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Outline of the talk

• Automatic Differentiation (AD)
– Definition by example
– Forward and reverse mode
– Scalar and vector mode

• AD implementation
– Source transformation and operator overloading
– Reverse mode example
– Tools

• Alternatives to AD
– Divided differences, Complex-Variable method
– Symbolic and manual differentiation

• Summary
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Automatic Differentiation

• Automatic or Algorithmic Differentiation (AD)
– Given a numeric program, that implements function F
– AD creates a new program that computes F', the first 

order derivative of F
– And sometimes also the higher order derivatives F'', F''', 

FIV, etc.
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Lighthouse example

• Consider the beam of a lighthouse rotating with 
angular velocity ω as it runs along a quay with 
slope γ at distance ν, as a function of time t
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Lighthouse example

• The coordinates of the point where the light hits 
the quay are given by

• A program implementing this function
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Forward mode example

• Program code can be mechanically differentiated
– Differentiate each statement and insert it before the 

original statement
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Running the AD code

• The AD code has new input and output variables
δt, δγ, δν, and δω are new inputs

δx, δy are new results

• The user must set the input derivatives
– δt = dt/dp, δγ = dγ/dp, δν = dν/dp, and δω = dω/dp, 

where p is the parameter to differentiate to

• Examples: 
– Setting δt = 1, δγ = 0, δν = 0, and δω = 0, the AD code 

computes dx/dt and dy/dt
– Setting δt = 0, δγ = 1, δν = 0, and δω = 0, the AD code 

computes dx/dγ and dy/dγ, etc.

• To get all eight derivatives, the code must be run 
four times: this is the scalar forward mode
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Vector mode AD

• We can also transform the derivative variables 
into vectors
– Using 4-vectors we can compute all derivatives at once

• Example
– Set δt = [1,0,0,0], δγ = [0,1,0,0], δν = [0,0,1,0], and 

δω = [0,0,0,1]
– As the result we obtain the full Jacobian matrix J = DF
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Formalize forward AD

• To differentiate a program
– Create new variable δv for each program variable v
– Differentiate each statement and insert it before the 

original statement

– Each δv holds the derivative dv/dp of v w.r.t. the input 
parameter p

u wv

z

δu δwδv

δz

∂f/∂u
∂f/∂v

∂f/∂w
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Reverse mode AD

• AD is also possible by running the program 
backwards

• For each statement we propagate the derivative 
of the LHS to the derivatives of the variables on 
the RHS
– Create the so-called adjoint statements

δu δwδv

δz

∂f/∂u ∂f/∂v
∂f/∂w
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Reverse mode AD

• Forward sweep
– The program is executed, saving all variable values

• Initialize adjoints
– Initialize all derivative variables δv to zero

• Return sweep
– Execute the adjoint statements in reverse order

– Now, at any one time, δv contains the adjoint df/dv of v
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Lighthouse in reverse

• Run code
• Zero adjoints
• Run adjoint code
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Running reverse mode AD code

• The adjoint code has new in- and outputs
δx, δy are new inputs

δt, δγ, δν, and δω are new results

• Values for δx and δy are supplied by the user
δx = dx/dr and δy = dy/dr where r is the result to 
differentiate

• Example
– Setting δx = 1 and δy = 0, the code computes dx/dt, 

dx/dγ, dx/dν, and dx/dω
– Setting δx = 0 and δy = 1, the code computes dy/dt, 

dy/dγ, dy/dν, and dy/dω

• To get all eight derivatives, the code must be run 
twice, or with 2-vectors as input adjoints
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First order AD in general

• Given a function

– First order AD computes the Jacobian

– Or products thereof

• AD in forward mode
– Computes Jacobian times vector

or Jacobian time matrix products

• AD in reverse mode
– Computes vector times Jacobian

or matrix times Jacobian products
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AD complexity

• The time complexity depends on the number of 
rows or columns in S and the runtime TF of F

– Computing J has TFO(m) in RM and TFO(n) in FM

– The c in O is 3 < c < 50, depending on tool & strategy

• Space complexity is O(TF) in RM!

m, n “for free”

*

costs p

*

costs pm, n “for free”
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AD tool implementation

• Source transformation
– New program text is generated
– Higher order derivatives often not directly supported, 

but by repeatedly applying the tool

• Operator Overloading
– Numeric data type (double) is replaced by new type
– Tapeless: Derivatives are stored inside the active 

variables and updated on the fly
• Forward mode only

– With Taping: Computations are first recorded on a 
so called Tape, which is then read (forwards or ‑
backwards) to compute the derivatives

– Higher order derivatives are not much more difficult to 
implement than first order



AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Polynom example

• Compute polynomial of order n

• A C-style implementation in MATLAB
– If x, ci are all scalars that could also be a one-liner
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Source transformation RM

• Forward sweep
– Run (canonicalized) code
– Save all values overwritten
– Save control flow

• Return sweep
– Zero adjoints
– Run backwards
– Compute adjoints
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AD tools

Tool Language FM RM ST OO

ADOL-C C/C++      
CppAD C/C++      
ADiFor Fortran 77    
Tapenade Fortran 77,        
                     Fortran 90/95
ADiMat Matlab      
MAD Matlab    

ADiCape CapeML    
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Alternative ways to compute derivatives

• Divided differences
– Very inaccurate

– Difficult to find the right value for h
✔ Only function F is required

– Only Jv with complexity O(n)

• Complex variable method
– Program needs to be changed similar to AD with OO
✔ Derivatives are exact, if h is just small enough

– Need to provide new operations >, <, abs

– Only Jv with complexity O(n)
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CV-Method vs. DD

• The CV-Method is more precise
– Usually up to machine precision

• And it is safer to use
– Just set h to a very small value, e.g. h = 10-60
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Alternative ways to compute derivatives

• Symbolic differentiation
– May be difficult to write a whole program as one 

expression
– Large derivative expressions with lots of repeated 

subexpressions
– Often very large runtimes

• Especially for higher order derivatives
• Differentiation has to be done only once however

• Manual differentiation
– Usually efficient derivative code

– Often tedious and error-prone, especially when F is 
changed

– Discretization of F and F' has to be taken into account
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Differentiation-Discretization

• Let F be defined by a PDE
– Usually implemented by discretization 
– e.g. using the Finite Element Method

• Derivative F' often by discretizing the adjoint PDE
– The discretization introduces errors in both F and F'
– AD of the discretized F differentiates through the 

discretization errors of F

F Program F

F'
AD Program F'

== Program F'?

Manual/Symbolic
Differentiation AD Differentiation

Discretization

Discretization



AD Introduction
Johannes Willkomm

PLEIAD Seminar, UChile

Differentiation-Discretization

• Solving Inverse Heat Conduction Problem with 
Conjugate Gradient optimization using both AD ‑
gradient and gradient obtained from adjoint PDE
– The objective function J drops faster with AD

– “faster” means fewer number of iterations here
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Conclusion

• AD advantages
– AD can provide derivatives of that are efficient, precise, 

and reliable
– AD is often easy to apply

• AD disadvantages
– AD tools can be difficult to use and may lack support for 

language elements and/or higher order derivatives
– Applying the reverse mode of AD needs special 

measures to cope with the memory requirements
• Possible, but not discussed here

• When you need derivatives you should use AD
• You should consult with an AD expert
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The AD book

“Evaluating Derivatives”, 2nd edition
Andreas Griewank & Andrea Walther
SIAM, Philadelphia 2008
ISBN 978-0-898716-59-7


