNONS

We now derive the resonance frequencies of the uniform pre-
cession modes of the sublattice magnetizations, which correspond
to the magnons with zero wave vector. The equations of motion for
the magnetization components are obtained from the Landau–
Lifshitz equation

d~M1,2

dt
¼ γ~M1,2 � ~Heff 1,2, (8)

where ~Heff 1,2 represent the effective fields that act on the sublattice
magnetizations, given by

FIG. 2. Crystal structure and spin arrangements in the easy-plane antiferromag-
net NiO. The small yellow circles represent O2− ions and the large circles repre-
sent the Ni2+ ions.
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~Heff 1,2 ¼ �∇~M1,2[E(
~M1,2)]: (9)

Since the uniaxial antiferromagnet is a particular case of the
biaxial AF, we will consider the energy in Eq. (6), with the static
field applied along a direction of equilibrium so that the result can
be used for both easy-axis and easy-plane AFs. Writing for the
magnetizations ~M1,2 ¼ ẑ M1,2z þ (x̂ m1,2x þ ŷ m1,2y) e

�iω t , we obtain
with Eqs. (8) and (9) the linearized equations of motion for the
transverse components of the sublattice magnetizations

iωm1x þ γm1y(H0 þHE þ HAz)þ γ HEm2y ¼ 0, (10a)

�γm1x(H0 þHE þ HAx þ HAz)þ iωm1y � γ HEm2x ¼ 0, (10b)

�γ HEm1y þ iωm2x þ γm2y (H0 � HE �HAz) ¼ 0, (10c)

þγ HEm1x � γm2x(H0 �HE � HAx � HAz)þ iωm2y ¼ 0, (10d)

where we have considered M1z ¼ M, M2z ¼ �M. The antiferro-
magnetic resonance (AFMR) frequencies are the eigenvalues of the
resonance matrix [A], given by

[A] ¼
0 0 �γH0 � (A� C) �B
0 0 B �γH0 þ (A� C)

�γH0 � (Aþ C) �B 0 0
B �γH0 þ (Aþ C) 0 0

2

6

6

4

3

7

7

5

, (11)

where the parameters are

A ¼ γ (HE þHAx=2þ HAz), B ¼ γ HE , C ¼ γ HAx=2: (12)

Equations (10) can be written as an eigenvalue equation in
matrix form

[A][S] ¼ [S][ω], (13)

where the columns of [S] are eigenvectors of [A] that represent the
four normal modes with components (m)¼ (m1x ,m2x , im1y , im2y)

T ,
and [ω] is the diagonal matrix of the eigenvalues, which are given
by the roots of

det{[A]� [ω]}¼0: (14)

Note that the problem can also be formulated with the equations of
motion for the Néel vector~l¼~m1�~m2 and the total small-signal
magnetization ~m¼~m1þ~m2.

43

A. Easy-axis antiferromagnets

Initially, we apply the results for the case of easy-axis AFs by
setting HAx ¼ 0. The solution of Eq. (14) with C ¼ 0 gives for the
AFMR frequencies (eigenvalues)16

ω1 ¼ �ω2 ¼ γH0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � B2
p

, (15a)

ω3 ¼ �ω4 ¼ γH0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � B2
p

: (15b)

We shall use α to denote modes 1 and 2, and β for modes 3
and 4. From Eqs. (12) and (15), the positive frequencies for the two
modes are

ωα,β ¼ γ(Hc+ H0), (16)

where

Hc ¼ (2HEHA þ H2
A)

1=2
, HA ¼ HAz : (17)

Thus, the two modes are degenerate in the absence of an
external magnetic field. The application of an external field H0 in
the direction of the anisotropy lifts the degeneracy. Equation (16)
shows that the frequency of mode α increases with an increasing
field, while the frequency of mode β decreases with an increasing
field. In order to characterize the behavior of the sublattice magne-
tizations in the AFMR, one has to solve the full eigenvalue equa-
tion. For H0 ¼ 0, it can be shown that Eq. (13) is satisfied by the
eigenvector matrix16

[S] ¼
ηα �ηα ηβ �ηβ
�1 1 �1 1
�ηα �ηα �ηβ �ηβ
1 1 1 1

2

6

6

4

3

7

7

5

, (18)

where

ηα ¼ HE þHA þHc

HE
, ηβ ¼

HE þ HA �Hc

HE
: (19)

Hence, the components of the sublattice magnetizations in the
two modes are

m1x

m2x

im1y

im2y

0

B

B

@

1

C

C

A

α

¼ Aα

ηα
�1
�ηα
1

0

B

B

@

1

C

C

A

,

m1x

m2x

im1y

im2y

0

B

B

@

1

C

C

A

β

¼ Aβ

�ηβ
1

�ηβ
1

0

B

B

@

1

C

C

A

, (20)
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where Aα and Aβ are amplitude factors that depend on the driving
field. Equations (20) show that the two sublattice magnetizations
are nearly opposite to each other, and they precess circularly in the
same sense, counterclockwise in mode α and clockwise in mode β.
In the α-mode, the ratio between the precession amplitudes of the
two sublattices is m1x=m2x ¼ �ηα , which is larger than unity in
absolute value. Thus, the angle of ~M1 with the z axis is larger than
the angle of ~M2, as illustrated in Fig. 3 (a). On the other hand, in
the β -mode, m1x=m2x ¼ �ηβ , which is smaller than unity in abso-
lute value, showing that the angle of ~M1 with the z axis is smaller
than the angle of ~M2, as in Fig. 3(a).

Note that the effect of the anisotropy field is enhanced by
the interplay with exchange, and this gives rise to the gap in
the spectrum. The opposite directions of the anisotropy fields
for the two sublattice magnetizations make it impossible for
them to precess in the same direction, and this brings the
exchange field into play. The interplay between the anisotropy
and the large exchange interaction results in a magnetization
precession with frequencies that are much larger in antiferro-
magnets than in ferromagnets. This fast magnetization dynam-
ics constitutes one of the motivations for pushing research in
antiferromagnetic spintronics.9–14

Equation (16) shows that the frequency of the β-mode
decreases with an increasing field and vanishes for H0 ¼ Hc, the
field value that defines the limit of stability of the AF phase. Note
that this value is larger than the one obtained before for the ther-
modynamic transition, but for small anisotropy, the two expres-
sions are approximately the same HSF � Hc � (2HEHA)

1=2. With
no applied field, the AFMR frequency is ω0 ¼ γHc. Using for
MnF2 g ¼ 2, γ ¼ 2:8GHz=kOe, and Hc ¼ 93 kOe, this gives for
the AFMR frequency 260 GHz. Using for FeF2 g ¼ 2:25 and
Hc ¼ 505 kOe, we obtain 1.59 THz.

The AFMR frequencies have been measured in MnF2 and
FeF2 with several techniques. The first measurements in MnF2,
made in zero field by Johnson and Nethercot48 with a millime-
ter microwave spectrometer, showed very broad lineshapes, but
served to give the temperature dependence of the AFMR fre-
quency. By applying a large magnetic field along the c axis,
Jaccarino and coauthors managed to carry out AFMR

experiments in MnF2 at microwave frequencies to measure
the absorption lineshapes and obtain information about the
damping mechanisms.49,50 This technique was also used in
Ref. 22 to measure the limit of stability of the AF phase in
MnF2. As shown in Fig. 4(a), measurement of the AFMR
frequency vs field and extrapolation to zero-frequency yields a
precise value for the field Hc(T).

The complete picture of the field dependence of the two
AFMR frequencies in MnF2 at low temperatures was measured in
Ref. 51 using a combination of microwave millimeter and sub-
millimeter sources. Figure 3(b) shows the data of Ref. 51 and the
results of the calculations described here for the three phases of
spin arrangement in MnF2. In the AF phase, according to Eq. (16),
as the field increases, the frequency of the mode with counterclock-
wise precession (α) increases, as in a ferromagnet. On the other
hand, the frequency of the clockwise precession mode (β) decreases
with an increasing field. As we will show in Sec. IV B, in the
spin-flop (SF) phase, the frequency of one mode is zero and the
other is ω0 ¼ γ(H2

0 �H2
c )

1=2
, as in the data of Fig. 3(b). Note that

if the field is applied perpendicularly to the c axis, the equilibrium
positions of the sublattice magnetizations are at some angle with
the field, characterizing a canted phase. In this case, the two modes
are degenerate and there is no spin-flop transition, as will be shown
in Sec. IV C. Figure 4(b) shows a comparison of the phase dia-
grams for MnF2 measured by various techniques, as presented in
Ref. 23. The AFMR has also been investigated in detail in FeF2
using a conventional far-infrared monochromator24 and also with
transmission measurements employing the radiation of molecular
far-infrared lasers.52,53

B. Easy-plane antiferromagnets

In the case of the biaxial, or easy-plane, antiferromagnet,
Eqs. (11) and (14) yield for the two AFMR frequencies

ω2
α,β ¼ (A2 þ γ2H2

0 )� (C2 þ B2)

+ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2H2
0 (A

2 � B2)þ B2C2

q

: (21)

FIG. 3. (a) Illustration of the preces-
sions of the sublattice magnetizations
of the two modes of antiferromagnetic
resonance in an easy-axis antiferro-
magnet. (b) Symbols represent the
measured magnetic field dependence
of the AFMR frequencies in MnF2 at
1.8–5.0 K, with the field applied parallel
and perpendicular to the c-axis.51 The
solid lines represent the field depen-
dencies of the frequencies calculated
with Eqs. (16) and (17) for the AF
phase, with Eqs. (61) for the SF
phase, and with Eqs. (59) and (67) for
the canted phase (~H0?~c).
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Using the definition of the parameters in Eqs. (12), for
HE � HAx , HAz , we have

ω2
α,β ffi γ2{HE(HAx þ 2HAz)þH2

0

+ [4H2
0HE(HAx þ 2HAz)þ H2

EH
2
Ax]

1=2
}: (22)

Considering HAx � HAz , appropriate for NiO, the two fre-
quencies become simply

ω2
α0 � γ2(2HEHAx þ 3H2

0 ), ω2
β0 � γ2(2HEHAz �H2

0 ): (23)

On the other hand, for H0 ¼ 0, regardless of the relative
values of the anisotropy fields, Eq. (22) gives

ω2
α0 ¼ γ22HE(HAz þ HAx), ω2

β0 ¼ γ22HEHAz: (24)

Clearly, in the absence of the hard-axis anisotropy, in zero
field, the two modes are degenerate, as seen earlier for the uniaxial
AF. The presence of the hard-axis anisotropy lifts the degeneracy
of the two modes. This feature gives NiO the property of transport-
ing a magnonic spin current even with no applied field.54

Equations (23) show that as the field increases, the frequency of
the α-mode increases, while the one for the β-mode decreases. The
β-mode frequency goes to zero at a field HSF � (2HEHAz)

1=2, which
represents the limit of stability of the AF phase. Using the values of
the effective fields for NiO, HE ¼ 9 684 kOe, HAx ¼ 6:35 kOe,
HAz ¼ 0:11 kOe, and g = 2.18, we find for the zero-field frequencies
approximately 1.07 THz and 0.140 THz. The AFMR of the higher
frequency mode, called optical mode, has been measured with
several techniques.34,36

In order to obtain the eigenstates of the two uniform magnon
modes in the AF phase of easy-plane antiferromagnets, we consider
H0 ¼ 0 and use for the eigenvalues (frequencies) ω1 ¼ �ω2 ¼ ωα

and �ω3 ¼ ω4 ¼ ωβ , given by Eq. (21). The solution of the eigen-
value Eq. (13) gives for the eigenvector matrix

[S] ¼
�εα εα εβ �εβ
εα �εα εβ �εβ
1 1 �1 �1
1 1 1 1

0

B

B

@

1

C

C

A

, (25)

where

εα ¼ ωα

A� (B� C)
, εβ ¼

ωβ

Aþ (Bþ C)
, (26)

are the ellipticities, defined as ε ¼ mx=i my . Using Eqs. (12)
and (24), and considering HE � HAx � HAz , appropriate for NiO,
Eqs. (26) give for the ellipticities

εα � 2HE

HAx

� �1=2

, εβ �
HAz

2HE

� �1=2

: (27)

Using the parameters for NiO, Eqs. (27) give for the elliptici-
ties εα � 55 and εβ � 1=419. From Eqs. (25) and (27), we see that
in the α-mode ~M1 precesses counterclockwise about the z axis,
while ~M2 precesses clockwise, with very elliptical trajectories, with
the major axis oriented along the x axis (hard anisotropy axis). The
precessions in opposite directions give rise to an oscillating magne-
tization component in the y-direction, illustrated in Fig. 5. On the
other hand, in the β-mode, ~M1 precesses clockwise about the z

FIG. 4. Experimental data for MnF2. (a) Measurements of the AFMR frequency vs applied field at two temperature values.22 Reprinted with permission from S. M. Rezende
et al., Phys. Rev. B 16, 1126 (1977). Copyright 1977 American Physical Society. (b) Phase diagram for MnF2 measured with various techniques: ultrasonic attenuation
(US);21 differential magnetization (M);21 antiferromagnetic resonance (AFMR);22 and spin Seebeck effect (SSE).23 Reprinted with permission from S. M. Wu et al., Phys.
Rev. Lett. 116, 097204 (2016). Copyright 2016 American Physical Society.
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axis, while ~M2 precesses counterclockwise, with very elliptical tra-
jectories, with the major axis oriented along the y axis, giving rise
to an oscillating magnetization component in the x-direction, as in
Fig 5. In Sec. IV D, we shall return to the discussion of the eigen-
modes in easy-plane AFs in connection with the spin waves in
these materials.

IV. ANTIFERROMAGNETIC MAGNONS

In this section, we present a quantum formulation of spin
waves in antiferromagnets. We treat the quantized excitations of
the magnetic system with the approach of Holstein–Primakoff
(HP),55 which consists of transformations expressing the spin oper-
ators in terms of boson operators that create or annihilate quanta
of spin waves, or magnons. This approach was developed for ferro-
magnets, but it also works well for antiferromagnets.56 We treat
separately the cases of the easy-axis AFs, such as MnF2 and FeF2,
and that of the easy-plane AF, such as NiO and MnO.

A. Easy-axis antiferromagnets: AF phase

Here we consider that the spins of the two sublattices point in
the direction +z of the symmetry axis, as in Fig. 1(b), and write
the Hamiltonian (1) for the easy-axis AF in terms of raising and
lowering spin operators

H ¼ �γ �h
X

i,j

~H0 �~Si,j þ
X

i=j

Jij(S
þ
i S

�
j þS�i S

þ
j þ2Szi S

z
j )� D

X

i,j

(Szi,j)
2,

(28)

where the subscripts i and j refer to the sites in sublattices 1 and 2,
respectively. In the first HP transformation, the components of the
local spin operators are related to the creation and annihilation
operators of spin deviations. For the up-spin sublattice, the lower-
ing spin operator is related to the operator a

y
i that creates a spin

deviation, while the raising spin operator is related to the operator

ai that destroys a spin deviation18,56,57

Sþ1i¼(2S)1=2 1� a
y
i ai

2S

 !1=2

ai, (29a)

S�1i¼(2S)1=2 a
y
i 1� a

y
i ai

2S

 !1=2

, (29b)

Sz1i ¼ S� a
y
i ai: (29c)

For the down-spin sublattice, the raising spin operator is
related to the operator that creates a spin deviation, and we have

Sþ2j¼(2S)1=2b
y
j 1�

b
y
j bj

2S

 !1=2

, (30a)

S�2j¼(2S)1=2 1�
b
y
j bj

2S

 !1=2

bj, (30b)

Sz2j ¼ �Sþ b
y
j bj, (30c)

where a
y
i , ai, and b

y
j , bj, are the creation and destruction operators

for spin deviations at sites i,j of sublattices 1 and 2, which satisfy the
boson commutation rules [ai, a

y
i0 ] ¼ δii0 , [ai, ai0 ] ¼ 0, [bj, b

y
j0 ] ¼ δ j j0

and [bj, b j0 ] ¼ 0. The next step consists of introducing a transforma-
tion from the localized field operators to collective boson operators
that satisfy the commutation rules, [ak, a

y
k0
] ¼ δkk0 , [ak, ak0 ] ¼ 0,

[bk, b
y
k0
] ¼ δkk0 , [bk, bk0 ] ¼ 0,

ai ¼ N�1=2
X

k

ei
~k:~ri ak, bj ¼ N�1=2

X

k

ei
~k:~rj bk, (31)

where N is the number of spins in each sublattice and ~k is a wave
vector, and we have the orthonormality condition

N�1
X

i

ei(
~k�~k0):~ri ¼ δk,k0 : (32)

Introducing in Eq. (28) the transformations (29) and (30)
with the binomial expansions of the square roots, and using
Eqs. (31) and (32), we obtain a Hamiltonian with the form
H ¼ E0 þH(2) þH(4) þH(6) þ � � �, where each term contains
an even number of boson operators. The quadratic part of the
Hamiltonian is

H(2) ¼ γ �h
X

k

(HE þHA þH0)a
y
kak þ (HE þ HA �H0)b

y
kbk

þγkHE(akb�k þ a
y
kb

y
�k), (33)

where γk is a structure factor defined by γk ¼ (1=z)
P

δ exp(i
~k �~δ),

~δ are the vectors connecting the z nearest neighbors in opposite sub-
lattices, and we have considered only intersublattice exchange with

FIG. 5. Illustration of the precessions of the sublattice magnetizations of the
two modes of antiferromagnetic resonance in an easy-plane (or hard-axis)
antiferromagnet.
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the effective fields defined as in Eq. (3). The next step consists of per-
forming canonical transformations from the collective boson opera-

tors a
y
k, ak, b

y
k, bk into magnon creation and annihilation operators

α
y
k, αk, β

y
k, βk. This is done with the Bogoliubov transformation18

ak ¼ ukαk � vkβ
y
�k, (34a)

b
y
�k ¼ �vkαk þ ukβ

y
�k: (34b)

Substituting these expressions in Eq. (33) and imposing that
the Hamiltonian be cast in the diagonal form

H(2) ¼
X

k

�h(ωαk α
y
kαk þ ωβk β

y
kβk), (35)

where ωαk
and ωβk are the frequencies of the two magnon modes,

one can find the frequencies and the transformation coefficients.
These are given by

ωαk ¼ ωk þ γH0, ωβk ¼ ωk � γH0, (36a)

ωk ¼ γ[2HEHA þH2
A þ H2

E(1� γ2k)]
1=2

(36b)

and

uk ¼
γHE þ γHA þ ωk

2ωk

� �1=2

, (37a)

vk ¼
γHE þ γHA � ωk

2ωk

� �1=2

: (37b)

Notice that the transformation coefficients satisfy the ortho-
normality condition u2k � v2k ¼ 1. Using for the body-centered
tetragonal structure of MnF2 and FeF2, the vectors connecting
nearest neighbors ~δ ¼+x̂(a=2)+ ŷ(a=2)+ ẑ(c=2), one can show
that the geometric structure factor is

γk ¼ cos(kxa=2) cos(kya=2) cos(kzc=2): (38)

Note that for magnons with k ¼ 0, γk ¼ 1, and Eqs. (36) are
the same as Eq. (16) for the AFMR frequencies. Figure 6 shows the
magnon dispersion relations for MnF2, with no applied field, with
the wave vector along the c axis, measured by inelastic neutron
scattering at three temperatures.58 The curves in Fig. 6 were calcu-
lated with Eqs. (36) and (38) and with the magnon energy
renormalization, to be described next, using HE ¼ 570 kOe,
HA ¼ 8:2 kOe, and g = 2.0. The value of the exchange field was
adjusted to fit the data at T = 3 K and is about 7% higher than the
value given before, because Eq. (36) does not include the effect of
the intrasublattice interaction J1 (see Fig. 1).

The decrease in frequency with increasing temperature is due
to the magnon energy renormalization. This was calculated using
the terms of the Hamiltonian with four magnon operators,
obtained by substitution of the transformations (29)–(31) and (37)
in Eq. (28), and retaining only those that have pairs of creation-
annihilation operators for the same mode, in any order, such as
αk1α

y
k2α

y
k3αk4, αk1α

y
k2β

y
k3βk4, and βk1β

y
k2β

y
k3βk4. Then, we use a

random-phase approximation57 to replace one of the pairs by
its thermal average such that the term has the same form
as in Eq. (35). For example, αk1α

y
k2β

y
k3βk4Δ(

~k1 þ~k4 �~k2 �~k3) is
replaced by hαqα

y
qiβ

y
kβk ¼ (�nαq þ 1)β

y
kβk þ �nβqα

y
kαk, where �nαq,βq is

the thermal occupation number for the α- or β-mode with
wave vector ~q, given by the Bose–Einstein distribution
�nαq,βq ¼ 1=(e�hωαq,βq=kBT � 1). The averages of other pairs of operators
such as αk1αk2β

y
k3βk4, or αk1α

y
k3βk2βk4, vanish or do not contribute

to the energy of either mode. Applying this approximation to each
four-magnon term, the Hamiltonian reduces to a quadratic form

H(4) ) �h
X

k

Δωαkα
y
kαk þ Δωβkβ

y
kβk, (39)

where �hΔωαk and �hΔωβk represent the renormalization of the
energies of the two modes. Thus, clearly the total magnon
energies become temperature dependent, given by �hωαk,βk(T)
¼ �hωαk,βk(0)þ �hΔωαk,βk(T). Using the contributions from the
exchange and anisotropy interactions, the total 4-magnon contribu-
tion to the α-mode energy becomes47,59

�hΔωαk(T) ¼ 2z J [(u2k þ v2k � 2ukvkγk)Cq þ (ukvkγk � v2k)Eq

þ (ukvkγk � u2k)Fq]� 4D(u2kEq þ v2kFq), (40)

FIG. 6. Magnon dispersion relations for MnF2 with no applied field with the
wave vector along the c-axis. Symbols represent inelastic neutron scattering
data at three temperatures,58 and the solid lines represent the dispersions calcu-
lated for the same temperatures with Eqs. (36) and (38) and with the magnon
energy renormalization in Eqs. (40) and (41).
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where

Cq ¼
1

NS

X

q

uqvqγq (�nαq þ �nβq þ 1), (41a)

Eq ¼
1

NS

X

q

u2q �nαq þ v2q (�nβq þ 1), (41b)

Fq ¼
1

NS

X

q

u2q �nβq þ v2q (�nαq þ 1): (41c)

The correction for the frequency of the β-mode is given by
the same expressions as (40) and (41) with the interchange α $ β.
It is important to note that even at T = 0 there is a correction to the
magnon energies due to the magnon interactions. This zero-point
correction is a characteristic feature of antiferromagnets that was
first noted by Oguchi several decades ago.60

The temperature dependence of the magnon energy renormal-
ization for MnF2 due to 4-magnon interactions was calculated
numerically with Eqs. (40) and (41) replacing the sum over wave
vectors by an integral over the Brillouin zone

1

N

X

k

! Ω

(2π)3

ð

d~k, (42)

where N is the number of allowed ~k values in the first Brillouin
zone and Ω is the volume of the unit cell. For each temperature,
the integrals in (41) were evaluated numerically by discrete sums in
~k space. In the first cycle of the evaluation of Δωαk and Δωβk, the
frequencies and the Bose factors are calculated for each point k in
the Brillouin zone without renormalization. In the following cycles,
the new Bose factors are calculated with the magnon frequencies
�hωαk,βk(T) ¼ �hωαk,βk(0)þ �hΔωαk,βk(T), using the renormalized
energies of the previous cycle. The process is repeated until the
change in frequency at all points is smaller than 0.1%. Figure 5
shows that the calculated dispersion relations in MnF2 for three
temperature values agree quite well with the experimental data.

B. Easy-axis antiferromagnets: SF phase

As mentioned earlier, if the applied field H0 exceeds the criti-
cal value Hc, the energy of the β-mode at k ¼ 0, given by Eq. (16),
becomes negative and the AF phase is no longer stable. Then the
spins flip to the configuration illustrated in Fig. 1(b), at an angle
θ1 ¼ θ2 ¼ θ with the field and in a plane determined by the small
anisotropy that exists in the plane normal to the symmetry axis.
We shall study the spin wave excitations in the SF phase using two
different coordinate systems, one for each sublattice, as shown in
Fig. 7. In each system, the z axis is chosen to point along the spin
equilibrium direction in that sublattice, the y-axes are in the direc-
tion of the y axis of the crystal, as in Fig. 1, and the x-axes are
determined by x̂ ¼ ŷ � ẑ.

As in Sec. IV A, we express the spin components in each sub-
lattice in terms of spin deviation operators. Considering only the
first order terms in the binomial expansions of the square roots in

Eqs. (29), we have

Sþi ¼Sx
0

i þ iS
y0

i ¼
ffiffiffiffiffi

2S
p

ai, Sþj ¼Sx
00

j þ iS
y00

j ¼
ffiffiffiffiffi

2S
p

bj, (43a)

S�i ¼Sx
0

i � iS
y0

i ¼
ffiffiffiffiffi

2S
p

a
y
i , S�j ¼Sx

00

j � iS
y00

j ¼
ffiffiffiffiffi

2S
p

b
y
j , (43b)

Sz
0

i ¼ S� a
y
i ai, Sz

00

j ¼ S� b
y
j bj: (43c)

Using the transformation to collective boson operators in
Eq. (31) and the relation (32), one can show that the Hamiltonian
(28) leads to the following quadratic form:

H(2) ¼�h
X

k

Ak(a
y
kak þ b

y
kbk)þ Bk(akb�k þ a

y
kb

y
�k)

þ 1

2
Ck(aka�k þ bkb�k þH: c:)þ Dk(akb

y
k þ a

y
kbk), (44)

where

Ak ¼ γ H0cos θ � HEcos 2θ þHA cos2 θ � 1

2
sin2 θ

� �� �

, (45a)

Bk ¼ γ γkHE sin
2 θ, Ck ¼

1

2
γHA sin

2 θ, Dk ¼ γ γkHE cos
2 θ,

(45b)

where the angle is given θ ¼ cos�1[H0=(2HE � HA)]. The next
step consists of performing canonical transformations from the
collective boson operators a

y
k, ak, b

y
k, bk into magnon creation and

annihilation operators α
y
k, αk, β

y
k, βk such that the quadratic

Hamiltonian is cast in the diagonal form (35).
Here, we follow the method developed by White et al.61 that

generalizes the Bogoliubov transformation for diagonalizing

FIG. 7. Coordinate systems used to represent the components of the spin oper-
ators for the two sublattices in the spin flop phase.
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quadratic Hamiltonians and write Eq. (44) in the matrix form

H ¼ �h
X

k.0

Hk, Hk ¼ (X)y[H](X), (46)

where the matrices are

(X) ¼

ak
bk
a
y
�k

b
y
�k

0

B

B

@

1

C

C

A

, [H] ¼ �h

Ak Dk Ck Bk

Dk Ak Bk Ck

Ck Bk Ak Dk

Bk Ck Dk Ak

0

B

B

@

1

C

C

A

: (47)

The next step consists of introducing a linear transformation
to new operators

(X) ¼ [Q](Z), (Z) ¼

αk

βk

α
y
�k

β
y
�k

0

B

B

B

@

1

C

C

C

A

(48)

such that the Hamiltonian in Eq. (46) can be written as

H ¼ �h
X

k

(Z)y[ω](Z), (49)

where [ω] is a diagonal eigenvalue matrix. In order to find the
transformation matrix [Q], one needs a few relations. The first
follows from the introduction of (48) in (46) and comparison with
(49). This leads to

[Q]y[H][Q] ¼ �h[ω]: (50)

Another relation is obtained from the boson commutation
rules. They can be written in matrix form as

[X, Xy] ¼ X(X)y � (X*XT )
T ¼ [g], (51a)

[Z, Zy] ¼ Z(Z)y � (Z*ZT)
T ¼ [g], (51b)

where

[g] ¼
1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

2

6

6

4

3

7

7

5

: (52)

Using Eqs. (47) and (48) in (51a) and in (51b), we obtain an
orthonormality relation for the transformation matrix

[Q][g][Q]y ¼ [g], (53)

and with (50)–(52) we obtain the eigenvalue equation

[H][Q] ¼ [g]�1[Q][g]�h[ω]: (54)

The solution of this equation gives the eigenfrequencies and
the elements of the transformation matrix [Q]. Due to the symme-
try of the 4 × 4 matrices, the matrix equations can be reduced to
relations between 2 × 2 matrices. This is done by first noticing that
the Hamiltonian (47) can be written as

[H]¼
[H1] [H2]

[H2] [H1]

� �

, [H1]¼ �h
Ak Dk

Dk Ak

� �

, [H2]¼ �h
Ck Bk

Bk Ck

� �

:

(55)

Also, note that the transformations of the operators ak and bk
are the complex conjugates of the ones for a

y
�k and b

y
�k so that the

matrix [Q] can also be written in terms of submatrices

[Q]¼
[Q1] [Q2]

[Q*
2] [Q*

1]

� �

, [Q1]¼
Q11 Q12

Q21 Q22

� �

, [Q2]¼
Q13 Q14

Q23 Q24

� �

:

(56)

The matrix [g] in (52) can also be written in the form

[g] ¼ I 0
0 �I

� �

, (57)

where I is a 2 × 2 diagonal unit matrix. Using Eqs. (55)–(57) in
(47), we obtain the following relations between the 2 × 2 matrices

[H1][Q1]þ [H2][Q
*
2] ¼ �h [Q1][ω], (58a)

[H1][Q2]þ [H2][Q
*
1] ¼ ��h[Q2][ω]: (58b)

The solution of Eqs. (58) yields the diagonal Hamiltonian in
Eq. (35), with the eigenfrequencies given by

ω2
αk ¼ (Ak � Dk)

2 � (Bk � Ck)
2, (59a)

ω2
βk ¼ (Ak þ Dk)

2 � (Bk þ Ck)
2 (59b)

and the elements of the transformation matrix given by

Q11 ¼
(Ak � Dk)þ ωαk

4ωαk

� �1=2

, Q12 ¼ � (Ak þ Dk)þ ωβk)

4ωβk

� �1=2

,

(60a)

Q13 ¼
(Ak � Dk)� ωαk

4ωαk

� �1=2

, Q14 ¼
(Ak þ Dk)� ωβk)

4ωβk

� �1=2

,

(60b)

and Q21 ¼ �Q11, Q22 ¼ Q12, Q23 ¼ �Q13, Q24 ¼ Q14. These results
greatly simplify if H0, HA � HE , which is the case of MnF2. Using
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for ka � 1, 1� γk � (ka)2=8, the two magnon frequencies become

ωαk �
1

2
γHE a k, (61a)

ωβk � γ(H2
0 � H2

c þ
1

4
H2

E a
2k2)

1=2

: (61b)

As we saw in Sec. IV B, in the AF phase, the frequency of
the αk mode increases linearly with magnetic field intensity for
any wave vector. However, in the SF phase, the frequency
becomes independent of the applied field and, moreover, it van-
ishes for the k ¼ 0 magnon, as can be seen in Eq. (61a). This
behavior has been clearly observed experimentally in MnF2,

51 as
shown in Fig. 3(b). The frequency increases linearly with field,
but as the field approaches Hc, it falls abruptly to a very small
value. This is so because this mode corresponds to the rotation
of the spins about the symmetry axis at no cost of energy. In
fact, in crystals there is always a small anisotropy in the plane
perpendicular to the symmetry axis that can be represented by
an effective field HAp. In this case, the frequency of the k ¼ 0, αk

magnon is ωα0 ¼ γ(2HEHAp)
1=2, which is still independent of

the applied field, but not zero. In regard to the βk mode, in the
AF phase, its frequency decreases linearly with field and, for
the k ¼ 0 magnon, it goes to zero at H0 ¼ Hc. For H0 . Hc,
according to Eq. (61b), the frequency increases with field as
ωβk ¼ γ(H2

0 �H2
c )

1=2
, in agreement with the experimental data

shown in Fig. 3(b).
We can find the behavior of the sublattice spins of the

magnon modes in the SF phase, by calculating the expectation
values of the spin components in coherent magnon states.62,63 For
the αk mode, we obtain

hSx0i i ¼ (2S=N)1=2(Q11 þ Q13)jαkjcos(~k �~ri � ωαk þ fαk), (62a)

hSy
0

i i ¼ (2S=N)1=2(Q11 � Q13)jαkjsin(~k �~ri � ωαk þ fαk), (62b)

hSx00j i ¼ �(2S=N)1=2(Q11 þ Q13)jαkjcos(~k �~rj � ωαk þ fαk), (62c)

hSy
00

j i ¼ �(2S=N)1=2(Q11 � Q13)jαkjsin(~k �~rj � ωαk þ fαk), (62d)

where αk ¼ jαkjexp(ifαk). For the βk mode, we have

hSx0i i ¼ (2S=N)1=2(Q14 þ Q12)jβkjcos(~k �~ri � ωβk þ fβk), (63a)

hSy
0

i i ¼ (2S=N)1=2(Q14 � Q12)jβkjsin(~k �~ri � ωβk þ fβk), (63b)

hSx00j i ¼ (2S=N)1=2(Q14 þ Q12)jβkjcos(~k �~rj � ωβk þ fβk), (63c)

hSy
00

j i ¼ (2S=N)1=2(Q14 � Q12)jβkjsin(~k �~rj � ωβk þ fβk), (63d)

where βk ¼ jβkjexp(ifβk). With Eqs. (62) and (63), we can find the
ellipticities of the spin precessions. Considering HE � H0, HA in
the coefficients (60), the ellipticity in both sublattices for the αk

mode is

eα ¼ hSx0i imax

hSy0i imax

¼ Q11 þ Q13

Q11 � Q13
� (γHE þ ωαk)

1=2 þ (γHE � ωαk)
1=2

(γHE þ ωαk)
1=2 � (γHE � ωαk)

1=2
,

(64)

and similarly for the βk mode, it is

eβ ¼
hSx0i imax

hSy0i imax

¼ Q14 þ Q12

Q14 � Q12
� (γHE þ ωβk)

1=2 � (γHE � ωβk)
1=2

(γHE þ ωβk)
1=2 þ (γHE � ωβk)

1=2
:

(65)

These equations show that the ellipticity of the spin precession
varies strongly with the wave number. Near the center of the
Brillouin zone, Eqs. (61) show that the frequencies are ωαk, ωβk �
γHE so that the ellipticities become eα ¼ 8γHE=ωαk and
eβ ¼ ωβk=(8γHE). In this case, the spin precessions are highly ellip-
tical, with the major axis much larger than the minor. Figure 8 illus-
trates the precessions of the spins in the two sublattices for both
modes, with k = 0. In the field-independent αk mode, the spins
precess with the major axes along the x-axes of the two sublattices,
with a net spin component along the external field. Thus, this mode
can be driven by a rf field parallel to the static field. On the other
hand, in the field dependent βk mode, the major axes of the ellipti-
cal precessions are along the y-direction for each sublattice, with a

FIG. 8. Illustration of the elliptical pre-
cessions of the sublattice spins in the
k = 0 magnon modes in the spin-flop
phase. (a) αk mode. (b) βk mode.
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net spin component along y so that it can be driven by a rf field par-
allel to this direction. However, for magnons at the Brillouin zone
boundaries, ωαk � ωβk � γHE , and Eqs. (64) and (65) show that
eα � eβ � 1 so that the spin precessions are circular.

C. Easy-axis antiferromagnets: Canted phase

We now consider the configuration where the external magnetic
field is applied in a direction perpendicular to the easy axis, the c axis
in MnF2 and FeF2. In this case, in the equilibrium configuration, the
two sublattice spins lie in the same plane along directions at an angle
θ with the field, similar to the spin-flop phase, shown in Fig. 1(b).
Minimization of the energy gives cos θ ¼ H0=(2HE þ HA). In this
phase, the Hamiltonian (28) expressed in terms of boson operators
introduced by the transformations in Eqs. (43) and (31) becomes,
with only the quadratic terms

H ¼�h
X

k

Ak(a
y
kak þ b

y
kbk)þ Bk(akb�k þ a

y
kb

y
�k)

þ 1

2
Ck(aka�k þ bkb�k þH: c:)þ Dk(akb

y
k þ a

y
kbk), (66)

where

Ak ¼ γ [H0 cos θ �HE cos 2θ þHA(2 sin
2θ � cos2θ)=2], (67a)

Bk ¼ γ γkHE sin
2 θ, (67b)

Ck ¼ γ HA cos
2 θ=2, (67c)

Dk ¼ γ γkHE(1þ cos 2θ)=2: (67d)

The Hamiltonian (66) has the same form as Eq. (44) for the
spin-flop state so that the frequencies and the transformation
coefficients are given by the same expressions as in Eqs. (59)
and (60), with the parameters defined by Eqs. (67).

Figure 9(a) shows the magnon dispersion relations for MnF2
with a magnetic field of H0 ¼ 200 kOe applied perpendicularly

to the easy axis, calculated with Eqs. (59) and (67), using
HE ¼ 570 kOe, HA ¼ 8:2 kOe, g = 2.0, and a geometric structure
factor for a spherical Brillouin zone, γk ¼ cos(πk=2kmax). For the
zero field, the two modes are degenerate and the dispersion relations
are the same as in Fig. 6. Application of the field results in a behavior
similar to the spin-flop phase, the frequency of the α-mode becomes
independent of the field, while the frequency of the β-mode increases
with the field. This is illustrated further in Fig. 9(b) showing the field
dependence of the frequencies for the k = 0 modes. The frequency of
the β-mode increases continuously with field, as observed experi-
mentally,51 and shown in Fig. 3(b). Note that the frequency of the
α-mode is not shown in Fig. 3(b) because the experiments of Ref. 51
were carried out with fixed frequency and scanning field so that the
α-mode could not be detected.

D. Easy-plane antiferromagnets in the AF phase

We now consider easy-plane, or hard-axis, antiferromagnets,
initially with no applied field. As in the previous cases, the first
step consists in writing the Hamiltonian (5), with H0 ¼ 0, in terms
of raising and lowering spin operators

H ¼ �γ �h
X

i,j

Jij(S
þ
i S

�
j þS�i S

þ
j þ2Szi S

z
j )þ

X

i,j

Dx(S
x
i,j)

2 � Dz(S
z
i,j)

2

:

(68)

Next, we use Eqs. (29)–(32) for the transformation from the
spin operators into boson collective spin deviation operators and
obtain the quadratic Hamiltonian

H ¼ �h
X

k

Ak(a
y
kak þ b

y
kbk)þ Bk(akb�k þ a

y
kb

y
�k)

þ 1

2
Ck(aka�k þ bkb�k þ H:c:), (69)

where the parameters are related to the effective fields by

Ak ¼ γ(HE þHAx=2þHAz), Bk ¼ γ γkHE , Ck ¼ γ
HAx

2
, (70)

FIG. 9. Magnon frequencies calculated
with Eqs. (59) and (67) for MnF2, with
the external field applied perpendicu-
larly to the easy axis, in the spin-
canted configuration. (a) Dispersion
relations for H0 ¼ 200 kOe. (b) Field
dependence of the k = 0 magnon
frequencies.
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where γk is the geometric structure factor. The Hamiltonian (69)
has the same form as Eq. (44) for the spin flop state so that the
frequencies are given by the same expressions as in Eqs. (59a)
and (59b), with Dk ¼ 0. Thus, the magnon frequencies of the two
modes are

ω2
α,β ¼ A2

k � (Ck+ Bk)
2: (71)

Using the expressions for the parameters in Eq. (70), one can
write the frequencies of the two magnon modes in terms of the
effective fields

ω2
αk ¼ γ2[H2

Azþ2HEHAzþHAxHAz þHEHAx(1þγk)þH2
E(1�γ2k)],

(72a)

ω2
βk ¼ γ2[H2

Azþ2HEHAzþHAxHAz þHEHAx(1�γk)þH2
E(1�γ2k)] :

(72b)

For NiO, considering HE � HAx , HAz , the frequencies of the
Brillouin-zone center k = 0 (γk ¼ 1) magnons are

ωα0 ¼ γ[2HE(HAx þ HAz)]
1=2, (73a)

ωβ0 ¼ γ(2HEHAz)
1=2, (73b)

which agree with Eq. (24) obtained with the semi-classical treat-
ment. These equations show that, regardless of the relative
values of the anisotropy fields, the frequency of the α-mode
is always larger than for the β-mode. In the case of NiO, HAx �
HAz so that ωα0 � γ(2HAxHE)

1=2, in agreement with Eq. (24) for
the α-mode and H0 ¼ 0. As shown in Ref. 54, the values of the
parameters for NiO can be obtained by fitting Eqs. (72) to three
sets of experimental data. Fitting to the neutron scattering mea-
surements of Hutchings and Samuelsen28 gives the value of the
exchange field HE ¼ 9 684 kOe, considering for the g-factor
g = 2.18. Since the neutron data do not have sufficient resolution
to determine the frequencies of the zone-center magnons, we use

the value ωβ0=2π ¼ 0:140THz measured by Brillouin light scat-
tering32 and ωα0=2π ¼ 1:07THz obtained from magnetization
oscillations in the far infrared.36 With these values in Eqs. (73),
we determine the effective anisotropy fields, HAx ¼ 6:35 kOe and
HAz ¼ 0:11 kOe. Figure 10(a) shows the dispersion relations calcu-
lated with Eqs. (72) assuming a spherical Brillouin zone and using
for the structure factor γk ¼ cos(π k=2km), where km ¼ π=al , al
being the lattice parameter, as well as the data of Ref. 28. The two
magnon modes are nearly degenerate for large wave vectors, but the
frequency separation is evident in the blow up near the Brillouin
zone center as shown in Fig. 10(b).

In the case where an external field is applied in the easy plane,
in a direction along the easy axis, it can be shown47 that the
unrenormalized magnon frequencies are

ω2
α,β ¼ (A2

k þ γ2H2
0 )� (C2

k þ B2
k)+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2H2
0 (A

2
k � B2

k)þ B2
kC

2
k

q

:

(74)

The dashed lines in Fig. 10(b) represent the dispersion rela-
tions in NiO calculated for a field H0 ¼ 40 kOe. As one can see, for
k = 0, the frequency of the αk-mode increases with an increasing
field, while the frequency of the βk-mode decreases. In fact, the
softening of the βk-mode with an increasing field determines the
spin-flop transition in NiO.47

Similar to the case of the spin-flop phase, studied in Sec. IV B,
we can calculate the expectation values of the spin components in
coherent magnon states in the AF phase of the easy-plane antifer-
romagnets. In both modes, the spin precessions in the two sublatti-
ces are characterized by an ellipticity e ¼ hSxi,jimax=hS

y
i,jimax. Using

the transformations (30)–(32) and (48), one can express the spin
components in terms of the coefficients in Eqs. (60) and show that
the ellipticities for modes αk and βk are

eα ¼ Q11 þ Q13

Q11 � Q13
, eβ ¼

Q14 � jQ12j
Q14 þ jQ12j

: (75)

As in the spin-flop phase, the ellipticities of the spin precession
vary strongly with the wave number. Near the center of the

FIG. 10. Spin wave dispersion rela-
tions in antiferromagnetic NiO at
T = 300 K. (a) Solid curves show the
magnon frequencies calculated with
Eqs. (72). Symbols represent the
neutron scattering data of Ref. 28. (b)
Blow up of the Brillouin zone center
showing the separation of the frequen-
cies of the α (upper blue curve) and β

(lower red curve) magnon modes. The
dashed curves are calculated with
Eq. (74) for a field of H0 ¼ 40 kOe
applied along the easy axis.
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Brillouin zone, for γHE � ωαk, ωβk, Eqs. (75) give the same results
as in Eqs. (27), showing that the spin precessions are highly elliptical,
as in Fig. 5. However, for magnons near the Brillouin zone boundar-
ies, ωαk � ωβk � γHE , Q13, Q14 ! 0, and one can see from Eq. (75)
that the ellipticities approach unity, corresponding to circular spin
precessions. The dependencies of the ellipticities on the wave
number, calculated for NiO with Eq. (75), are shown in Fig. 11.

V. MAGNONIC SPIN CURRENT IN
ANTIFERROMAGNETS

A key concept in spintronics is the spin current, which
expresses the flow of spin angular momentum in a material. In
metals, the spin current is carried by the spins of the conduction
electrons, whereas in magnetic insulators, the spin current is trans-
ported by magnons. In a simple ferromagnetic insulator with one
spin per unit cell so that there is only one magnon mode, consider-
ing z the equilibrium direction of the spins, the spin-current
density with polarization z carried by magnons with wave vector ~k
and energy εk ¼ �hωk is

64–66

~JzS ¼ �h

(2π)3

ð

d3k~vk[nk(~r)� n0k]: (76)

Here, ~vk is the magnon velocity, nk(~r) is the number of
magnons with wave vector ~k at a position~r, and n0k is the number
in thermal equilibrium, given by the Bose–Einstein distribution
with zero chemical potential. In a two-sublattice antiferromagnet,
the spin current is transported by the two magnon modes. In the
AF phase, the total z-component of the spin angular momentum
carried by magnons is given by Sz ¼

P

i,j (S
z
i þ Szj ). With Eqs. (29c)

and (30c), one can write the z-component of the spin angular
momentum as

Sz ¼
X

k

�a
y
kak þ b

y
kbk: (77)

Using the transformation to the magnon operators given by
Eqs. (31) and keeping only terms with magnon number operators,
we have

Sz ¼
X

k

(� α
y
kαk þ β

y
kβk): (78)

The opposite signs in the angular momenta of the two modes
are consistent with the semiclassical picture of the spins precessing
in opposite directions. Considering for each mode μ the group
velocity~vμk ¼ k̂ @ωμ=@k, the spin current density operator is

~JzS ¼ �h

V

X

k

[�~vαkαy
kαk þ~vβkβ

y
kβk]: (79)

In this equation, which is valid for both easy-axis and
hard-axis antiferromagnets, α

y
kαk and β

y
kβk represent the number

operators of magnons of each mode. In easy axis antiferromagnets,
such as MnF2 and FeF2, in the absence of an applied magnetic
field, the two magnon modes are degenerate and thus have equal
occupation numbers in thermal equilibrium. Since they also have
equal group velocities, in easy-axis AFs, the spin current created by
thermal gradients vanishes at zero field.

In order to illustrate a method to calculate the magnonic spin
current in spintronics, we consider the spin Seebeck effect, which
consists of the generation of spin currents by a thermal gradient
across a thin layer of a magnetic material.67–69 In this case, the
magnonic spin current can be calculated with the Boltzmann and
diffusion equations for the magnon accumulation, defined for AF
materials by extending the concept introduced for ferromagnets.65

Denoting by nμk the number of magnons in the μ ¼ α, β mode
with wave number k in the whole volume V of the AF layer, and by
n0μk the number in thermal equilibrium, given by the Bose–Einstein
distribution, the quantity δ nμk(~r) ¼ nμk(~r)� n0μk is the number in
excess of equilibrium. Since the contributions of the two modes to
the spin current have opposite signs, we define the magnon accu-
mulation δ nm(~r) in antiferromagnets as54,66,70

δ nm(~r) ¼
1

(2π)3

ð

d3k[(nαk � n0αk)� (nβk � n0βk)], (80)

so that the magnon spin-current density in Eq. (76) becomes

~JzS ¼ � �h

(2π)3

ð

d3k [~vαk(nαk(~r)� n0αk)�~vβk(nβk(~r)� n0βk)]: (81)

The distribution of the magnon number under the influence of a
thermal gradient can be calculated with the Boltzmann transport
equation. In the absence of external forces and in the relaxation
approximation, in steady state, we obtain for each magnon mode

nμk(~r)� n0μk ¼ �τμk~vμk � ∇n0μk � τμk~vμk � ∇[nμk(~r)� n0μk], (82)

where τμk is the μk-magnon relaxation time. Using Eq. (82) in
Eq. (81), one can show that the spin current is the sum of two

FIG. 11. Wave number dependence of the ellipticities of the two magnon
modes in the easy-plane antiferromagnet NiO.
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parts,~JzS ¼~JzS∇T þ~JzSδn, where

~JzS∇T ¼ �h

(2π)3

ð

d3k

�

�ταkv
2
αky

@n0αk
@T

þ τβkv
2
βky

@n0βk
@T

�

@T

@y
(83)

is the contribution of the flow (convection) of magnons due to the
temperature gradient, assumed to be in the y direction, and

~JzSδn ¼ � �h

(2π)3

ð

d3k[ταk~vαk~vαk � ∇δ nαk � τβk~vβk~vβk � ∇δ nβk] (84)

is due to the spatial variation of the magnon accumulation, which
is governed by the diffusion equation.65,66 With the temperature
gradient normal to the film plane, Eq. (83) gives for the spin
current in the y-direction66

JzS ¼ SzS∇T , (85)

SzS ¼
�h2

6π2kBT2

ð

dk k2
e�hωβk=kBT ωβkv

2
βky

ηβk(e
�hωβk=kBT � 1)

2 �
e�hωαk=kBT ωαkv

2
αky

ηαk(e
�hωαk=kBT � 1)

2

" #

,

(86)

where T is the average temperature and ημk ¼ 1=τμk is the
μk-magnon relaxation rate. We consider the magnon and phonon
systems to have the same temperature T. Equation (86) contains the
most relevant dependencies of the SSE on the sample temperature
and applied field. It shows, for instance, that in an easy-axis AF, the
spin current, and hence the SSE, vanishes for H = 0, at any temper-
ature, because the two modes have the same occupancy. In SSE
experiments, one employs a metallic layer in contact with the AF
layer, which is used to convert the spin current into a charge
current by the inverse spin-Hall effect.71 Using Eqs. (84)–(86), one
can obtain the full expression for the spin current in the AF layer
and calculate the fraction that is injected into the metallic layer to
find the voltage that measures the spin Seebeck effect.66,70

VI. SUMMARY AND PERSPECTIVES

In this tutorial, we have presented a brief review of the basic
concepts and properties of the collective spin excitations in antifer-
romagnets, the spin waves, whose quanta are called magnons. We
have restricted attention to simple AF insulators with only two-
sublattices, one class with easy-axis anisotropy, such as the
fluorides MnF2 and FeF2, and the other with easy-plane anisotropy,
such as NiO. For these materials, the magnon dispersion relations
were calculated for the external magnetic field applied in different
directions relative to the spins. Actually, antiferromagnets are
known to exist with a great variety of crystalline structures and spin
interactions, and new materials continue to be discovered in
intense research efforts motivated by their promising future for
spintronic applications.10–14 The method used here to study
magnons can be applied to AFs with more complex spin interac-
tions, such as noncollinear antiferromagnets, where the chirality of
the spin structure results in topological effects and opens up addi-
tional pathways for influencing transport phenomena.72

In regard to the excitation of magnons in antiferromagnets,
we have discussed only one method, namely, the spin Seebeck
effect, by which magnonic spin currents are generated by thermal
gradients. Actually, magnons can be excited by several processes,
such as spin current injection,73 ultrafast optical excitation,35,36

current driven dynamics produced by spin-transfer torque,43

among others.8–14 Thus, the experimental and theoretical study of
magnonic phenomena in the wide variety of antiferromagnetic
materials, known and yet to be discovered, constitutes a challenging
and exciting field of research in magnetism and spintronics.
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