
Introduction to Automatic Differentiation

Johannes WillkommJohannes Willkomm

PLEIAD Seminar, Universidad de ChilePLEIAD Seminar, Universidad de Chile

27 Nov. 200927 Nov. 2009

Santiago de ChileSantiago de Chile

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Outline of the talk

• Automatic Differentiation (AD)
– Definition by example
– Forward and reverse mode
– Scalar and vector mode

• AD implementation
– Source transformation and operator overloading
– Reverse mode example
– Tools

• Alternatives to AD
– Divided differences, Complex-Variable method
– Symbolic and manual differentiation

• Summary

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Automatic Differentiation

• Automatic or Algorithmic Differentiation (AD)
– Given a numeric program, that implements function F
– AD creates a new program that computes F', the first

order derivative of F
– And sometimes also the higher order derivatives F'', F''',

FIV, etc.

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Lighthouse example

• Consider the beam of a lighthouse rotating with
angular velocity ω as it runs along a quay with
slope γ at distance ν, as a function of time t

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Lighthouse example

• The coordinates of the point where the light hits
the quay are given by

• A program implementing this function

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Forward mode example

• Program code can be mechanically differentiated
– Differentiate each statement and insert it before the

original statement

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Running the AD code

• The AD code has new input and output variables
δt, δγ, δν, and δω are new inputs

δx, δy are new results

• The user must set the input derivatives
– δt = dt/dp, δγ = dγ/dp, δν = dν/dp, and δω = dω/dp,

where p is the parameter to differentiate to

• Examples:
– Setting δt = 1, δγ = 0, δν = 0, and δω = 0, the AD code

computes dx/dt and dy/dt
– Setting δt = 0, δγ = 1, δν = 0, and δω = 0, the AD code

computes dx/dγ and dy/dγ, etc.

• To get all eight derivatives, the code must be run
four times: this is the scalar forward mode

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Vector mode AD

• We can also transform the derivative variables
into vectors
– Using 4-vectors we can compute all derivatives at once

• Example
– Set δt = [1,0,0,0], δγ = [0,1,0,0], δν = [0,0,1,0], and

δω = [0,0,0,1]
– As the result we obtain the full Jacobian matrix J = DF

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Formalize forward AD

• To differentiate a program
– Create new variable δv for each program variable v
– Differentiate each statement and insert it before the

original statement

– Each δv holds the derivative dv/dp of v w.r.t. the input
parameter p

u wv

z

δu δwδv

δz

∂f/∂u
∂f/∂v

∂f/∂w

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Reverse mode AD

• AD is also possible by running the program
backwards

• For each statement we propagate the derivative
of the LHS to the derivatives of the variables on
the RHS
– Create the so-called adjoint statements

δu δwδv

δz

∂f/∂u ∂f/∂v
∂f/∂w

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Reverse mode AD

• Forward sweep
– The program is executed, saving all variable values

• Initialize adjoints
– Initialize all derivative variables δv to zero

• Return sweep
– Execute the adjoint statements in reverse order

– Now, at any one time, δv contains the adjoint df/dv of v

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Lighthouse in reverse

• Run code
• Zero adjoints
• Run adjoint code

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Running reverse mode AD code

• The adjoint code has new in- and outputs
δx, δy are new inputs

δt, δγ, δν, and δω are new results

• Values for δx and δy are supplied by the user
δx = dx/dr and δy = dy/dr where r is the result to
differentiate

• Example
– Setting δx = 1 and δy = 0, the code computes dx/dt,

dx/dγ, dx/dν, and dx/dω
– Setting δx = 0 and δy = 1, the code computes dy/dt,

dy/dγ, dy/dν, and dy/dω

• To get all eight derivatives, the code must be run
twice, or with 2-vectors as input adjoints

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

First order AD in general

• Given a function

– First order AD computes the Jacobian

– Or products thereof

• AD in forward mode
– Computes Jacobian times vector

or Jacobian time matrix products

• AD in reverse mode
– Computes vector times Jacobian

or matrix times Jacobian products

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

AD complexity

• The time complexity depends on the number of
rows or columns in S and the runtime TF of F

– Computing J has TFO(m) in RM and TFO(n) in FM

– The c in O is 3 < c < 50, depending on tool & strategy

• Space complexity is O(TF) in RM!

m, n “for free”

*

costs p

*

costs pm, n “for free”

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

AD tool implementation

• Source transformation
– New program text is generated
– Higher order derivatives often not directly supported,

but by repeatedly applying the tool

• Operator Overloading
– Numeric data type (double) is replaced by new type
– Tapeless: Derivatives are stored inside the active

variables and updated on the fly
• Forward mode only

– With Taping: Computations are first recorded on a
so called Tape, which is then read (forwards or ‑
backwards) to compute the derivatives

– Higher order derivatives are not much more difficult to
implement than first order

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Polynom example

• Compute polynomial of order n

• A C-style implementation in MATLAB
– If x, ci are all scalars that could also be a one-liner

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Source transformation RM

• Forward sweep
– Run (canonicalized) code
– Save all values overwritten
– Save control flow

• Return sweep
– Zero adjoints
– Run backwards
– Compute adjoints

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

AD tools

Tool Language FM RM ST OO

ADOL-C C/C++   
CppAD C/C++   
ADiFor Fortran 77  
Tapenade Fortran 77,   
 Fortran 90/95
ADiMat Matlab   
MAD Matlab  

ADiCape CapeML  

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Alternative ways to compute derivatives

• Divided differences
– Very inaccurate

– Difficult to find the right value for h
✔ Only function F is required

– Only Jv with complexity O(n)

• Complex variable method
– Program needs to be changed similar to AD with OO
✔ Derivatives are exact, if h is just small enough

– Need to provide new operations >, <, abs

– Only Jv with complexity O(n)

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

CV-Method vs. DD

• The CV-Method is more precise
– Usually up to machine precision

• And it is safer to use
– Just set h to a very small value, e.g. h = 10-60

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Alternative ways to compute derivatives

• Symbolic differentiation
– May be difficult to write a whole program as one

expression
– Large derivative expressions with lots of repeated

subexpressions
– Often very large runtimes

• Especially for higher order derivatives
• Differentiation has to be done only once however

• Manual differentiation
– Usually efficient derivative code

– Often tedious and error-prone, especially when F is
changed

– Discretization of F and F' has to be taken into account

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Differentiation-Discretization

• Let F be defined by a PDE
– Usually implemented by discretization
– e.g. using the Finite Element Method

• Derivative F' often by discretizing the adjoint PDE
– The discretization introduces errors in both F and F'
– AD of the discretized F differentiates through the

discretization errors of F

F Program F

F'
AD Program F'

== Program F'?

Manual/Symbolic
Differentiation AD Differentiation

Discretization

Discretization

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Differentiation-Discretization

• Solving Inverse Heat Conduction Problem with
Conjugate Gradient optimization using both AD ‑
gradient and gradient obtained from adjoint PDE
– The objective function J drops faster with AD

– “faster” means fewer number of iterations here

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Conclusion

• AD advantages
– AD can provide derivatives of that are efficient, precise,

and reliable
– AD is often easy to apply

• AD disadvantages
– AD tools can be difficult to use and may lack support for

language elements and/or higher order derivatives
– Applying the reverse mode of AD needs special

measures to cope with the memory requirements
• Possible, but not discussed here

• When you need derivatives you should use AD
• You should consult with an AD expert

AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

The AD book

“Evaluating Derivatives”, 2nd edition
Andreas Griewank & Andrea Walther
SIAM, Philadelphia 2008
ISBN 978-0-898716-59-7

